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Abstract

This paper presents a theoretical thermoelastic coupled model for a thermal bimorph actuator driven by a harmonically
varying thermal load in micro-electro-mechanical systems. The thermoelastic coupling, which arises from the coupling of
the strain rate to the temperature field of the heat transport, is considered in this model. The frequency responses are sim-
ulated using the theorem of eigenmode expansion. The effects of thermoelastic coupling on the resonant frequency and the
quality factor Q for each eigenmode resonance of the deflection are calculated and compared with the same effects resulted
from air damping. It shows that for the example of an aluminum–polysilicon thermal bimorph actuator, the resonant fre-
quencies are generally shifted downward with the order larger than that of air damping, whereas the influence of thermo-
elastic coupling on the Q is more significant than that of air damping under high vacuum level.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the microactuators’ actuation mechanisms, thermal-mechanical technique has been demonstrated
with the main advantages of high output force, low driving voltage and simple fabrication processes in
micro-electro-mechanical systems (MEMS). The thermo-mechanical behavior of a thermal actuator is a mul-
tiphysics phenomenon in which the heat transport and the elastic deformation are field-coupled. The thermo-
elastic coupling produces an irreversible process in which heat flow is generated by the coupling of the strain
rate of the deformed body to the temperature field. This process further brings the loss of energy and the final
state of thermal equilibrium (Roszhart, 1990). The resultant energy dissipation is known as the thermoelastic
damping. In the MEMS thermal actuator regime, although several modelings for the thermo-mechanical
behaviors of the thermal actuators have been proposed, the influences of the thermoelastic coupling are
usually ignored. Finite element analysis (FEA) taking into account the modes of heat transfer and the
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temperature dependence of thermo-mechanical properties were proposed for the steady-state behavior of the
thermal actuators (Mankame and Ananthasuresh, 2001). The dynamic responses of a hot/cold arm thermal
actuator and a chevron actuator have also been investigated using transient FEA (Geisberger et al., 2003).
Hickey et al. (2003) have presented a lumped model for thermal actuators in which the system parameters
could be obtained by the experimental results. Despite there are many developed methods of FEA modeling
and lumped model been reported, an analytical model which can give explicit direct relationships among the
input and output parameters, physical properties and geometrical parameters, is still a more straightforward
and efficient way to evaluate the performance of a thermal actuator. In addition, the issue of thermoelastic
damping is mostly concerned for achieving high quality factor Q in the development of microresonators
(Yasumura et al., 2000). In this case, the analytical model presented by Zener (1937, 1938) is commonly
employed to predict the Q of the beam resonator under the influence of thermoelastic damping. This model
is based on the assumption that the heat conduction is in the vertical direction of the beam thickness and ther-
mally isolated from the external medium. In most of the practical thermal bimorph actuators, however, the
heat conduction is in the longitudinal direction of the beam length. Therefore, a different approach to char-
acterize the thermoelastic damping of a thermal bimorph actuator is needed.

In this paper, a theoretical model for a thermal bimorph actuator taking into account the thermoelastic
coupling is developed. The dynamic responses for a harmonically varying thermal load are simulated using
the eigenmode expansion method. By calculating the complex eigenfrequencies of the freely vibrating thermal
actuator, the effects of thermoelastic coupling on the resonant frequency and the Q are studied for each eigen-
mode resonance of the deflection. The calculated thermoelastic damping effects are also compared to the air
damping which is generally considered the predominant damping source in the actuation of microstructures.
2. Coupled dynamic model

A thermal bimorph actuator with geometric dimensions of length l, width b, and thickness of h1 and h2 for
the bimorph layers is shown in Fig. 1. The comprising materials of each layer are assumed homogeneous and
isotropic and are denoted by subscripts 1 and 2, respectively. The coordinate system of the beam is defined
such that the x-axis is the neutral axis along the longitudinal direction and the z-axis along the beam thickness
direction.

The governing equation of such a thermally actuated bimorph cantilever beam with flexural deflection in
the z-axis is thus expressed in the following form (Boley and Weiner, 1960):
o
2

o2x
EcIc

o
2wðx; tÞ
ox2

� �
þ mc

o
2wðx; tÞ
ot2

¼ o
2MT

ox2
; ð1Þ
where t is the time, EcIc is the bending modulus, w is the flexural deflection, mc is the mass of cross-section, and
MT is the thermal moment causing the thermal actuation. Here subscript c denotes the properties of bimorph
structure and EcIc and mc can be expressed as
EcIc ¼
bfE1½ðh0 þ h1Þ3 � h3

0� � E2½h3
0 � ðh0 � h2Þ3�g

3
; mc ¼ bðh1q1 þ h2q2Þ; ð2Þ
Fig. 1. Schematic diagrams of a thermal bimorph actuator.
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where h0 is the distance from the neutral axis to the interface between materials 1 and 2, E1, E2 and q1 and q2

are Young’s moduli and the densities of mass, respectively. From the zero resultant force in the cross-section
due to the bending strain, the location of the neutral axis can be determined as
h0 ¼
E2h2

2 � E1h2
1

2ðE1h1 þ E2h2Þ
: ð3Þ
The thermal moment in Eq. (1) can be expressed as
MT ¼
Z

A1

za1E1hðx; tÞdAþ
Z

A2

za2E2hðx; tÞdA ¼ b
E1E2h1h2ðh1 þ h2Þða1 � a2Þ

2ðE1h1 þ E2h2Þ

� �
hðx; tÞ ¼ bhðx; tÞ; ð4Þ
where A1 and A2 are the cross-sections, a1 and a2 are the coefficients of thermal expansion and h(x, t) is the
one-dimensional temperature variation from the initial reference temperature T0. The temperature variation
is governed by the heat conduction equation as (Fung, 1965)
k
o2h
ox2
þ q ¼ qc

oh
ot
þ ð3kþ 2lÞaT 0

o2u
oxot

; ð5Þ
where k is the thermal conductivity, q is the internal heat load per unit volume, c is the specific heat at constant
deformation, k and l are the Lame constants and u is the longitudinal displacement of the beam. Note that the
last term in the right hand side of Eq. (5) appears as the thermoelastic coupling term.

The longitudinal normal strain ou
ox is contributed from two parts: the bending component �z d2w

dx2 and the aver-
age strain e0 due to the mismatch of thermal expansion in the longitudinal direction. The average strain can be
further obtained from the zero resultant force in the longitudinal direction. Therefore
ou
ox
¼ �z

d2w
dx2
þ e0; e0 ¼

ða1E1h1 þ a2E2h2Þ
E1h1 þ E2h2

h: ð6a; bÞ
Substituting Eq. (6a) into Eq. (5) and combining with Eq. (6b), Eq. (5) is further integrated over the beam
cross-section, such that
kc
o

2h
ox2
þ q ¼ qccc

oh
ot
þ j1

oh
ot
� j2

o
3w

ox2ot
; ð7Þ
where
kc ¼
k1h1 þ k2h2

h1 þ h2

; qccc ¼
q1c1h1 þ q2c2h2

h1 þ h2

;

j1 ¼
ða1E1h1 þ a2E2h2Þ½ð3k1 þ 2l1Þa1T 0h1 þ ð3k2 þ 2 l2Þa2T 0h2�

ðh1 þ h2ÞðE1h1 þ E2h2Þ
;
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ðh0 þ h1Þ2 � h2
0

2ðh1 þ h2Þ

" #
þ ð3k2 þ 2l2Þa2T 0
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" #
: ð8Þ
The deflection w must satisfy the boundary conditions at the clamped and free ends (x = 0, l) of the cantilever

beam as wjx = 0 = 0, ow
ox

��
x¼0
¼ 0, o2w

ox2

���
x¼l
¼ 0 and o3w

ox3

���
x¼l
¼ 0. The cantilever beam is normally clamped to the sub-

strate whose thermal mass is much larger than that of the beam. Therefore the thermal characteristic of the
substrate can be considered as an ideal heat sink, and the clamped end of the beam is held at the initial ref-
erence temperature throughout actuation as hjx = 0 = 0. The free end of the beam is exposed to surrounding
air, thus thermal boundary condition here is assumed to be thermally insulated due to relatively low thermal
conductivity of air compared to that of the structure materials (Hickey et al., 2003), such that oh

ox

��
x¼l
¼ 0.

3. Solution

For the problem solving convenience, the dimensionless quantities are introduced as follows:
n ¼ x=l; �w ¼ w=l; s ¼ x0t; �h ¼ h=T 0; �q ¼ l2q
kcT 0

; ð9Þ
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where x0 is the reference frequency. The coupled governing equations of thermal actuator, Eqs. (1) and (7), in
dimensionless form respectively become
B1

o4 �w

on4
þ B2x

2
0

o2 �w
os2
¼ B3

o2�h

on2
;

o2�h

on2
þ �q ¼ ðP 1 þ P 2Þ

o�h
os
� P 3

o3 �w

on2
os
; ð10a; bÞ
where
B1 ¼
EcIc

l
; B2 ¼ mcl

3; B3 ¼ bT 0; P 1 ¼
qcccl

2x0

kc
; P 2 ¼

j1l2x0

kc
; P 3 ¼

j2lx0

kcT 0

: ð11Þ
The boundary conditions of �w and �h are �wjn¼0 ¼ 0, o�w
on

���
n¼0
¼ 0, o2 �w

on2

���
n¼1
¼ 0, o3 �w

on3

���
n¼1
¼ 0, �h

��
n¼0
¼ 0

and o�h
on

���
n¼1
¼ 0.

When the thermal actuator is subjected to a harmonically varying thermal load with the dimensionless fre-
quency X as �q ¼ q�eiXs, �w and �h are also harmonically varying due to the linearity of the thermoelastic prob-
lem, such that �wðn; sÞ ¼ w�ðnÞeiXs and �hðn; sÞ ¼ h�ðnÞeiXs. Here w* can be further expanded by an infinite
complete set of eigenmodes of an undamped freely vibrating cantilever beam as w� ¼

P1
n¼1pnunðnÞ, where

pn and un are the nth undetermined coefficient and the nth eigenmode which satisfies the same boundary con-
ditions as �w. The eigenmode un also satisfies the orthogonal relations in dimensionless coordinate n (Melrov-
itch, 1986) as
Z 1

0

B1um
d4un

dn4
dn ¼ x2

mdmn;

Z 1

0

B2umundn ¼ dmn; ðm; n ¼ 1; 2; . . .Þ; ð12a; bÞ
where dmn is Kronecker delta and xm is the natural frequency of the cantilever beam. Using the harmonic
forms of �q, �w and �h and the eigenmode expansion of w*, Eq. (10) gives
B1

X1
n¼1

pn

d4un

dn4
� B2X

2x2
0

X1
n¼1

pnun ¼ B3

d2h�

dn2
;

d2h�

dn2
þ q� ¼ iXðP 1 þ P 2Þh� � iXP 3

X1
n¼1

pn

d2un

dn2
: ð13a; bÞ
From Eq. (13b), the solution of h* can be obtained as
h� ¼ a1er1n þ a2e�r1n � iq�

XðP 1 þ P 2gÞ
þ P 3

P 1 þ P 2

X1
n¼1

pn

d2un

dn2
; ð14Þ
where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iXðP 1 þ P 2Þ

p
and a1 and a2 are two undetermined coefficients.

Substituting Eq. (14) into Eq. (13a), multiplying Eq. (13a) by um(m = 1,2, . . .) and integrating it over the
interval 0 6 n 6 1, an infinite set of equations can be generated. These equations can be further simpli-
fied using the orthogonal relations of Eq. (12). Furthermore, two thermal boundary conditions of �h are
applied to h* in Eq. (14). These coupled equations can be combined and written in a matrix form as
WC = F, where
W ¼

x2
1 � x2

0X
2 þ H 11 0 � � � 0 K11 K21

0 x2
2 � x2

0X
2 þ H 22 � � � ..

.
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..

. ..
. . .

.
0 ..

. ..
.

0 0 � � � x2
m � x2

0X
2 þ H mm K1m K2m

M1 M2 � � � Mm r1er1 �r1e�r1

N 1 N 2 � � � Nm 1 1

2
666666666666664

3
777777777777775

; ð15Þ

C ¼ p1 p2 � � � pm a1 a2½ �T; F ¼ 0 � � � 0 iq�

XðP 1þP 2Þ

h iT

; ð16Þ
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with
Table
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Young
Poisso
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Coeffic
Therm
Specifi
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P 3
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0
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d4un

dn4
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x2
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1

Z 1

0
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K2m ¼ �B3r2
1

Z 1

0

ume�r1ndn; Mm ¼
P 3

ðP 1 þ P 2Þ
d3um

dn3

����
n¼1

; Nm ¼
P 3

ðP 1 þ P 2Þ
d2um

dn2

����
n¼0

: ð18Þ
By solving WC = F, the coupled responses of the temperature and deflection can be determined.
When the thermoelastic coupling term in Eq. (13b) is not taken into account, the coupled problem is sep-

arated into two problems which can be solved consecutively. The first to be solved is the problem of conven-
tional heat conduction. The uncoupled dimensionless temperature satisfying the thermal boundary conditions
of �h can then be obtained as
h� ¼ iq�ðer2n þ e2r2�r2n � e2r2 � 1Þ
XP 1ðe2r2 þ 1Þ ; ð19Þ
where r2 ¼
ffiffiffiffiffiffiffiffiffiffi
iXP 1

p
. Substituting Eq. (19) into Eq. (13a), the calculated temperature can be seen as an external

load to the cantilever. By multiplying Eq. (13a) with um(m = 1,2, . . .), integrating it over the interval 0 6 n 6 1,
and further using the orthogonal relations of Eq. (12), the undetermined coefficients pm(m = 1,2, . . .) can be
obtained. The uncoupled dimensionless deflection is therefore
w� ¼
X1
m¼1

�Rmq�um

ðx2
m � x2

0X
2Þðe2r2 þ 1Þ

; ð20Þ
where Rm ¼ B3

R 1

0
umðer2n þ e2r2 e�r2nÞdn.

Considering the free vibration of the thermal actuator, in which there is no exciting thermal load in
WC = F. In this case, the dimensionless coupled eigenfrequency X can be determined by solving the determi-
nant as jWj = 0. The calculated eigenfrequency is expected to be in a complex form, in which the real part
Re(X) gives the new natural frequency and the imaginary part Im(X) indicates the attenuation of the free
vibration. The influence of the thermoelastic effect for each eigenmode can be quantified by the relative res-
onant frequency shift defined by Dm ¼ ReðXÞ�xm

xm
, and the energy dissipation measured by the quality factor

as Q ¼ 2 ReðXÞ
ImðXÞ

��� ���.
4. Results and discussions

We consider a thermal bimorph actuator made of aluminum and polysilicon. Layers 1 and 2 in the above
model denote aluminum and polysilicon, respectively. The thermo-mechanical properties of aluminum and
polysilicon are listed in Table 1. The dimensions of the beam are l = 500 lm, b = 20 lm, h1 = 2 lm and h2 =
2 lm, respectively. Since the excitation frequency of the thermal load is within the range of the first few
eigenmodes, the infinite system of the eigenmode expansion of w* can then be truncated as a finite system by
selecting only the lowest few eigenmodes. We choose the superposition of the first three eigenmodes and
denoted as w� ¼

P3
n¼1pnun. The eigenmodes and the associated natural frequencies for a cantilever beam

are already derived by Melrovitch (1986). The first three natural frequencies are xm ¼ c2
m

ffiffiffiffiffiffiffi
EcIc

mcl4

q
(with
1
o-mechanical properties of bimorph materials used in the simulation

Aluminum Polysilicon

’s modulus (GPa), E 69 150
n’s ratio, m 0.334 0.226
y (kg/m3), q 2692 2330
ient of thermal expansion (1/K), a 23 · 10�6 2.33 · 10�6

al conductivity (W/mK), k 235 41
c heat (J/kg K), c 900 754
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m = 1,2,3; c1 = 1.875, c2 = 4.694 and c3 = 7.856). The fundamental frequency of the cantilever beam is chosen
as the reference frequency as x0 = x1. The first three eigenmodes normalized by Eq. (12b) can be given as
Fig. 2.
dimen

Fig. 3.
of dim
um ¼ dmf½sinðcmÞ � sinhðcmÞ�½sinðcmnÞ � sinhðcmnÞ� þ ½cosðcmÞ þ coshðcmÞ�½cosðcmnÞ � coshðcmnÞ�g; ð21Þ
where dm = cm/[sin(cm) � sinh(cm)] (with m = 1,2,3; c1 = 1.036 · 108, c2 = 1.437 · 108 and c3 = 1.41 · 108).
Using the first three eigenmodes and the associated natural frequencies, the coupled and uncoupled fre-

quency responses of the temperature and deflection at the free end of the beam can be simulated by solving
WC = F and directly using Eqs. (19) and (20). The load–deflection and load–temperature responses are plot-
ted in Figs. 2 and 3 respectively for the frequency range of the selected eigenmodes.

The nearly coinciding plots in Figs. 2 and 3 show the weak thermoelastic coupling for the example of alu-
minum–polysilicon thermal bimorph actuator. It also shows that due to the three pole frequencies in the para-
metric uncoupled model of Eq. (20), the deflection responses at resonance cannot be simulated. However, the
responses around the resonance frequencies can be simulated by using the coupled model, and can be further
quantified by first solving jWj = 0 for the complex eigenfrequencies and then calculating the resonant fre-
quency shift and the Q for each eigenmode. The calculated results are listed in Table 2, indicating that the
relative resonant frequency shifts are shifted downward in the order of 10�3 and the Q’s are in the range of
103–105. Considering the air damping which is considered as a predominant damping source due to the relative
large surface area to volume ratio of microstructures, its mechanism can be characterized into three regions,
intrinsic, molecular and viscous regions, according to the ambient air pressure (Newell, 1968). Air damping in
the intrinsic region is negligible compared to other damping sources such as internal friction and surface effects
(Yasumura et al., 2000), whereas in the other two regions it becomes more dominant. In the work of Newell
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Table 2
Relative resonant frequency shifts and quality factors for each eigenmode in resonance

Mode number Relative resonant frequency shift Quality factor

1 �1.5 · 10�3 6.07 · 103

2 �1.2 · 10�3 3.57 · 104

3 �1.3 · 10�3 1.12 · 105

Table 3
Relative resonant frequency shifts and quality factors caused by air damping, and their corresponding ranges of the air pressure P (torr)

Intrinsic Molecular Viscous

Quality factor (Newell, 1968) 4 · 103(0.1 6 P 6 1) 4 · 103
6 Q 6 2 · 102 (1 6 P6 10) 2 · 102 (10 6 P 6 105)

Relative resonant frequency
shift (Zhang et al., 2003)

n/a n/a 610�5
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(1968), the approximate Q’s with corresponding air pressure ranges for microstructure with length/thick-
ness = 100 and width = 25 lm, which is geometrically similar to the thermal actuator discussed in this paper,
are listed in Table 3. Comparing to the results in Table 2, it indicates that the air damping really is the dom-
inant factor on the Q at a relative low vacuum level (P1 torr). In the intrinsic region, the Q of air damping is
close to that of the fundamental eigenmode. However, the Q of 2 · 105 for microstructures with different
geometries and under the pressure level in the intrinsic region (67.5 · 10�3 torr) has been observed experimen-
tally (Blom et al., 1992). Therefore, to achieve the high Q performance for a thermal actuator operating in the
resonant mode (Schweizer et al., 2000), a proper vacuum encapsulation is needed obviously. The intrinsic vac-
uum level controlled within is independent of geometry and may be determined empirically (Newell, 1968;
Blom et al., 1992). Also following the analytical analysis of the air damping in the viscous region (Zhang
et al., 2003), the caused maximum resonant frequency shift is listed in Table 3, indicating that the frequency
shift of thermoelastic coupling is more significant than that of air damping. Although the frequency shifts in
other pressure regions are not investigated, special attention is still suggested to be paid on this phenomenon
for frequency-agile requirement in the sensing application of the thermal bimorph actuator at atmospheric
condition (Emmenegger et al., 1998). In the analytical analysis of this paper, it is also worth noting that
the dynamic characteristic of thermal actuators is dominated by the first-order characteristic of the heat con-
duction. This explains the decreasing magnitude in the calculated result of load–deflection shown in Fig. 3 as
the driving frequency increases.

5. Conclusions

A dynamic coupled model for a thermal bimorph actuator has been developed and described in this paper.
The frequency responses under a harmonically varying thermal load are simulated using the method of eigen-
mode expansion. For a typical example of an aluminum–polysilicon thermal bimorph actuator, the effects of
thermoelastic coupling on the resonant frequencies and the Q’s are studied and compared to the effects of air
damping. It shows that the resonant frequencies due to the thermoelastic coupling are generally shifted down-
ward with the order larger than that of air damping. Also only under high vacuum level, the influence of ther-
moelastic coupling on the Q could be more significant than that of air damping. Thus a proper vacuum
encapsulation is needed for the high Q requirement of the thermal actuator in the resonant mode. Based
on this theoretical model, the thermo-mechanical behavior of a thermal actuator is investigated, and the
obtained results provide insights which enable and facilitate further optimization of the dynamic characteris-
tics of thermal actuators.
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