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Abstract

In this paper, the chaotic behaviors in a fractional order modified Duffing system are studied numerically by phase
portraits, Poincaré maps and bifurcation diagrams. Linear transfer function approximations of the fractional integrator
block are calculated for a set of fractional orders in (0,1], based on frequency domain arguments. The total system
orders found for chaos to exist in such systems are 1.8, 1.9, 2.0 and 2.1.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Fractional calculus is a 300-year-old mathematical topic [1–4]. Although it has a long history, the applications of
fractional calculus to physics and engineering are just a recent focus of interest. Many systems are known to display
fractional order dynamics, such as viscoelastic systems, dielectric polarization [5], electrode electrolyte polarization
[6], and electromagnetic waves [7]. More recently, many investigations are devoted to the control [8–12] and dynamics
[13–26] of fractional order dynamical systems. In [13], it is shown that the fractional order Chua’s circuit of order as low
as 2.7 can produce a chaotic attractor. In [14], it is shown that nonautonomous Duffing systems of order less than 2 can
still behave in a chaotic manner. In [15], chaotic behaviors of the fractional order ‘‘jerk’’ model is studied, in which
chaotic attractor can be obtained with the system order as low as 2.1, and in [16] chaos control of this fractional order
chaotic system is investigated. In [17], the fractional order Wien bridge oscillator is studied, where it is shown that limit
cycle can be generated for any fractional order, with a proper value of the amplifier gain.

One way to study fractional order systems is through linear approximations. By utilizing frequency domain tech-
niques based on Bode diagrams, one can obtain a linear approximation for the fractional order integrator, the order
of which depends on the desired bandwidth and the discrepancy between the actual and the approximate magnitude
Bode diagrams. This approach is applied to study the behaviors of the fractional order modified Duffing equations in
this paper. We use the approximate linear transfer functions for the fractional integrator of order that varies from 0.1
to 0.9, and study the resulting behavior of the entire system for each case under the effect of different types of
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nonlinearities. Chaotic behaviors in the fractional order modified Duffing equations are studied by phase portraits and
bifurcation diagrams. It is found that the total system orders for chaos to exist in such systems are 1.8, 1.9, 2.0 and
2.1.

This paper is organized as follows. In Section 2 the fractional derivative and its approximation are introduced. In
Section 3 the system under study is described both in its integer and fractional forms. In Section 4 numerical simulation
results are presented, and in Section 5 conclusions are drawn.
2. Fractional derivative and its approximation

Two commonly used definitions for the general fractional differintegral are the Grunwald definition and the Rie-
mann–Liouville definition . The Riemann–Liouville definition of the fractional integral is given here as [27]
dqf ðtÞ
dtq

¼ 1

Cð�qÞ

Z t

0

f ðsÞ
ðt � sÞqþ1

ds; q < 0 ð1Þ
where q can have noninteger values, and thus the name fractional differintegral. Notice that the definition is based on
integration and more importantly is a convolution integral for q < 0. When q > 0, then the usual integer nth derivative
must be taken of the fractional (q � n)th integral, and yields the fractional derivative of order q as
dqf
dtq
¼ dn

dtn

dq�nf
dtq�n

� �
; q > 0 and n an integer > q ð2Þ
This appears so vastly different from the usual intuitive definition of derivative and integral that the reader must
abandon the familiar concepts of slope and area and attempt to get some new insight. Fortunately, the basic engineering
tool for analyzing linear systems, the Laplace transform, is still applicable and works as one would expect; that is
L
dqf ðtÞ

dtq

� �
¼ sqLff ðtÞg �

Xn�1

k¼0

sk dq�1�kf ðtÞ
dtq�1�k

� �
t¼0

for all q ð3Þ
where n is an integer such that n � 1 < q < n. If the initial conditions are considered to be zero, this formula reduces to
the more expected and comforting form
L
dqf ðtÞ

dtq

� �
¼ sqLff ðtÞg ð4Þ
An efficient method is to approximate fractional operators by using standard integer order operators. In [27], an
effective algorithm is developed to approximate fractional order transfer functions. Basically, the idea is to approximate
the system behavior in the frequency domain. By utilizing frequency domain techniques based on Bode diagrams, one
can obtain a linear approximation of fractional order integrator, the order of which depends on the desired bandwidth
and discrepancy between the actual and the approximate magnitude Bode diagrams. In Table 1 of [13], approximations
for 1/sq with q = 0.1–0.9 in steps 0.1 are given, with errors of approximately 2 dB. These approximations are used in
following simulations.
3. A fractional order modified Duffing system

The famous Duffing system is
€xþ a _xþ xþ x3 ¼ b cos xt ð5Þ
where a, b are constant parameters.
It can be written as two first order ordinary differential equations:
dx
dt
¼ y

dy
dt
¼ �x� x3 � ay þ b cos xt

8>><
>>:

ð6Þ
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Consider the following modified Duffing system:
dx
dt
¼ y

dy
dt
¼ �x� x3 � ay þ bz

dz
dt
¼ w

dw
dt
¼ �cz� dz3

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ
It becomes an autonomous system with four states where a, b, c, and d are constant parameters of the system. System
(7) can divide into two parts:
dx
dt
¼ y

dy
dt
¼ �x� x3 � ay þ bz

8>><
>>:

ð8Þ
and
dz
dt
¼ w

dw
dt
¼ �cz� dz3

8>><
>>:

ð9Þ
As a nonlinear oscillator, system (9) provide the periodic time function bz to system (8) as an excitation which produces
the chaos in system (8). To sum up, system (8) can be considered as a nonautonomous system with two states x, y with
bz as an excitation which is a given periodic function of time, while system (8) and system (9) together can be considered
as an autonomous system with four states x, y, z, w. We focus on system (8), while system (9) remains an integral order
system.

Now, consider a fractional order modified Duffing system. Here, the conventional derivatives in Eq. (8) are replaced
by the fractional derivatives as follows:
dq1 x
dtq1
¼ y

dq2 y
dtq2
¼ �x� x3 � ay þ bz

dz
dt
¼ w

dw
dt
¼ �cz� dz3

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ
where system parameter b is allowed to be varied, and q1, q2 are two fractional order numbers. Simulations are then
performed using qi (i = 1,2) varied from 0.1 to 0.9, respectively. The approximations from Table 1 of [13] are used
for the simulations of the appropriate qith integrals. When qi < 1, then the approximations are used directly. It should
further be noted that approximations used in the simulations for 1=sqi , when qi > 1, are obtained by using 1/s times the
approximation for 1=sqi�1 from Table 1.
4. Simulation results

In this section, all numerical simulations are run by block diagrams in Simulink environment, using ode45 solver
algorithm, where the fractional integrators have been approximated by linear time invariant transfer functions follow-
ing the procedure in [13]. In so far as the attractor shape is concerned, both procedures gave very similar results. In
numerical simulations, three parameters a = 0.05, c = 1 and d = 0.3 are fixed and b is varied. The initial states of
the modified Duffing system are x(0) = 0, y(0) = 0, z(0) = 10 and w(0) = 10.

Firstly, when the total order q1 + q2 is 1.8, chaos is found in the cases: (q1,q2) = (1.5,0.3), (q1,q2) = (1.3,0.5),
(q1,q2) = (0.3,1.5), and (q1,q2) = (0.5,1.3). The phase portraits, Poincaré maps and the bifurcation diagrams are
showed in Figs. 1–4. Secondly, when the total order q1 + q2 is 1.9, chaos is found in the cases: (q1,q2) = (1.8,0.1),



Fig. 1. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.5,0.3).
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(q1,q2) = (1.6,0.3), (q1,q2) = (1.5,0.4), (q1,q2) = (1.4,0.5), (q1,q2) = (1.3,0.6), (q1,q2) = (1.1,0.8), (q1,q2) = (0.1,1.8),
(q1,q2) = (0.3,1.6), (q1,q2) = (0.4,1.5), (q1,q2) = (0.5,1.4), (q1,q2) = (0.6,1.3), and (q1,q2) = (0.8,1.1). The phase



Fig. 2. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.3,0.5).

266 Z.-M. Ge, C.-Y. Ou / Chaos, Solitons and Fractals 34 (2007) 262–291
portraits, Poincaré maps and the bifurcation diagrams are shown in Figs. 5–16. When the total order q1 + q2 is 2.0,
chaos is found in the cases: (q1,q2) = (1.9,0.1), (q1,q2) = (1.8,0.2), (q1,q2) = (1.2,0.8), (q1,q2) = (1.1,0.9),



Fig. 3. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.3,1.5).
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(q1,q2) = (0.2,1.8), (q1,q2) = (0.8,1.2), and (q1,q2) = (0.9,1.1). The phase portraits, Poincaré maps and the bifurcation
diagrams are shown in Figs. 17–23. Finally, when the total order 2.1, chaos is found in the cases: (q1,q2) = (1.2,0.9),



Fig. 4. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.5,1.3).
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(q1,q2) = (0.2,1.9), and (q1,q2) = (1.2,0.9). The phase portraits, Poincaré maps and the bifurcation diagrams are
showed in Figs. 24–26. It can be seen that when q1 is larger, the range of y state is also larger.



Fig. 5. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.8,0.1).
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Fig. 6. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.6,0.3).
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Fig. 7. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.5,0.4).
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Fig. 8. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.4,0.5).
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Fig. 9. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.3,0.6).
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Fig. 10. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.1,0.8).
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Fig. 11. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.1,1.8).
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Fig. 12. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.3,1.6).
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Fig. 13. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.4,1.5).
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Fig. 14. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.5,1.4).
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Fig. 15. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.6,1.3).
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Fig. 16. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.8,1.1).
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Fig. 17. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.9,0.1).
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Fig. 18. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.8,0.2).
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Fig. 19. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.2,0.8).
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Fig. 20. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.1,0.9).

284 Z.-M. Ge, C.-Y. Ou / Chaos, Solitons and Fractals 34 (2007) 262–291



Fig. 21. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.2,1.8).
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Fig. 22. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.8,1.2).
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Fig. 23. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.9,1.1).
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Fig. 24. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (1.2,0.9).

288 Z.-M. Ge, C.-Y. Ou / Chaos, Solitons and Fractals 34 (2007) 262–291



Fig. 25. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.2,1.9).
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Fig. 26. The phase portraits, Poincaré maps and the bifurcation diagram for the fractional order modified Duffing system, x versus y

and b versus x, (q1,q2) = (0.9,1.2).
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5. Conclusions

In this paper we have studied the chaos in the fractional order modified Duffing system by phase portraits, Poincaré
maps and bifurcation diagrams. The total orders of the system for the existence of chaos are 1.8, 1.9, 2.0 and 2.1.
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