
An Intelligent Two-Stage Evolutionary Algorithm
for Dynamic Pathway Identification from

Gene Expression Profiles
Shinn-Ying Ho, Chih-Hung Hsieh, Fu-Chieh Yu, and Hui-Ling Huang

Abstract—From gene expression profiles, it is desirable to rebuild cellular dynamic regulation networks to discover more delicate and

substantial functions in molecular biology, biochemistry, bioengineering, and pharmaceutics. The S-system model is suitable to

characterize biochemical network systems and capable of analyzing the regulatory system dynamics. However, the inference of an

S-system model of N-gene genetic networks has 2NðN þ 1Þ parameters in a set of nonlinear differential equations to be optimized.

This paper proposes an intelligent two-stage evolutionary algorithm (iTEA) to efficiently infer the S-system models of genetic networks

from time-series data of gene expression. To cope with the curse of dimensionality, the proposed algorithm consists of two stages,

where each uses a divide-and-conquer strategy. The optimization problem is first decomposed into N subproblems having 2ðN þ 1Þ
parameters each. At the first stage, each subproblem is solved using a novel intelligent genetic algorithm (IGA) with intelligent

crossover based on an orthogonal experimental design (OED). At the second stage, the obtained N solutions to the N subproblems

are combined and refined using an OED-based simulated annealing algorithm for handling noisy gene expression profiles. The

effectiveness of iTEA is evaluated using simulated expression patterns with and without noise running on a single-processor PC. It is

shown that 1) IGA is efficient enough to solve subproblems, 2) IGA is significantly superior to the existing method GA with simplex

crossover (SPXGA), and 3) iTEA performs well in inferring S-system models for dynamic pathway identification.

Index Terms—Divide and conquer, evolutionary algorithm, genetic network, orthogonal experimental design, pathway identification,

S-system model.

Ç

1 INTRODUCTION

TRADITIONAL biological experiments mainly concentrate
on small-scale or local reactions among parts of

complex biological system behavior. When faced with
large-scale networks of enormous amounts of genes,
proteins, and other metabolites, we cannot get rid of getting
aid from other efficient tools. With widespread genomic
research using microarray techniques, we can monitor
global gene expression from genomic DNA one at a time
[1]. Through microarray techniques, we can rebuild the
cellular dynamic regulation networks from gene expression
profiles that may imply the many functions of genes. The
goal of constructing genetic network models is to reveal the
regulation rules behind the gene expression profiles.

The numerous mathematical algorithms and models
proposed to describe biochemical networks include [2]:
the Boolean network model [3], [4], [5], the Bayesian
network [6], [7], [8], [9], and the differential model or
S-system model [10], [11], [12], [13], 14], [15], [16], [17], [18],
[19], [20]. In Boolean network models, gene expression

levels can refer to two situations: true or false. The Bayesian
network model is able to deal with linear, nonlinear, and
combinatorial problems and is also used to infer genetic
networks. However, similarly to Boolean networks, it
suffers from the same dilemma and is only applicable to
acyclic structures [2], [6]. To cope with cyclic networks,
some authors adopted the adapted dynamic Bayesian
network [7], [9]. Another frequently used approach is to
use differential equation models for the analysis of gene
expression. The most popular model is referred to as the
S-system model, which has been considered suitable to
characterize biochemical network systems and capable to
analyze the regulatory system dynamics. The model is a set
of nonlinear differential equations of the following form
[10], [11], [12], [13]:

dXi

dt
¼ �i

YN
j¼1

X
gij
j � �i

YN
j¼1

X
hij
j ; i ¼ 1; . . . ; N; ð1Þ

where Xi represents the expression level of gene i and N

is the number of genes in a genetic network. �i and �i
are rate constants that indicate the direction of mass flow
and must be positive. gij and hij are kinetic orders that
reflect the intensity of interaction from gene j to i. For
inferring an S-system model, it is necessary to estimate all
of the 2NðN þ 1Þ S-system parameters (�i, �i, gij, and hij)
from the experimental time-series data of gene expression.

Essentially, this reverse engineering problem is a large-
scale parameter optimization problem that is time-consum-
ing and intractable. Many researchers proposed various

648 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

. S.-Y. Ho, C.-H. Hsieh, and F.-C. Yu are with the Institute of
Bioinformatics, National Chiao Tung University, Hsinchu, 300 Taiwan.
E-mail: syho@mail.nctu.edu.tw, hsiehch@gmail.com,
hayyu.bi93g@nctu.edu.tw.

. H.-L. Huang is with the Department of Information Management, Jin Wen
Institute of Technology, Hsin-Tien, Taipei, 231 Taiwan.
E-mail: hlhuang@jwit.edu.tw.

Manuscript received 22 Nov. 2005; revised 19 June 2006; accepted 20 Nov.
2006; published online 23 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0135-1105.
Digital Object Identifier no. 10.1109/TCBB.2007.1051.

1545-5963/07/$25.00 � 2007 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

methods using numerical methods such as steady-state
analysis [19] and evolutionary algorithms [10], [11], [12],
[13], [14], [16], [17], [18], [21] to solve the optimization
problem. A case study considering the estimation of
36 parameters of the nonlinear biochemical dynamic model
was investigated by Moles et al. [20] and the result shows
that the genetic algorithm (GA) and evolutionary algo-
rithms play an important role in solving the optimization
problem of dynamic modeling of genetic networks using
the S-system model.

Kikuchi et al. [10] used GA with simplex crossover
(SPXGA) to improve the optimization ability for dynamic
modeling of genetic networks from N ¼ 2 to 5. SPXGA
successfully inferred the dynamics of a small genetic
network using only the time-series data of gene expression.
When dealing with a more complicated structure with a
large number of genes (for example, N ¼ 10), it is hard to
obtain a satisfactory solution in a limited amount of
computation time. To infer large-scale genetic network
models, Maki et al. [13] proposed an efficient problem
decomposition strategy to divide the inference problem into
N separated small subproblems. To reduce the search time
of the inference problem, Voit and Almeida [18] proposed
an approach for transforming the problem to several sets of
decoupled algebraic equations, which can be processed
efficiently in parallel or sequentially. Kimura et al. [12] used
a cooperative coevolutionary algorithm with the problem
decomposition strategy on a PC cluster to efficiently infer
large-scale S-system models with noisy time-series data.
Tsai and Wang [17] used a hybrid differential evolutionary
algorithm to obtain the structure of a genetic network and a
gradient-based local search to refine the obtained solution.
Tominaga and Horton [21] adopted the distributed GA with
domain knowledge that the total number of links must
equal that expected from a scale-free network.

In this paper, we propose an intelligent two-stage
evolutionary algorithm (iTEA) to efficiently infer the
S-system models of large-scale genetic networks from
small-noise gene expression profiles using a single-proces-
sor PC. To cope with the curse of dimensionality, the
proposed algorithm consists of two stages, where each uses
a divide-and-conquer strategy. The optimization problem is
first decomposed into N subproblems having 2ðN þ 1Þ
parameters. At the first stage, each subproblem is solved
using a novel intelligent genetic algorithm (IGA) that is a
specific variant of the intelligent evolutionary algorithm
[22]. The intelligent crossover of IGA applies an orthogonal
experimental design (OED) [23], [24] to speed up the search
by using a systematic reasoning method instead of the
conventional generate-and-go method of GA. At the second
stage, the obtained N solutions to the N subproblems are
combined and refined using an OED-based simulated
annealing algorithm (OSA) [25] for handling noisy gene
expression profiles. It is shown that OSA performs well in
efficiently exploiting the neighborhood of a given initial
solution to search for a potentially good approximation of a
globally optimal solution [25], [26]. The effectiveness of
iTEA is evaluated using simulated expression patterns with
and without noise. It will be shown that 1) IGA is efficient
enough to solve subproblems, 2) IGA is significantly

superior to the existing method SPXGA [10] in solving
subproblems, and 3) iTEA performs well in inferring the

S-system models of genetic networks from small-noise gene
expression profiles.

The remainder of this paper is organized as follows:

Section 2 describes the investigated problem and some
useful techniques. Section 3 gives the proposed algorithm

iTEA. Section 4 gives the performance evaluation of iTEA,
including comparisons with the existing methods. Section 5
concludes this paper.

2 THE INVESTIGATED PROBLEM

2.1 Problem Statement

Generally, the genetic network inference problem using an
S-system model is formulated as a parameter optimization

problem with 2NðN þ 1Þ S-system parameters (�i, �i, gij,
and hij) and the following objective function [10], [11], [12]:

minimize f ¼
XN
i¼1

XT
t¼1

Xcal;i;t �Xexp;i;t

Xexp;i;t

� �2

; ð2Þ

where Xexp;i;t is an experimentally observed expression
level of gene i at time t, Xcal;i;t is a numerically calculated

expression level, N is the number of genes in the network,
and T is the number of sampling points of observed data.

When all S-system parameters are estimated, Xcal;i;t can be
derived by using (1) and the given initial level Xexp;i;0. In the

following simulated experiments, the values of Xexp;i;t are
greater than zero. For real applications, a very small
positive value can be assigned to Xexp;i;t if some gene

expressions are zero at the steady state.
The investigated problem is difficult due to the following

characteristics: high degree of freedom, high dimension-

ality, multimodality, strong interaction among parameters
of the S-system model, and measurement noise. Therefore,

it is hard to obtain a correct network structure with accurate
parameter values. Generally, additional data or biological

knowledge is needed to improve solution quality [18].

2.2 Useful Techniques

Two useful techniques in optimizing the objective function

(2) are introduced. One is the problem decomposition
strategy for large-scale genetic networks [13] and the other

is to incorporate a priori knowledge to reduce computation
cost [11], [12], [16].

2.2.1 Problem Decomposition

Maki et al. [13] proposed an efficient strategy of dividing the
inference problem intoN separated small subproblems. Each
subproblem corresponds to one gene. The decomposition

strategy focuses on the estimation of the 2ðN þ 1Þ S-system
parameters f�i; gi1; . . . ; giN ; �i; hi1; . . . ; hiNg of gene i inde-

pendently, without involving the estimation of those of
other genes at the same time. The objective function of the

ith subproblem is given as follows:

minimize fi ¼
XT
t¼1

Xcal;i;t �Xexp;i;t

Xexp;i;t

� �2

: ð3Þ

HO ET AL.: AN INTELLIGENT TWO-STAGE EVOLUTIONARY ALGORITHM FOR DYNAMIC PATHWAY IDENTIFICATION FROM GENE... 649

To calculate the expression level Xcal;i;t of gene i at time t,
it additionally needs the expression levels Xj of (1), where
i 6¼ j. For noise-free gene expression profiles, the experi-
mentally observed expression levels Xexp;j;t of gene j can be
directly utilized. To overcome the disadvantage of the
problem decomposition when dealing with the given
expression levels with large measurement noise (that is,
Xexp;j;t is not accurate enough) [11], the following modified
differential equations are used [11], [12]:

dXi

dt
¼ �i

YN
j¼1

Y
gij
j � �i

YN
j¼1

Y
hij
j ;

where
Yj ¼ Xj if j ¼ i
Yj ¼ bXj otherwise;

(ð4Þ

where Xj of (1) is replaced with the estimated gene
expression level bXj. How to effectively obtain accurate bXj

is essentially important. Some mathematical methods such
as the spline interpolation can be used to estimate the value
depending on the size of measurement noise [13]. Kimura
et al. [11] used the estimation of the initial gene expression
levels in solving individual subproblems for coping with
noisy time-series data. Kimura et al. [12] used a cooperative
coevolutionary algorithm on a PC cluster to simultaneously
solve all subproblems by deriving bXj from estimating the
best individuals of the subproblems, each of which is given
as a solution of (4). It is shown empirically that the method
slightly enhanced the probability of finding the correct
interactions of a network [12].

2.2.2 Adding a Penalty Term

In the S-system model, if there is no interaction between
two genes i and j, the S-system parameters corresponding
to the interaction term, gij and hij, are zero. Because the
connectivity of the genetic network has been known to be
sparse [27], the following fitness function incorporating a
penalty term is conveniently added to reduce the search
space and improve the accuracy of the inferred genetic
network model [11], [12]:

minimize fi ¼
XT
t¼1

Xcal;i;t �Xexp;i;t

Xexp;i;t

� �2

þc
XN�I
j¼1

ð
��Gij

��þ ��Hij

��Þ;
ð5Þ

where c is a penalty weight and I is a maximum indegree of
the maximal number of genes that directly affect gene i. Gij

and Hij are given by rearranging gij and hij in ascending
order of their absolute values. The penalty term forces most
of the kinetic orders (gij, hij) down to zero. In the meantime,
if the number of genes that directly affect gene i is smaller
than I, this term will not be penalized. In such a case, the
optimal solutions to the fitness functions (3) and (5) are
identical.

To reduce the computation cost, the structure skeletaliz-
ing technique [16] was applied. This technique assigns a
value of zero to kinetic orders when their absolute values
are less than a given threshold �s. If a larger value of �s is set,
the convergence time is rapidly reduced and the false
positive rate of the obtained genetic network can be
improved, whereas the false negative rate may be increased.

If a large value of c for the penalty term is used, all values of
kinetic orders tend to be small and even zero in the
evolutionary process, which results in a relatively large
error of expression level fitting. Since the error minimiza-
tion is the major objective to obtain an accurate structure of
genetic network, the value of c cannot be too large. For the
simulated small-noise expression profiles in this study, �s ¼
3� 10�2 and c ¼ 1:0 considering the trade-off. For real-
world experiments with measurement noise, it is better to
filter small interactions using a larger threshold value, for
example, �s ¼ 0:1 in [12].

3 PROPOSED METHOD

It is well recognized that divide and conquer is an efficient
approach in solving large-scale problems. The divide-and-
conquer mechanism breaks a large-scale problem into
several subproblems that are similar to the original but
smaller in size, solves the subproblems concurrently, and
then combines these solutions to create a solution to the
original problem. Fig. 1 shows a flowchart of the proposed
two-stage evolutionary algorithm iTEA. Both IGA and OSA
use the divide-and-conquer mechanism based on OED.

IGA is a population-based optimization algorithm that
aims at efficiently exploring the whole search space to
obtain a potentially good approximation of a global
optimum. Therefore, IGA is used to solve each subproblem
at the first stage. The N solutions to the N subproblems are
combined into an initial solution to the genetic network
inference problem. OSA is a point-based optimization
algorithm that aims at efficiently exploiting the neighbor-
hood of a given initial solution. In the second stage, OSA
used the initial solution obtained by IGA to search for a
potentially good approximation of a globally optimal
solution to this inference problem.

In the first stage, OSA using a randomly generated initial
solution is not efficient enough to obtain satisfactory
solutions to N subproblems due to the extremely large

650 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

Fig. 1. Flowchart of the proposed two-stage evolutionary algorithm iTEA.

and multimodal search space. Therefore, IGA with parallel
searching abilities is more efficient than OSA in finding a
correct structure from the gene expression data. in the
second stage, the number of parameters to be simulta-
neously optimized is significantly increased from 2ðN þ 1Þ
to 2NðN þ 1Þ. By making the best use of the high-quality
combined solution, OSA can obtain a satisfactory solution
in refining the genetic network using a lesser computation
cost than that of IGA. IGA is also available to refine the
genetic network if the computation cost is not concerned.
Considering noisy gene expression profiles, OSA is more
suitable than IGA considering both solution quality and
computation cost.

3.1 OED

An efficient way to study the effect of several factors
simultaneously is to use OED with both orthogonal array
(OA) and factor analysis [23], [24]. The factors are the
variables (parameters) that affect the response variables
(objective function) and the setting (or the discriminative
value) of a factor is regarded as the level of the factor. OED
utilizes properties of fractional factorial experiments to
efficiently determine the best combination of factor levels to
use in design problems. OED specifies the procedure of
drawing a representative sample of experiments with the
intention of reaching a sound decision [23]. Therefore, OED
using OA and factor analysis is regarded as a systematic
reasoning method.

OA is a fractional factorial array, which assures a balanced
comparison of levels of any factor. In this study, the two-level
and three-level OAs are used for IGA and OSA, respectively.
The two-level OAs used in IGA are described below. Let there
be n factors with two levels each. The total number of level
combinations is 2n for a complete factorial experiment. To use
an OA of n factors, we obtain an integer M ¼ 2dlog2ðnþ1Þe,
where the bracket represents an upper ceiling operation,
build an OA LMð2M�1ÞwithM rows andM � 1 columns, use
the first n columns, and ignore the otherM � n� 1 columns.
OA can reduce the number of level combinations for factor
analysis. The number of OA combinations required to
analyze all individual factors is only M ¼ OðnÞ, where
nþ 1 �M � 2n.

OSA uses three-level OAs, where each factor has three
levels. The total number of level combinations is 3n for a
complete factorial experiment. To use a three-level OA of
n factors, we obtain an integer M ¼ 3dlog3ð2nþ1Þe, build an OA
LMð3ðM�1Þ=2Þ with M rows and ðM � 1Þ=2 columns, use the
first n columns, and ignore the other ðM � 1Þ=2� n
columns. The number of OA combinations required to
analyze all individual factors is only M ¼ OðnÞ, where
2nþ 1 �M � 6n� 3. The algorithm for constructing the
two and three-level OAs can be found in [25]. After proper
tabulation of experimental results, the summarized data are
analyzed using factor analysis to determine the relative
level effects of factors.

Factor analysis using the OA’s tabulation of experimen-
tal results can evaluate the effects of individual factors on
the evaluation function, rank the most effective factors, and
determine the best level for each factor such that the
evaluation function is optimized. Consider the OA
LMð2M�1Þ or LMð3ðM�1Þ=2Þ used. Let yt denote a function

value of the combination t, where t ¼ 1; . . . ;M. Define the
main effect of factor d with level k as Sdk, where d ¼ 1; . . . ; n:

Sdk ¼
XM
t¼1

yt �Wt; ð6Þ

where Wt ¼ 1 if the level of factor d of combination t is k;
otherwise, Wt ¼ 0. Consider that the objective function is to
be minimized. For the two-level OA, level 1 of factor d
makes a better contribution to the objective function than
level 2 of factor d does when Sd1 < Sd2. If Sd1 > Sd2, level 2 is
better. If Sd1 ¼ Sd2, levels 1 and 2 have the same contribu-
tion. The main effect reveals the individual effect of a factor.
The most effective factor d has the largest main effect
difference, MEDd ¼ jSd1 � Sd2j.

For the three-level OA, the level k of factor d makes a
better contribution to the objective function than the other
two levels of factor d do when Sdk ¼ minfSd1; Sd2; Sd3g. On
the contrary, if the objective function is to be maximized,
the level k is the best when Sdk ¼ maxfSd1; Sd2; Sd3g. The
most effective factor has the largest main effect difference,
MEDd ¼ maxfSd1; Sd2; Sd3g �minfSd1; Sd2; Sd3g. After the
better (best) of the two (three) levels of each factor is
determined, a reasoned combination consisting of n factors
with the better (best) levels can be easily derived.

3.2 IGA for Solving Subproblems

3.2.1 Intelligent Crossover

The intelligent crossover plays an important role in IGA.
IGA solves an individual subproblem with N genes having
2ðN þ 1Þ parameters to be optimized. The intelligent
crossover uses a divide-and-conquer approach which
consists of adaptively dividing two parents into n pairs
of parameter groups, economically identifying the poten-
tially better of the two groups of each pair, and system-
atically obtaining a potentially good approximation of the
best among all 2n combinations using at most 2n fitness
evaluations. Like traditional GAs, two parents, P1 and P2,
produce two children, C1 and C2, using one crossover
operation. The intelligent crossover determines the recom-
bination of P1 and P2 for efficiently generating good
children. Let the set of parameters in the ith subproblem
be f�i; gi1; . . . ; giN ; �i; hi1; . . . ; hiNg. We divided the two sets,
INC ¼ f�i; gi1; . . . ; giNg and DEC ¼ f�i; hi1; . . . ; hiNg, that
control the gene expression level, increasing or decreasing
into dn=2e and bn=2c groups, respectively. To make sufficient
use of all columns in OAs,n is usually set to 2! � 1, where! is
an integer. In this study, we used n ¼ 7 for problems with
N � 30. The value of n would properly increase when N
increases. The discussion between n and the number of
parameters to be optimized can be found in [22].

Because the parameters belonging to the same one or two
sets INC and DEC have strong interactions, we do not use
the conventional encoding scheme of GA that all para-
meters are encoded into a chromosome in a fixed order.
Instead, all parameters are represented using real values
with no order. For each time, using an intelligent crossover
operation, INC and DEC are randomly divided into dn=2e
and bn=2c groups with a variable size for each group. The
parameters of two parents are grouped using the same
division operation. Each group is treated as a factor. The

HO ET AL.: AN INTELLIGENT TWO-STAGE EVOLUTIONARY ALGORITHM FOR DYNAMIC PATHWAY IDENTIFICATION FROM GENE... 651

n factors are randomly numbered using OED. The number-

ing order does not affect the effectiveness of the intelligent
crossover because of the property of OA. Note that there is

no fixed genotype of the S-system parameters used. The
following steps describe how to use OED with n factors to

achieve the intelligent crossover of IGA for a fitness
function y:

Step 1. The two sets f�i; gi1; . . . ; giNg and f�i; hi1; . . . ; hiNg of
S-system parameters are randomly divided into dn=2e
and bn=2c groups (factors), respectively.

Step 2. Use a two-level OA Lnþ1ð2nÞ with nþ 1 rows and

n columns.

Step 3. Let levels 1 and 2 of factor d represent the dth groups

coming from parents P1 and P2, respectively.

Step 4. Evaluate the fitness values yt for experiment t, where

t ¼ 2; . . . ; nþ 1. The value y1 is the fitness value of P1.

Step 5. Compute the main effect Sdk, where d ¼ 1; . . . ; n and

k ¼ 1; 2.

Step 6. Determine the better of the two levels of each factor

according to the main effect.

Step 7. Form the chromosome of C1 using the combination

of the better groups from the derived corresponding
parents.

Step 8. Form the chromosome of C2 similarly to C1, but, for
the factor with the smallest main effect difference, adopt

the other level.

Step 9. Use the best two individuals among P1, P2, C1, C2,

and n combinations of OA as the final children C1 and C2

for elitist strategy.

One intelligent crossover operation takes nþ 2 fitness
evaluations to explore the search space of 2n combinations.

Generally, C1 is a potentially good approximation of the

best among all 2n combinations.

3.2.2 Illustrative Example of Intelligent Crossover

Tables 1 and 2 show an illustrative example of using
intelligent crossover with OED in solving the first
subproblem of inferring an S-system model with N ¼ 5.
The details of the test problem are given in Section 4.1.
We used an OA L8ð27Þ for n ¼ 7. The two sets of S-
system parameters, f�1; g11; . . . ; g15g and f�1; h11; . . . ; h15g,
are randomly divided and assigned to four and three
groups (factors), respectively, as follows: V1 ¼ fh13; h15g,
V2 ¼ fg14g, V3 ¼ fg12; g13g, V4 ¼ f�1; g15g, V5 ¼ fh11; h12g,
V6 ¼ f�1; h14g, and V7 ¼ fg11g. The parameter values of
the parents are given in Table 2. Table 1 shows all of the
results of the intelligent crossover using OED. First, we
evaluate the response variable yt of the combination t,
where t ¼ 1; 2; . . . ; 8. Second, we compute the main effect
Sdk, where d ¼ 1; 2; . . . ; 7 and k ¼ 1; 2. For example,
S22 ¼ y3 þ y4 þ y7 þ y8 ¼ 147:65. Third, the better level of
each factor based on the main effect is determined. For
example, the better level of factor 1 is level 2 since
S12ð153:97Þ < S11ð157:50Þ. Finally, the better levels of factors
(V1, V2, V3, V4, V5, V6, V7) are (2, 2, 1, 1, 1, 2, 2) and, then,
y ¼ 30:22 can be obtained from the reasoned combination.
This reasoned combination is used to form the childC1 of the
crossover operation. The least effective factor is d ¼ 5 with
MED5 ¼ 2:06, which is the smallest, so the second childC2 is
formed similarly toC1 except that V5 adopts level 2. Note that
the ranks ofC1 andC2 are 2 and 4, respectively, among the 128
combinations of a complete factorial experiment. It reveals
that the reasoning operation of an intelligent crossover for
generating children is efficient.

3.2.3 The Used IGA

IGA is used to solve the ith individual subproblems with
the fitness function (5). The gene expression level of bXj in
(4) is obtained from Xexp;j;t without using additional
estimation methods based on the following reasons:

652 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

TABLE 1
An Illustrative Example of an Intelligent Crossover Using OA L8ð27Þ

TABLE 2
The Contents of Parents and Children

1. According to the simulation using IGA, the method
of directly using Xexp;j;t is simple and fast and its
solution is accurate enough in terms of the fitness
value from noise-free gene expression profiles.

2. We would further refine the combined solutions of
the N subproblems from the aspect of global
optimization using OSA for handling small-noise
gene expression profiles.

3. The estimation method for bXj using a cooperative
coevolutionary algorithm on a PC cluster [12] is not
suitable for the IGA-based method because IGA
solves each subproblem independently on a single-
processor PC. Furthermore, the estimation method
only slightly enhanced the probability of finding the
correct interactions of a network for large-noise gene
expression profiles [12].

The main differences between the used IGA and the
conventional GAs are chromosome encoding and the
crossover operation mentioned above. Besides, the used
mutation is also different from the conventional one,
described as follows: Assume a real-value parameter x is
to be mutated. A perturbation x is generated by the Cauchy-
Lorentz probability distribution [28]. The mutated value of
x is x0 ¼ xþ x or x� x, determined randomly. If x0 is out of
the domain range of x, a random value is assigned to x0. The
used simple IGA is described below:

Step 1 (Initiation). Randomly generate an initial population
with Npop feasible individuals of 2ðN þ 1Þ real-value
parameters.

Step 2 (Evaluation). Evaluate the fitness values of all
individuals.

Step 3 (Selection). Use the simple truncation selection that
replaces the worst Ps �Npop individuals with the best
Ps �Npop individuals to form a new population, where
Ps is a selection probability. Let Ibest be the best
individual in the population.

Step 4 (Crossover). Randomly select Pc �Npop individuals,
including Ibest, where Pc is a crossover probability.
Perform intelligent crossover operations for all selected
pairs of parents.

Step 5 (Mutation). Apply the abovementioned mutation
operator to the population using a mutation probability
Pm. To prevent the best fitness value from deteriorating,
mutation is not applied to the best individual.

Step 6 (Termination test). If a prespecified number Neval of
fitness evaluations is achieved or some stopping condi-
tion is met, then stop the algorithm. Otherwise, go to
Step 2.

3.3 OSA for Refining the Combined Solution

To compensate for the disregard of estimating accurate
gene expression levels of other genes from the noisy data of
gene expression, all of the solutions to the N subproblems
are combined and then refined using OSA from the aspect
of global optimization. The main difference between OSA
and the conventional simulated annealing is the move
generation mechanism. OSA uses an intelligent generation
mechanism (IGM) based on OED to systematically reason

out a good candidate solution as the next move. The high
performance of OSA arises from IGM, which is the main
phase of OSA. IGM is similar to the intelligent crossover of
IGA using the divide-and-conquer mechanism for large-
scale optimization problems, which is also efficient in
determining a good approximation of the best solution in
the neighborhood of the current solution. OSA uses the
following objective function for global optimization:

minimize

F ¼
XN
i¼1

XT
t¼1

Xcal;i;t �Xexp;i;t

Xexp;i;t

� �2

þc
XN
i¼1

XN�I
j¼1

ð
��Gij

��þ ��Hij

��Þ:
ð7Þ

3.3.1 IGM

Let all of the N solutions be combined into an initial
solution S of OSA to be refined. Let S ¼ ðs1; . . . ; spÞ, where
si is one of the S-system parameters and p ¼ 2NðN þ 1Þ.
IGM generates two temporary solutions, SA ¼ ða1; . . . ; apÞ
and SB ¼ ðb1; . . . ; bpÞ, by perturbing S, where ai and bi are
defined as follows:

ai ¼ si þ s0i; bi ¼ si � s0i; i ¼ 1; . . . ; p: ð8Þ

The values of s0i are generated by the Cauchy-Lorentz
probability distribution. IGM aims at efficiently combining
the good values of parameters from solutions S, SA, andSB to
generate a good candidate solutionQ for the next move of S.

Divide all of the p parameters into m nonoverlapping
groups with variable sizes, using the same division
operation for S, SA, and SB. In this study, the used OA is
L2mþ1ð3mÞ and m ¼ 13 for N � 30. How to decide the
proper value of m and OA can be found in [25]. Due to the
same reason as that of intelligent crossover, the two sets
f�i; gijg and f�i; hijg are randomly divided into seven and
six parameter groups, respectively. How to perform an IGM
operation with m groups using a current solution S and the
objective function F in (7) is described as follows:

Step 1. Generate two temporary solutions SA and SB using S.

Step 2. Using the same division operation, randomly divide
the two sets f�i; gi1; . . . ; giNg and f�i; hi1; . . . ; hiNg in S,
SA, and SB into ðmþ 1Þ=2 and ðm� 1Þ=2 groups
(factors), respectively.

Step 3. Let levels 1, 2, and 3 of a factor represent the groups
coming from S, SA, and SB, respectively.

Step 4. Compute yt of the generated combination, where
t ¼ 2; . . . ; 2mþ 1. Note that y1 ¼ F ðSÞ.

Step 5. Compute the main effect Sdk, where d ¼ 1; . . . ;m and
k ¼ 1; 2; 3.

Step 6. Determine the best of the three levels of each factor
according to the main effect.

Step 7. Form the candidate solution Q using the combina-
tion of the best groups.

Step 8. Verify that Q is superior to the 2m sampling
solutions derived from the OA combinations and Q 6¼ S.
If it is not true, select the best from the 2m sampling
solutions as Q.

HO ET AL.: AN INTELLIGENT TWO-STAGE EVOLUTIONARY ALGORITHM FOR DYNAMIC PATHWAY IDENTIFICATION FROM GENE... 653

The number of objective function evaluations is 2mþ 1
per IGM operation, which includes 2m evaluations in Step 4
and one in Step 8.

3.3.2 Global Optimization Using OSA

The main power of OSA mainly arises from using IGM to
efficiently search for a good candidate solution. OSA uses a
simple geometric cooling rule by updating the temperature
at the ðiþ 1Þth temperature step using the formula:
Tempiþ1 ¼ CR � Tempi, i ¼ 0; 1; . . . , where CR is the cooling
rate, which is a constant smaller than 1 but close to 1 (for
example, CR ¼ 0:99). The higher the temperature, the larger
the possibility of accepting a candidate solution worse than
the current solution is. In this study, a simple version of
OSA proposed in [25] is used. The OSA used is described
below:

Step 1 (Initialization). Initialize Temp ¼ Temp0 and CR. Let
the combined solution S be an initial solution and
compute F ðSÞ.

Step 2 (Perturbation). Perform an IGM operation using S to
generate a candidate solution Q.

Step 3 (Acceptance criterion). Accept Q to be the new S with
probability P ðQÞ:

P ðQÞ ¼
1; if F ðQÞ � F ðSÞ
expðF ðSÞ�F ðQÞTemp Þ; if F ðQÞ > F ðSÞ:

�
ð9Þ

Step 4 (Decreasing temperature). Let the new value of Temp
be CR � Temp.

Step 5 (Termination test). If a prespecified stopping
criterion is met, stop the algorithm. Otherwise, go to
Step 2.

In this study, if the solutions to the subproblems are
accurate enough and whose fitness values are sufficiently
small, OSA plays a role in finely tuning the values of
parameters but not the structure from the aspect of global
optimization. In such a case, Temp0 can be set to a very
small value. If the fitness values are not satisfactory, Temp0

can be enlarged to search for a better solution in which the
structure of the S-system model may be modified.

3.4 iTEA Using IGA and OSA

The proposed algorithm, iTEA, uses both IGA and OSA in
Stages 1 and 2, respectively. IGA aims to obtain solutions to
subproblems with significant accuracy in terms of the
objective function value that can best fit the given gene
expression profiles. If the noise is very small, IGA is
effective enough and the improvement of OSA in Stage 2 is
not significant. When the noise becomes larger, the best fit

of the observed gene expression profiles is left to OSA from
the aspect of global optimization. The proposed iTEA is
given as follows:

Stage 1. Apply IGA to solve N individual subproblems
independently using the fitness function (5). R > 1
independent runs are conducted for each subproblem
and the best solution to each subproblem is selected. In
this study, R ¼ 10 is suggested.

S tage 2 . Combine these N bes t so lut ions
ð�i; gi1; . . . ; giN ; �i; hi1; . . . ; hiNÞ, i ¼ 1; . . . ; N , into an in-
itial solution S. Apply OSA to refine S using the objective
function F in (7).

4 EXPERIMENTAL RESULTS

We conducted some evaluations for the proposed algorithm
iTEA. The parameters used in iTEA are described below.
For IGA, Npop ¼ 20, Ps ¼ 0:2, Pc ¼ 0:8, and Pm ¼ 0:2. The
penalty coefficient c ¼ 1:0 is in (5) and (7). From our
computer simulation results, OSA generally performs well
by giving a very small value to Temp0, for example, 0.001.

4.1 Experiment 1—Performance of IGA

In this experiment, two target genetic networks with N ¼ 5
and 10 are used to evaluate the performance of IGA. For a
small-scale target network, we used the same S-system
model of a genetic network consisting of N ¼ 5 genes as
that in [10]. This model has been developed to analyze the
interaction of regulator and effector genes, which has
feedback loops. The S-system parameters of the target
network are given in Table 3. The search regions of the
S-system parameters are ½0; 15:0� for �i and �i and ½�3:0; 3:0�
for gij and hij. To enhance the probability of finding the
correct solution, 15 sets of noise-free time-series data were
used, each covering all five genes, as a sufficient amount of
observed gene expression profiles. The sets of time-series
data were obtained by using (1). The initial values of these
sets are listed in Table 4. T ¼ 11 sampling points for the
time-series data were assigned on each gene in each set and,
hence, the observed time-series data on each gene consist of
15� 11 ¼ 165 sampling points.

For this network model, we have to estimate 60 para-
meters of the S-system. Let I ¼ 2 and Neval ¼ 2� 105. For
each run, the total fitness value of N ¼ 5 subproblems using
the F function of (7) is recorded. For evaluating the
robustness of IGA, 30 independent runs of IGA were
conducted. The best and mean values of F from 30 runs are
0.00171 and 0.29267, respectively. Table 5 shows the
S-system parameters of the best solutions to the five
subproblems in terms of fitness value using (5), where the

654 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

TABLE 3
The S-System Parameters of a Small-Scale Target Network with N ¼ 5 from [10]

fitness value of each subproblem is smaller than 10�6. The

genetic structure is correct and the parameter values are

precise enough to biologically interpret the network. IGA

running on a single-processor PC (Pentium III 933 MHz)

takes 5.8 minutes on average to solve five subproblems in

an independent run. Because the fitness values of the

solutions obtained from Stage 1 are small enough, no

refinement using OSA is required. Therefore, iTEA with

R ¼ 10 takes 58 ð¼ 5:8� 10Þ minutes.
Another genetic network of N ¼ 10 genes is given in

Tables 6 and 7. There are 169 and 51 zero and nonzero values

of S-system parameters, respectively. We used 15 sets of gene

expression profiles with I ¼ 3 and T ¼ 11. The stopping

condition is when the fitness value is still not effectively

improved after a constant numberNgen ¼ 100 of generations.
The best solutions in terms of the fitness value from
30 independent runs are listed in Table 8. The corresponding
fitness values using (5) for the 10 subproblems are given in
Table 9. There are no false-negative interaction and only
nine false-positive interactions whose magnitudes are
relatively small. This experiment running on a single-
processor PC (Pentium 4 2.8 GHz) takes 45 minutes on the
average to solve 10 subproblems.

4.2 Experiment 2—Comparison between SPXGA
and IGA

In this experiment, we conducted some experiments using
S-system models containing N ¼ 5; 10; . . . ; 30 genes as
target networks to show that IGA is significantly better

HO ET AL.: AN INTELLIGENT TWO-STAGE EVOLUTIONARY ALGORITHM FOR DYNAMIC PATHWAY IDENTIFICATION FROM GENE... 655

TABLE 4
Fifteen Sets of Initial Gene Expression Levels of the Target Network with N ¼ 5 from [10]

TABLE 5
The Estimated S-System Parameter Sets with N ¼ 5

The fitness value of each subproblem is smaller than 10�6.

TABLE 6
S-System Parameters of the Target Network with N ¼ 10

than SPXGA [10] for solving subproblems in terms of

fitness value using the same number Neval of fitness

evaluations. We generated feasible expression patterns

for comparing the optimization abilities of IGA and

SPXGA. Six sets of time-series data of gene expression

are generated, each covering all N genes. The values of

gene expression levels are generated in the range ½0; 1:0�.
The search regions were ½0; 15:0� for �i and �i and

½�3:0; 3:0� for gij and hij. Let I ¼ 3 and T ¼ 11. We

conducted 30 independent runs for the first subproblem

of each experiment using IGA and SPXGA to compare

the effectiveness by a statistical t-test method. For each

experiment, the stopping condition is Neval ¼ 5; 000�N .
The parameters used in SPXGA are identical to those in [10].

Fig. 2 gives the convergences of the 30 runs for
comparisons between IGA and SPXGA with various values
of N . It can be seen that IGA is obviously superior to
SPXGA, especially when N is large. Table 10 shows the
t-test results of the six target networks. It can be found that
the mean fitness values and variances of IGA are much
smaller than those of SPXGA, where their P value is near to
zero. These results reveal that IGA is significantly better
than SPXGA in solving the individual subproblems in a
limited amount of computation time.

4.3 Experiment 3—iTEA for Noisy Gene Expression
Profiles

In this experiment, we will evaluate the proposed iTEA
using noisy gene expression profiles. We adopted the
Gaussian noise, which is commonly used for the simulated
experiment [29]. Four target genetic networks with N ¼ 5,
10, 15, and 30 are used, where the networks with N ¼ 5 and
10 are the same as those in Experiment 1. The target

656 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

TABLE 7
Fifteen Sets of Initial Gene Expression Levels of the Target Network with N ¼ 10

TABLE 8
The Obtained S-System Parameters with N ¼ 10

The nine highlighted numbers indicated false-positive interactions. No false-negative interaction is found.

TABLE 9
The Fitness Values Using (5) for All Subproblems with N ¼ 10

network of N ¼ 15 has also 15 sets of gene expression

profiles. These three networks with N ¼ 5, 10, and 15

adopted I ¼ 3 and T ¼ 11. The S-system parameters of the

network with N ¼ 30 are obtained from [12]. The network

with N ¼ 30 has 20 sets of gene expression profiles, I ¼ 5,

and T ¼ 11. The values of the gene expression levels were

generated in the range ½0; 2:0�. The search regions were

½0; 3:0� for �i and �i and ½�3:0; 3:0� for gij and hij. We added

k percent Gaussian noise to all gene expression level points

of N genes. The mean of the Gaussian noise is zero and the

standard deviation equals to Xexp;i;t � k percent.

We applied iTEA to estimate the parameters of the

S-system model. The function value of (7) reflecting the

fitting quality of the time-series data is used to evaluate the

ability of the used optimization algorithm. However, the

major concern is to obtain a correct network structure with

accurate parameter values. We define the true-positive rate

as sensitivity SN ¼ TP=ðTP þ FNÞ, where TP is true

positive and FN is false negative, and the true negative

rate as specificity SP ¼ TN=ðTN þ FP Þ, where TN is true

negative and FP is false positive.

HO ET AL.: AN INTELLIGENT TWO-STAGE EVOLUTIONARY ALGORITHM FOR DYNAMIC PATHWAY IDENTIFICATION FROM GENE... 657

Fig. 2. The convergence comparison between IGA and SPXGA using 30 independent runs. (a) N ¼ 5. (b) N ¼ 10. (c) N ¼ 15. (d) N ¼ 20.

(e) N ¼ 25. (f) N ¼ 30.

To illustrate the effectiveness of R ¼ 10 runs in Stage 1
and refinement using OSA in Stage 2, we take the target
model of N ¼ 10 with 5 percent Gaussian noise as an
example. At first, IGA is performed in one run ðR ¼ 1Þ to
solve each individual subproblem and, then, all of the N ¼
10 solutions to the 10 subproblems are combined as a final
solution to the inference problem. On the other hand, a
combined solution S is also obtained from Stage 1 using
IGA with R ¼ 10. Fig. 3 shows the distribution of S and the
30 final solutions. In Fig. 3, it can be found that the best
solution Sbest of R ¼ 1 has values F ¼ 6:42, SN ¼ 98%, and
SP ¼ 82:7%. The solution S has F ¼ 6:17, SN ¼ 100%, and
SP ¼ 82:25%, which is slightly better than Sbest. Therefore,
it is effective to combine the best of the R ¼ 10 solutions for
all individual subproblems. After performing OSA with
30 independent runs to refine the solution S, the obtained
model has values F ¼ 4:70, SN ¼ 100%, and SP ¼ 82:52%

on average. It reveals that OSA can effectively improve the
model in terms of fitness value.

Table 11 shows the results of iTEA using artificial data
with N ¼ 5, 10, 15, and 30, where 3 percent, 5 percent, and
10 percent Gaussian noises were added. For the network
with N ¼ 30, IGA running on a single-processor PC

(Pentium 4 2.8 GHz) takes 12.64 hours on average to solve
the 30 subproblems with R ¼ 1. The stopping condition of
IGA is when the fitness value is still not effectively
improved after a constant number Ngen ¼ 100 of genera-
tions. OSA performed 30 independent runs using the same
initial solution S obtained from the best solutions of all
individual subproblems using IGA with R ¼ 10. The
stopping condition of OSA is to use 3,000 iterations. The
simulation results show that iTEA can effectively solve the
inference problems with a value of N as large as 30. For
N ¼ 5 and 10, the average sensitivity ðSNÞ performances
are near or equal to 100 percent. For N ¼ 15, SN > 93%. For
the network with N ¼ 30 and 10 percent noise, SN ¼
84:77% and SP ¼ 74:58%. The specificity performances are
ranged from 54.05 to 87.13 percent. By carefully examining
the results and analyzing the inference performance, iTEA
can often obtain a satisfactory S-system model, discussed
below:

1. Because the Gaussian noise is added into the gene
expression profiles, the original (true) values of the
S-system parameters may not be the best solution to
fit the noisy gene expression profiles. Note that iTEA
aims to find the S-system model that can best fit the

658 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

TABLE 10
T-Test Results for Comparisons between IGA and SPXGA with Various Values of N

Fig. 3. The distribution of the 30 solutions with R ¼ 1 and one solution with R ¼ 10 using IGA only, without refinement of OSA, from gene expression

profiles of N ¼ 10 and 5 percent Gaussian noise. (a) Fitness value versus sensitivity. (b) Fitness value versus specificity.

noisy gene expression profiles. As a result, some
small false-positive interactions may additionally
occur.

2. The specificity performance highly depends on the
threshold value in using the structure skeletalizing
technique. When interpreting the interaction from
the estimated values of the S-system parameters for
noisy data, it is better to filter the small interactions
using a larger threshold value. If an additional
threshold �t ¼ 0:1 is used to filter the small interac-
tions so that their absolute values are smaller than
0.1 by assigning a value of zero to them, the
specificity performance would obviously be en-
hanced, ranging from 79.10 to 92.33 percent.

5 CONCLUSIONS

The S-system model has been considered suitable to
characterize biochemical network systems and capable of
analyzing the regulatory system dynamics. Essentially, the
inference of the S-system models of genetic networks is a
large-scale optimization problem consisting of 2NðN þ 1Þ
parameters to be optimized, whereN is the number of genes
in the genetic network. In this paper, we propose an
intelligent two-stage algorithm iTEA to search for an optimal
solution to the reverse engineering problem for inference of
genetic network architectures running on a single-processor
PC. The algorithm iTEA solves the optimization problem
using a divide-and-conquer approach in each of the two
stages. At first, the original problem is decomposed into
N individual 2ðN þ 1Þ-dimensional subproblems. In the first
stage, an IGA is used to solve the individual subproblems
independently without further estimating the gene expres-
sion levels of other genes. Our simulation demonstrated
that the proposed IGA-based method is effective in solving
the subproblems of inferring S-system models of genetic
networks.

To compensate for the disregard of estimating accurate
gene expression levels of other genes from the noisy data of
gene expression, all of the solutions to the N subproblems
are combined and then refined using OSA from the aspect
of global optimization. In Stage 2, OSA can effectively refine
the combined solution quality. From simulation results, it
was shown that the proposed algorithm, iTEA, can
effectively solve the inference problems with a gene

number N as large as 30 from noise-free and small-noise
gene expression profiles. Our future work is to parallelize
iTEA to identify the dynamic pathway from real-world
gene expression profiles with measurement noise, where
biological knowledge is incorporated for larger networks to
improve solution quality.

ACKNOWLEDGMENTS

The authors would like to thank the National Science
Council of the Republic of China for financially supporting
this research under Contract NSC 95-2221-E-009-116.

REFERENCES

[1] D.J. Lockhart and E.A. Winzeler, “Genomics, Gene Expression
and DNA Arrays,” Nature, vol. 405, no. 15, pp. 827-836, June 2000.

[2] P. Brazhnik, A. de la Fuente, and P. Mendes, “Gene Networks:
How to Put the Function in Genomics,” Trends in Biotechnology,
vol. 20, no. 11, pp. 467-472, 2002.

[3] T. Akutsu, S. Miyano, and S. Kuhara, “Algorithms for Identifying
Boolean Networks and Related Biological Networks Based on
Matrix Multiplication and Fingerprint Function,” J. Computational
Biology, vol. 7, no. 3, pp. 331-343, 2000.

[4] T. Akutsu, S. Miyano, and S. Kuhura, “Identification of Genetic
Networks from a Small Number of Gene Expression Patterns
under the Boolean Network Model,” Proc. Pacific Symp. Biocom-
puting, pp. 17-28, 1999.

[5] S. Liang, S. Fuhrman, and R. Somogyi, “REVEAL, a General
Reverse Engineering Algorithm for Inference of Genetic Network
Architectures,” Proc. Pacific Symp. Biocomputing, vol. 3, pp. 18-29,
1998.

[6] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using
Bayesian Networks to Analyze Expression Data,” J. Computational
Biology, vol. 7, no. 3, pp. 601-620, 2000.

[7] D. Husmeier, “Sensitivity and Specificity of Inferring Genetic
Regulatory Interactions from Microarray Experiments with
Dynamic Bayesian Networks,” Bioinformatics, vol. 19, pp. 2271-
2282, 2003.

[8] J. Yu, V.A. Smith, P.P. Wang, A.J. Hartemink, and E.D. Jarvis,
“Advances to Bayesian Network Inference for Generating Causal
Networks from Observational Biological Data,” Bioinformatics,
vol. 20, pp. 3594-3603, 2004.

[9] M. Zou and S.D. Conzen, “A New Dynamic Bayesian Network
(DBN) Approach for Identifying Gene Regulatory Networks from
Time Course Microarray Data,” Bioinformatics, vol. 21, no. 1,
pp. 71-79, 2005.

[10] S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and M. Tomita,
“Dynamic Modeling of Genetic Networks Using Genetic Algo-
rithm and S-System,” Bioinformatics, vol. 19, pp. 643-650, 2003.

[11] S. Kimura, M. Hatakeyama, and A. Konagaya, “Inference of
S-System Models of Genetic Networks from Noisy Time-Series
Data,” Chem-Bio Informatics J., vol. 4, no. 1, pp. 1-14, 2004.

HO ET AL.: AN INTELLIGENT TWO-STAGE EVOLUTIONARY ALGORITHM FOR DYNAMIC PATHWAY IDENTIFICATION FROM GENE... 659

TABLE 11
Performance of the Proposed Algorithm Where OSA Is Performed with 30 Runs

S is the combined initial solution of OSA.

[12] S. Kimura, K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R.
Masui, N. Nakagawa, S. Yokoyama, S. Kuramitsu, and A.
Konagaya, “Inference of S-System Models of Genetic Networks
Using a Cooperative Coevolutionary Algorithm,” Bioinformatics,
vol. 21, pp. 1154-1163, 2005.

[13] Y. Maki, T. Ueda, M. Okamoto, N. Uematsu, K. Inamura, K.
Uchida, Y. Takahashi, and Y. Eguchi, “Inference of Genetic
Network Using the Expression Profile Time Course Data of Mouse
P19 Cells,” Genome Informatics, vol. 13, pp. 382-383, 2002.

[14] R. Morishita, H. Imade, I. Ono, N. Ono, and M. Okamoto,
“Finding Multiple Solutions Based on an Evolutionary Algorithm
for Inference of Genetic Networks by S-System,” Proc. Congress
Evolutionary Computation, vol. 1, pp. 615-622, 2003.

[15] C. Seatzu, “A Fitting Based Method for Parameter Estimation in S-
Systems,” Dynamic Systems and Applications, vol. 9, pp. 77-98, 2000.

[16] D. Tominaga, N. Koga, and M. Okamoto, “Efficient Numerical
Optimization Algorithm Based on Genetic Algorithm for Inverse
Problem,” Proc. Genetic and Evolutionary Computation Conf.,
pp. 251-258, 2000.

[17] K.-Y. Tsai and F.-S. Wang, “Evolutionary Optimization with Data
Collocation for Reverse Engineering of Biological Networks,”
Bioinformatics, vol. 21, pp. 1180-1188, 2005.

[18] E.O. Voit and J. Almeida, “Decoupling Dynamical Systems for
Pathway Identification from Metabolic Profiles,” Bioinformatics,
vol. 20, pp. 1670-1681, 2004.

[19] A. Sorribas, S. Samitier, E.I. Canela, and M. Cascante, “Metabolic
Pathway Characterization from Transient-Response Data Ob-
tained In-Situ-Parameter-Estimation in S-System Models,”
J. Theoretical Biology, vol. 162, pp. 81-102, 1993.

[20] C.G. Moles, P. Mendes, and J.R. Banga, “Parameter Estimation in
Biochemical Pathways: A Comparison of Global Optimization
Methods,” Genome Research, vol. 13, pp. 2467-2474, 2003.

[21] D. Tominaga and P. Horton, “Inference of Scale-Free Networks
from Gene Expression Time Series,” J. Bioinformatics and Computa-
tional Biology, vol. 4, no. 2, pp. 503-514, Jan. 2006.

[22] S.-Y. Ho, L.-S. Shu, and J.-H. Chen, “Intelligent Evolutionary
Algorithms for Large Parameter Optimization Problems,” IEEE
Trans. Evolutionary Computation, vol. 8, no. 6, pp. 522-541, Dec.
2004.

[23] T.P. Bagchi, Taguchi Methods Explained: Practical Steps to Robust
Design. Prentice Hall, 1993.

[24] A.S. Hedayat, N.J.A. Sloane, and J. Stufken, Orthogonal Arrays:
Theory and Applications. Springer, 1999.

[25] S.-J. Ho, S.-Y. Ho, and L.-S. Shu, “OSA: Orthogonal Simulated
Annealing Algorithm and Its Application to Designing Mixed
H-2/H-Infinity Optimal Controllers,” IEEE Trans. Systems, Man,
and Cybernetics-Part A: Systems and Humans, vol. 34, no. 5, pp. 588-
600, Sept. 2004.

[26] S.-J. Ho, L.-S. Shu, and S.-Y. Ho, “Optimizing Fuzzy Neural
Networks for Tuning PID Controllers Using an Orthogonal
Simulated Annealing Algorithm OSA,” IEEE Trans. Fuzzy Systems,
vol. 14, no. 3, pp. 421-434, June 2006.

[27] D. Thieffry, A.M. Huerta, E. Perez-Rueda, and J. Collado-Vides,
“From Specific Gene Regulation to Genomic Networks: A Global
Analysis of Transcriptional Regulation in Escherichia Coli,”
BioEssays, vol. 20, pp. 433-440, 1998.

[28] H. Szu and R. Hartley, “Fast Simulated Annealing,” Physics
Letters, vol. 122, pp. 157-162, 1987.

[29] S. Wei, T.W. Sun, and R.D. Wesel, “Quasi-Convexity and Optimal
Binary Fusion for Distributed Detection with Identical Sensors in
Generalized Gaussian Noise,” IEEE Trans. Information Theory,
vol. 47, no. 1, pp. 446-450, 2001.

Shinn-Ying Ho received the BS, MS, and PhD
degrees in computer science and information
engineering from National Chiao Tung Univer-
sity, Hsinchu, Taiwan, in 1984, 1986, and 1992,
respectively. From 1992 to 2004, he was with
the Department of Information Engineering and
Computer Science, Feng Chia University, Tai-
chung, Taiwan. He is currently a professor in the
Department of Biological Science and Technol-
ogy and the Institute of Bioinformatics, National

Chiao Tung University, Hsinchu, Taiwan. His research interests include
evolutionary algorithms, soft computing, image processing, pattern
recognition, bioinformatics, data mining, machine learning, computer
vision, fuzzy classifier, large-scale parameter optimization problems,
and system optimization. He is a member of the IEEE.

Chih-Hung Hsieh received the BS degree in
information and computer education from Na-
tional Taiwan Normal University, Taipei, and
the MS degree in bioinformatics from National
Chiao Tung University, Hsinchu, Taiwan, in
2004 and 2006, respectively. He is currently a
PhD student at the Institute of Computer
Science and Information Engineering, National
Taiwan University, Taipei. His research inter-
ests include evolutionary algorithms, large

parameter optimization problems, system optimization, pattern recog-
nition, and bioinformatics.

Fu-Chieh Yu received the BS degree in
chemical engineering from National Chung
Hsing University, Taichung, Taiwan, in 2001
and the MS degree in bioinformatics from
National Chiao Tung University, Hsinchu, Tai-
wan, in 2006. He is currently an engineer at the
Center for Measurement Standards, Industrial
Technology Research Institute. His research
interests include bioinformatics, evolutionary
computation, and system optimization.

Hui-Ling Huang received the MS and PhD
degrees in computer science and information
engineering from Feng Chia University, Tai-
chung, Taiwan, in 1998 and 2002, respectively.
She is currently an assistant professor in the
Department of Information Management, Jin
Wen Institute of Technology, Taipei. Her re-
search interests include evolutionary algorithms,
image processing, pattern recognition, bioinfor-
matics, data mining, machine learning, and

large-scale parameter optimization problems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

660 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

