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Summary

Objective: A major focus in computational system biology research is defining
organizing principles that govern complex biological network formation and evolu-
tion. The task is considered a major challenge because network behavior and function
prediction requires the identification of functionally and statistically important
motifs. Here we propose an algorithm for performing two tasks simultaneously: (a)
detecting global statistical features and local connection structures in biological
networks, and (b) locating functionally and statistically significant network motifs.
Methods and material: Two gene regulation networks were tested: the bacteria
Escherichia coli and the yeast eukaryote Saccharomyces cerevisiae. To understand
their structural organizing principles and evolutionary mechanisms, we defined bridge
motifs as composed of weak links only or of at least one weak link and multiple strong
links, and defined brick motifs as composed of strong links only.

Results: After examining functional and topological differences between bridge and
brick motifs for predicting biological network behaviors and functions, we found that
most genetic network motifs belong to the bridge category. This strongly suggests that
the weak-tie links that provide unique paths for signal control significantly impact the
signal processing function of transcription networks.
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Conclusions: Bridge and brick motif content analysis can provide researchers with
global and local views of individual real networks and help them locate functionally
and topologically overlapping or isolated motifs for purposes of investigating biolo-
gical system functions, behaviors, and similarities.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Network-oriented approaches are receiving signifi-
cant attention in computational biology. Increasingly
powerful computers and Internet accessibility make
it easy for biologists to share their latest research
results via genome and proteome databases such as
the Human Genome Project. In these and other large
databases, system biologists integrate network the-
ory with computer simulations in order to solve
complex problems. As the borders between scientific
disciplines become more fluid, system biologists reg-
ularly apply research approaches developed by com-
puter scientists and statistical physicists to analyze
local and global features, system functions, and
dynamic behaviors in complex biological networks.

Commonalties have emerged from studies of
complex networks in fields ranging from biology to
social and computer sciences. Three global features
in complex networks have been identified and
investigated: highly clustered connections [1,3,6],
small-world properties [2—6], and the scale-free
phenomenon [1,9,40—42]. Approaches based on
quantitative and qualitative analyses of the topo-
logical properties of complex networks are being
utilized to study how the global features of network
topological structures affect the dynamic behavior
of networks [1,13,18,22,36,39,40]. This is currently
considered one of the field’s most important and
challenging research topics [1—6,25,26,36,39,40].

Some local structural motifs (building blocks)
reveal unique and statistically significant patterns
when compared with random [7,8,10—15], biological
[7,11,15,16,18], and food web [7,17] motifs; all are
thought to contain important information. However,
simple motifs of complex networks that are statisti-
cally significant but functionally unimportant are
clearly inadequate for investigating network func-
tions and dynamic behaviors [7,8,12,15,19—-22]. We
therefore propose an algorithm to perform two tasks:
simultaneously detecting global features and local
structures in complex networks, and identifying
functionally and statistically significant network
building blocks from complex networks.

When considering the global features and local
structural motifs of biological networks, it is worth
noting that link properties (weights) exert strong
impacts on network functions and dynamic behaviors
[1,17,23,24,44]. Examples include the role of weak

links in the six degrees of separation (i.e., small-
world) effect of interpersonal networks [23,24] and
the strength of predator—prey interactions that
determine the stability of ecological communities
[17]. Network researchers have reported that a
weighted value representing interaction strength
can be assigned to each link (edge) in a real network
[1,25,27]. We therefore took into consideration net-
work motif link strength in terms of two categories:
bridge motifs and brick motifs (Fig. 1). Bridge motifs
consist of weak links only or a minimum of one
weak link; brick motifs consist of strong links only
(Table 1). Bridge motifs connect clusters and reduce
the average degree of separation, and brick motifs
exhibit the local clustering phenomenon in biological
networks.

2. Background

Although small-world properties and the scale-free
phenomenon are common statistical features of
complex networks, they can have very different
local structures, thus underscoring the importance
of understanding the local structures of real net-
works and the design principles and evolutionary
mechanisms that generate them. Taking gene reg-
ulation networks as an example, recent studies have
shown that gene biochemical functions operate in a
highly modular manner [34—36,39], with indepen-
dent tasks being performed by modules consisting of

Feed-forward Feed-forward bridge
brick motif motif
| ?\v. | \:.
Figure 1 Network motifs example. Network motifs can

be separated into two categories: bridge and brick. Using
the three-point feed-forward motif as an example, it can
be divided into two categories: a three-point feed-for-
ward brick motif (left box) composed of three strong (red)
links, and a three-point feed-forward bridge motif (right
box) composed of at least one weak (blue) link and a
maximum of two strong (red) links. (For interpretation of
the references to color in this figure legend, the reader is
referred to the web version of the article.)
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Table 1 Thirteen directed three-node subgraphs
without weighted values (i.e., simple network motifs)

ID Motif
1

10

11

12

13

VVNVVVNV VYV 7V

single groups of physically or functionally connected
nodes [34,39,40,43]. Many real networks contain
large numbers of modules—for instance, groups of
coworkers in a corporation or World Wide Web
hyperlinks on a specific topic.

In many complex and large-scale systems, reusa-
ble components and highly modular structures
represent important design principles [1,34,40].
Examples of modularized functions and structures
in ecosystems include food webs, gene transcrip-
tions, protein—protein interactions, and real net-
works distributed across various bases, genes, amino
acids, proteins, cells, organs, and food chains.
These modules direct biochemical reactions, growth
and development, and evolutionary processes
[7,18,28,43].

Understanding complex network modularity
requires appropriate measurement tools and the
identification of modular relationships within a

given real network [25,26,40]. Module identification
is considered difficult due to contradictions
between the modularity concept and the scale-free
phenomenon of small-world networks. However,
most nodes in scale-free networks are connected
to central or core nodes—a structure that affects
the appearance of isolated modules.

Results from recent studies suggest that motifs
can serve as basic modular elements in complex
networks [7,12,37,40]. The clustering degrees of
most real networks are much higher that those of
randomized networks with the same number of nodes
and edges, indicating that real networks can contain
multiple subgraphs composed of strongly connected
nodes. However, multiple subgraphs in real networks
may not hold equal importance, with some subgraphs
appearing much more frequently than others in
complex networks. These statistically significant
subgraphs are called motifs [7].

Based on the original motif concept, Milo et al.
proposed a method for comparing local structures
among different complex networks according to
their significance profiles (SPs) [28]. The method
can be used to classify real networks in which similar
SP vector values belong to the same superfamily.
There is evidence indicating that similar types of
real networks not only have similar network motifs,
but also have similar relative significance within real
networks [7,28]. At the same time, a network super-
family may contain networks consisting of vastly
different scales and functions.

3. Bridge and brick network motif-
detecting algorithms

As shown in Eq. (1), a link-weighted value depen-
dent on the number of all possible paths between
two linked nodes equals the summation of the reci-
procal values of all possible path lengths except for
the link itself (Fig. 2)

. 1
weight(a,b) = z’: length(path;(a, b)) M

where path j(a, b) indicates the ith path from node a
to node b; path;(a, b) # edge(a, b); and length(-
path;(a, b)) < average network diameter. The length
of one path represents its total number of nodes.
Average network diameter and ShortestPath(a, b)
can be expressed as the following equations:

average network diameter
ZaybeNM#bShortestPath(a, b) 2)
a (IN[ > (NI =1))/2
ShortestPath(a, b) = Min(length(path;(a,b)))  (3)
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Figure 2 Link-weighted value calculating example. The
link-weighted value weight(a, b) of edge(a, b) is 0 while
weight(b, c) is 4/3.

This definition implies clustering, with any
increase in the number of possible paths resulting
in an increase in the clustering degree between two
linked nodes. Furthermore, the concepts and algo-
rithms discussed in this paper are generalizable to
non-directed networks.

To ensure that our method can be applied to any
complex network, the link-weighted values calcu-
lated by our network motif detection method are
derived from the number of all possible paths
between two linked nodes within all network topo-
logical and local connection structures (no preset
link quantity). This definition is similar to that of
betweenness—that is, effects that result from the
removal of a link from a network. Accordingly, we
believe our proposed link-weighted value calcula-
tion method represents the importance of each link
in a real network.

We also considered the interactive strength of
each link in the quantitative real network, and
attempted to validate our proposed weighted links
by comparing them with quantitative links. How-
ever, interactive quantitative links are defined by
functions that are category-specific (e.g., proteins,
genes, species). It is difficult to specify the overall
impact of these links on protein—protein interaction
networks and food webs. For example, the number
of links between tigers and wild oxen does not
reflect the significance of their connection within
an overall food web. Furthermore, each type of
complex network has its own measure for interac-
tive strength.

We used a switching algorithm (i.e., A — B,
C—D becomes A—D, C—-Bif A—Dand C—B
do not exist) to create random networks according
to any given degree sequence [7,28]. Results from
previous studies indicate that these random net-
works have the same number of nodes and edges, as
well as node in-degrees (incoming edges) and out-
degrees (outgoing edges) that are identical to
those of real networks. Furthermore, randomized

networks preserve the same number of appearances
of all (n — 1) node subgraphs as in the real (original)
network [7]. The threshold that determines the
strength of an edge (link) is the mean weighted
value of all edges in a random network ensemble.
Accordingly, we generated 1000 random networks to
serve as a control. An edge was labeled ‘“‘weak”
when its weighted value in these or real networks
was smaller than the threshold subtract a double
standard deviation (P=0.01); all other edges were
labeled “'strong’. Researchers can define criteria
for strong and weak links according to their own
needs. Finally, we located all possible motifs and
compared their distributions in real and random
networks.

We expanded Milo et al.’s methodology [7] for
identifying bridge and brick motifs in complex net-
works to include the following steps:

1. Calculate the weighted value of each link in a
network of interest and an ensemble of random
networks to calculate the significance of n-node
subgraphs. The purpose is to maintain the same
number of appearances for all (n — 1) node sub-
graphs as in the original network.

2. Label all weighted links in the network of inter-
est and random network ensemble as strong or
weak according to a benchmark of two standard
deviations from the mean weighted value of all
links in the ensemble. Links with weighted values
below the benchmark are labeled as weak.

3. Identify all n-node bridge/brick subgraph types
in the network of interest and random network
ensemble.

4. Mark all n-node bridge/brick subgraph types by
calculating their numbers in the network of
interest and random network ensemble. Each
n-node bridge/brick subgraph type is selected
as a representative motif only if its frequency in
the network of interest far exceeds its frequency
in the ensemble.

These steps can assist researchers in their efforts
to understand the functions and roles of identified
motifs in a real network and to analyze the dynamic
behaviors of complex networks. Regarding method
robustness, our proposed approach emphasizes the
global and local topological properties of each real
network rather than the specific functions of differ-
ent network types.

Motif frequency can be used to measure levels of
similarity between two networks of interest. In
addition, it is possible to calculate the Ze for
all bridge/brick motifs and significance profiles
(SPs) in a network by expanding Milo et al.’s
[7,28] methods. In EqQ. (4), Zscore(Bridge;) represents



Bridge and brick network motifs

121

the statistical significance of the ith kind of bridge
motif in a network:
Nreal(Bridgei) - <Nrandom(Bridgei)>

Zscore(Bridge;) = STD (Nrandom (Bridge;))

(4)

where N,ea(Bridge;) represents the time of appear-
ance of the ith type of bridge motif in a network
and <Nrandom(Bridgei)> and STD(Nrandom(Bridgei))x
respectively represent the mean and standard
deviation of the time of appearance of the ith type
of bridge motif in a randomized network ensemble.
In Eq. (5), SP(Bridge;) is the vector of Z.,(Bridge;)
normalized to a length of 1. The normalization
emphasizes the relative significance of the ith type
of bridge motif rather than the absolute signifi-
cance. As shown in Egs. (6) and (7), Zscore(Brick;)
and SP(Brick;) can be derived in the same manner

SP(Bridge;) = Zscore(Br.]dgei)z 12 (5)
(Z Zscore(B”dgei) )
. Nrea[(Bl’iCki) — (Nrandom(Brick,-»
Z Brick;) = - 6
score (Brick;) STD(Nrandom (Brick:)) ©®)
P (Brick;) = —~x=re(Bricky) @)

: 172
(3" Zscore (Bricki)?)"

4, Experiments

We performed validation experiments to confirm
the definitions of weighted links and network
motifs. Due to the links’ non-directional character-
istic, only two kinds of motifs were identified for the
three-node scenarios: ID =8 and ID =13 (Table 1).
We looked at four well-known types of theoretical
complex networks with specific topological proper-
ties to validate our algorithm: regular, scale-free,
random, and Watts and Strogatz’s small-world
(Table 2) [3]. Due to their small-world properties,
we found more bridge than brick motifs in scale-free
and random networks. Regular networks with a
Moore neighborhood structure only contain brick
motifs due to the structure’s high clustering prop-
erty (minus any shortcuts). Watts and Strogatz’s
small-world networks are formed by rewiring 1%
of the links of regular networks containing only a
few bridge motifs; when more than 5% of the links
are rewired, bridge motifs outnumber brick motifs
(Fig. 3). We therefore suggest that bridge motifs
indicate the presence of small-world properties and
brick motifs the presence of local clustering proper-
ties as follows:

1. Regular. We applied the Moore neighborhood
concept to a two-dimensional lattice, with each
node linked to its eight adjacent cells. For this
type of network we found brick motifs only. To
maintain the same in- and out-degree distribu-
tions in random and regular networks, individual
nodes in random networks can link with any other
cell except its eight adjacent cells. As clustering
in a random network decreases, the threshold of
the weighted value of its links also decreases.
Therefore, all links in regular networks turn out
to be strong (exclusively brick motifs).

2. Scale-free. Here the degree of distribution (i.e.,
the number of edges per node) obeys a long-
tailed power-law distribution in which the major-
ity of nodes have only a few links, but a small
number of nodes have many links. We found that
scale-free networks are composed of many
bridge motifs and very few brick motifs consist-
ing of nodes with high degrees of separation.

3. Random. As predicted, we failed to find a domi-
nant motif during our comparison of 1000 random
networks. Accordingly, random networks served
as a successful null hypothesis for our algorithm.

4. Small-world. We rewired links in two-dimen-
sional regular networks with Moore neighborhood
structure using rewiring percentages of 0.01,
0.05, 0.1 and 0.5 of all links. In the 0.01 trial
we found that some of the brick motifs became
bridge motifs. As the rewiring percentage
increased, the number of bridge motifs increased
and number of brick motifs decreased. At a
rewiring ratio of 1, small-world networks change
into random networks. Brick motifs appear to
play an important role in reducing the degree of
separation and increasing the degree of cluster-
ing in scale-free networks.

Several engineering (electronic circuit) and
social networks (Table 3) were used to demonstrate
that our proposed motif detection method is both
general-purpose and robust. We also compared the
method to Milo et al.’s original method for complex
network analysis. In electronic circuits consisting of
digital fractional multipliers (data from an ISCA89
benchmark) [28], nodes represent logic gates. Flip-
flops and edges represent directed electronic trans-
mission paths. Experimental results indicate that
the s208, s420, and s838 electronic circuit networks
contain significant numbers of bridge motifs. Here
the low degree of clustering is considered trivial
because designers often try to simplify connection
structures and numbers of electronic components
[4]. The feedback bridge motif we identified (con-
sisting of weak-tie links only) fulfills this require-
ment as described by Kundu et al. [38] (ID=9)
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Table 2 Bridge and brick subgraph frequencies in four complex network categories (for validation purposes)

Category Nodes Edges Subgraph ID Nreal Nrandom £ STD Ao
type
Regular 900 7200 Bridge 8 0 24983.2 + —39.0 —640.61
Brick 8 14,400 40.8 +17.4 824.81
Bridge 13 0 0.0+ 0.0 0.00
Brick 13 3,600 58.6 + 8.2 430.13
Scale-free 900 1800 Bridge 8 4,355 4099.7 + 53.7 4.75
Brick 8 45 258.9 + 47.1 —4.54
Bridge 13 2 7.0+2.6 —1.95
Brick 13 0 8.8 +3.5 —2.54
Random 900 1800 Bridge 8 1,229 1226.1 +27.9 0.11
Brick 8 537 536.9 + 27.8 0.01
Bridge 13 0 0.4+0.7 —0.64
Brick 13 0 0.6 +0.7 —0.81
WS small-world #1 900 7200 Bridge 8 2,399 25029.7 + 38.0 —595.92
(rewiring % = 0.01) Brick 8 12,573 58.3 +£18.6 674.60
Bridge 13 320 7.6 +2.8 113.47
Brick 13 3,111 51.5+7.1 430.65
WS small-world #2 900 7200 Bridge 8 9,434 24713.2 +73.5 —207.80
(rewiring % = 0.05) Brick 8 8,100 656.3 + 64.5 115.49
Bridge 13 991 25.1 +£5.3 182.65
Brick 13 1,681 35.0 + 6.1 268.59
WS small-world #3 900 7200 Bridge 8 13,386 24047.0 + 111.4 —95.69
(rewiring % = 0.10) Brick 8 6,089 1519.0 +99.9 45.73
Bridge 13 1,063 30.9 +4.9 209.23
Brick 13 1,029 30.7 £ 5.6 179.17
WS small-world #4 900 7200 Bridge 8 22,649 22935.4 + 148.5 —1.93
(rewiring % = 0.50) Brick 8 3,973 4244.9 + 153.7 -1.77
Bridge 13 213 56.2 + 8.9 17.64
Brick 13 47 17.7 + 4.1 7.1

(Fig. 4, Table 3). As its name implies, the feedback
bridge motif indicates the existence of a feedback
structure without redundancy in the three named
electronic circuits—again as proven by Kundu et al.
[38]. That research team reported that redundant
circuits seldom appear in simple electronic circuits
such as s208, s420, and s838. However, they also

100% r

80%

60% |-

Percentage

40% |----

20% F----

0%

note that redundant wires and components are
frequently added to more complex electronic cir-
cuits (e.g., s15850, s35932, s38417 and s38584) to
prevent accidental system failures. The over-sim-
plification of electronic circuits can result in large
numbers of errors [4] or complete system break-
downs when one component fails. Accordingly, it is

1% 5%

10% 50%

Small-world network rewiring rate (shortcut / total edges)

Figure 3 Percentages of bridge and brick motifs in small-world networks according to different rewiring ratios.
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Table 3 Brick and bridge motifs in 14 real world networks, including edge and node definitions, network sizes, and

references
Category Common feature Directed Nodes Links Motif ID Neear Nrandom £STD  Zscore
network type
Gene regulation  Directed graph in Escherichia 424 519 Bridge 5 42 7.5+ 3.1 11.14
(transcription) which nodes coli
[12,33] represent genes Yeast 688 1079 Bridge 5 67 13.8+3.8 14.04
and edges are
directed from one
gene to another,
regulated by the
transcription
factor
Social [31,32] Directed graph in Leader 32 96 Brick 7 38  22.1+9.5 1.67
which nodes Brick 11 5 1.5+1.3 2.59
represent people Prisoner 67 182 Bridge 6 11 2.0+1.4 6.42
and edges indicate Brick 12 5 0.5+0.7 6.26
friendships
between
two persons
Food webs [29] Seven different LittleRock 92 984 Bridge 11 93 41.3+6.2 8.33
ecosystems. Ythan 83 391 Bridge 2 1182 850.1+ 86.0 3.86
Directed graph in St. Martin 42 205 Bridge 5 244 180.4+20.0 3.18
which nodes Chesapeake 31 67 Bridge 5 21 11.2 £ 4.0 2.42
represent groups Coachella 29 243 Bridge 2 275 192.5+14.8 5.57
of species and Bridge 4 252 110.3 £15.1 9.38
edges connect Bridge 6 110 68.1 +5.3 7.84
predator and Bridge 13 10 6.2 +1.4 2.83
prey nodes Skipwith 25 189 Bridge 2 181 140.1 +11.3 3.63
Bridge 4 234 115.2+33.4 3.56
B. Brook 25 104 Bridge 1 266 123.5+31.2 4.57
Bridge 2 181 103.1+23.1 3.37
Electrical ISCAS89 benchmark 5208 122 189 Bridge 9 10 0.90+1.0 9.23
circuits [4] set of sequential
logic electronic
circuits. Directed
graph in which
nodes represent
logic gates and
flip-flops
s420 252 399 Bridge 9 20 0.9+0.9 20.13
s838 512 819 Bridge 9 40 0.9+1.3 30.2

necessary to add an appropriate level of redundancy
as a means of bypassing failed components or sub-
stituting for the original path [4,38]. Strong-tie links
represent alternative paths and weak-tie links
represent simplified electronic circuits. Combined,
simplification and duplication help prevent unex-
pected system breakdowns.

In the two social networks we analyzed, nodes
represent individuals in a group and edges represent
positive sentiments directed from one group mem-
ber to another based on responses to questionnaire
items. We found similar characteristics between
two networks, one consisting of prison inmates
(N=67 nodes and E =110 edges) and the other

college students in a leadership course (N =32
and E = 96). The inmates responded to the question
““Who are your closest friends in your cellblock?”
The students were asked to name three classmates
they would invite to serve on a committee (correla-
tion coefficient ¢ =0.92—-0.96 [31—32]). According
to Milo et al.’s [7,28] methods, both social networks
belong to the same superfamily. Strong similarities
between the two networks were also identified
according to the triad significance profile (TSP) of
bridge motifs (c =0.92) (Fig. 5, Table 3), but not
according to the TSP of brick motifs (c = 0.6) (Fig. 6,
Table 3). We also found a significantly higher number
of bridge motifs (i.e., more ‘‘nodding acquain-
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—&—5208 bridge motif
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Bridge motif ID

Figure 4 Bridge motif ratio profiles for three electrical circuits (s208, s420, and s838).

tances’’) in the prisoner network. The significantly
larger number of brick motifs in the leadership class
network indicates that small, strong groups are
easily formed. The bridge and brick motifs can be
used to further analyze network topological struc-
tures, functions, and differences.

We applied our proposed method to several bio-
chemistry (transcriptional gene regulation) and
ecology (food web) networks to identify bridge
and brick network motifs. Networks and sources
are listed in Table 3. All data and programs (includ-
ing source code) are available online at http://
ftp://www.csie.cgu.edu.tw/bbm/.

In gene regulation networks for one bacteria
(Escherichia coli) and one eukaryote (the yeast
Saccharomyces cerevisiae) [28], each node repre-
sents a gene or operon that encodes a transcription

factor (TF); edges denote the TFs themselves. Many
TFs are encoded within operons, therefore directed
links represent direct transcriptional modulation
from a TF to an operon or from a TF-contained
operon to another operon [28]. In both networks
we found more bridge than brick subgraphs (they are
not called motifs until they reach statistical signifi-
cance). Furthermore, the two transcription net-
works had the same feed-forward bridge motif
(ID = 5), indicating that the transcription networks
have, at minimum, non-replaceable interactions
without intermediate interactions with other genes
(Figs. 1 and 7; Table 3). We suggest that the weak-tie
link that provides a unique path for controlling the
signal exerts a significant impact on the signal pro-
cessing function of transcription networks [13,28].
We also tried to learn more about the relationship

Bridge motif ID

Figure 5 Bridge motif ratio profiles for two social networks.

Brick motif ID

Figure 6 Brick motif ratio profiles for two social networks.


http://ftp://www.csie.cgu.edu.tw/bbm/
http://ftp://www.csie.cgu.edu.tw/bbm/

Bridge and brick network motifs

125

_e_

E.coli bridge motif —— E.coli brick motif
—A— Yeast bridge motif —>¢— Yeast brick motif

/\SL-—-

[
0.5 - @

0 -[ Sl\f/.l
-0.5

T T T T T T 1
8

Motif ID

Figure 7 Brick—bridge motif ratio profiles for two regulation networks (one bacteria and one eukaryote).
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Figure 8 Bridge motif ratio profiles for seven food webs.

between coherent (incoherent) FFLs and brick
(bridge) FFLs and identified E. coli’s 34 coherent
and 8 incoherent FFLs (Table 3) [39]. Therefore,
differences in coherent (incoherent) FFL frequen-
cies cannot be explained simply in terms of the
relative abundances of bridge and brick motifs in
a network.

In the seven food webs we analyzed [29], nodes
represent groups of species and edges connecting
predator and prey nodes. Recent studies have shown
that strong interactions (similar to our definition of
weak-tie links) between two consecutive levels of a
trophic chain have a significant effect on food web
stability and dynamics [17,30]. A strong interaction
indicates a strong predator preference for one prey
species and a low potential for intermediate species-
—a phenomenon that supports our claim that weak-
tie links exert certain impacts on food webs. Also in
the seven food webs, the numbers of bridge motifs
were significantly higher than the numbers of brick
motifs, especially feedback (ID = 5) and three-point
chains (ID = 2) (Fig. 8, Table 3). This confirms Jordi’s
[8] claim that these two motifs exert significant
impacts on ecosystem food webs. We believe the
reason why ecosystems’ containing these two types
of bridge motifs easily become unbalanced is
because they have many weak links—in other words,
it is difficult to find substitute nodes or links for the
purpose of preserving ecosystem stability.

5. Conclusion

According to our definitions of weighted links and
network motifs and the results of our validation
experiments using theoretical complex networks,
we conclude that the presence of bridge and brick
motifs in a network is closely associated with net-
work topological (especially local connection) struc-
tures, but not with network size (i.e., number of
nodes). In summary, we tested three experimental
predictions to verify the importance and function of
bridge and brick network motifs: (a) regular net-
works with Moore neighborhood structures only con-
tain brick motifs due to the structure’s strong
clustering property; (b) as rewiring percentages
increase in regular networks, the number of bridge
motifs increases and the number of brick motifs
decreases, with the rewiring process contributing
to the formation of networks that exhibit small-
world and clustering properties; and (c) the combi-
nation of more bridge motifs and fewer brick motifs
means that a network is less prone to cluster for-
mation.

Our proposed method combines two measures,
each with its own merits (i.e., determining the
topological properties of links in real networks
and identifying statistically significant motifs in real
networks). The combined measures can be used to
explore the functions and roles of real network
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motifs. To locate statistically significant network
motifs, Milo et al. [1] proposed comparing the real
network in question with suitably randomized net-
works, then selecting patterns (subgraphs) that
appear at significantly higher frequencies in the real
network. Compared to Milo et al.’s approach, our
method simultaneously detects global features and
local structures in complex networks and locates
functionally and statistically significant network
motifs. We believe that the combination of these
two methods can (a) assist in locating motifs; (b)
help researchers find clusters between bridge motifs
and within the brick motifs of complex networks for
the purpose of identifying real network functions,
behaviors, and similarities; and (c) provide global
and local views of the real network in question. Most
network motif functions can be identified via net-
work topological structures. Combining a motif
structure with its function can help identify complex
network properties. Motifs with special topological
structures reveal the global features of real net-
works and significant local structural patterns. This
information can help researchers working with
design principles and network evolution.
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