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Fibrous composites of piezoelectric and piezomagnetic
phases

Hsin-Yi Kuo1∗ and Kaushik Bhattacharya2

1Department of Civil Engineering,
National Chiao Tung University,

Hsinchu 30010, Taiwan
2Division of Engineering and Applied Science,

California Institute of Technology, Pasadena, CA 91125, USA

Abstract

We propose a theoretical framework for evaluation of magnetoelectroelastic poten-
tials in a fibrous composite with pizoelectric and piezomagnetic phases, motivated by
the technological desire for materials with large magnetoelectric coupling. We show
that the problem with transversely isotropic phases can be decomposed into two inde-
pendent problems, plane strain with transverse electromagnetic fields and anti-plane
shear with in-plane electromagnetic fields. We then consider the second problem in
detail, and generalize the classic work of Lord Rayleigh [1] to obtain the electrostatic
potential in an ordered conductive composite and its extension to a disordered system
by Kuo and Chen [2] to the current coupled magnetoelectroelastic problem. We use
this method to study BaTiO3-CoFe2O4 composites and provides insights into obtaining
large effective magnetoelectric coefficient.

1 Introduction

A variety of technological applications including magnetic field sensors, magnetically con-
trolled opto-electric devices and magneto-electric memories have motivated the study of
magneto-electric coupling in materials and composites [3, 4]. The magneto-electric coupling
was predicted by Landau and Lifshitz [5] and observed by Astrov [6] and by Rado and Folen
[7] over fifty years ago. The coupling is weak in monolithic materials, and this has moti-
vated the study of composites of piezoelectric and piezomagnetic media. The idea is that
the applied magnetic field causes a deformation of the piezomagnetic material which in turn
induces a deformation in the piezoelectric material thereby inducing an electric field.

The performance of a piezomagnetic/piezoeletric composite depends on the micro-geometry
of the phases since one has to provide effective strain coupling and avoid electromagnetic

∗Corresponding author. E-mail: hykuo@mail.nctu.edu.tw
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shielding. This has motivated a number of micromechanical models to predict the effective
moduli of multiferroic composites. For example, Nan [8] and Huang and Kuo [9] used the
Green’s function method to study a fibrous composite consisting of BaTiO3 and CoFe2O4.
For such transversely isotropic fibrous composites, Benveniste [10] derived exact connections
among effective magnetoelectroelastic moduli using the uniform field concept. Particulate
composites were investigated by Harshé et al. [11] using a cubic model and by Lee et al.
[12] using finite element method. Eshelby’s approach and the mean field Mori-Tanaka model
have been generalized to multiferroic composites by Li and Dunn [13, 14], Huang [15], Li [16],
Wu and Huang [17], Huang and Zhou [18] and Srinivas et al. [19]. Frequency dependence of
magnetoelectric coefficients of multiferroic laminates was studied by Bichurin et al. [20, 21].
Nan et al. [4] provide an extensive review of the literature and the state of the art.

However, much of this work uses approximate methods and models based on single in-
clusions, and focus on the effective properties of composites with somewhat uncontrolled
microstructure. There is a need for exact methods that can be used to evaluate these ap-
proximate methods. Further, a method that provides the detailed fields is useful to provide
insights for developing better microstructures and more complex processes like dielectric
breakdown and failure [22]. Similarly, detailed statistical methods require the fields asso-
ciated with multiple particles [23]. Furthermore, recent advances in synthesis allows the
fabrication of composites with highly controlled microstructure. For example, Ren et al.
[24] have recently used a diblock copolymer precursors to produce a self-assembled hexago-
nal array of CFO nanofibers in a PZT matrix. Therefore, there is a need for obtaining the
fields and properties of composites with controlled microstructure. All of these motivate the
current work.

In a classic work, Lord Rayleigh [1] computed the electric potential for a conducting
composite consisting of a periodic array of inclusions (cylinders and spheres). This was
extended to arbitrary arrangements by Kuo and Chen [2, 25]. These works concern single
fields. In this paper, we generalize this methodology to multiple coupled fields, specifically
electrostatic, magnetostatic and mechanical.

We consider a composite medium made of piezoelectric and piezomagnetic phases ar-
ranged in a microstructure consisting of parallel cylinders in a matrix in Section 2. We show
in Section 2.1 that if the phases are transversely isotropic, then the general problem can be
decomposed into two independent problems, plane strain with transverse electromagnetic
fields and anti-plane shear with in-plane electromagnetic fields. We then focus on the latter
problem for much of paper. We notice in Section 2.2 that the coupling between the fields
occurs only through the interface conditions. We exploit this in Section 2.3 to obtain a repre-
sentation of the solution. The basic idea is to follow Kuo and Chen [2] and expand each field
in each medium in a series. We consider periodic arrays in Section 3. We obtain effective
properties in Section 4, and significantly show that the macroscopic properties depend solely
on a single expansion coefficient (amongst the infinite).

This methodology is illustrated in Section 5 using composites of BaTiO3 and CoFe2O4.
We choose this material pair for its practical potential and also because it enables comparison
with previous work. We observe that the composite medium has a nontrivial magnetoelectric
coupling even though the individual components do not. Further, we observe significant
difference between composites with BTO fibers in a CFO matrix and its complement.

We briefly comment on the first problem – the plane elasticity with transverse electro-
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Figure 1: The cross-section of the fiber composite.

magnetic fields – in Section 6 and show the opportunity for extremely large magnetoelectric
coupling.

2 Arbitrary arrangement of circular cylinders

2.1 General setting

Let us consider an infinite medium R3 containing N arbitrarily distributed, parallel and
separated circular cylinders. The domain of the pth circular cylinder is denoted Vp, p =
1, 2, · · · , N,and the remaining matrix is denoted Ωm. We assume that the cylinders and
the matrix are made of distinct phases1. Further, we assume that each phase is either
piezoelectric or piezomagnetic. The constitutive laws for the rth phase is given by (see
Alshits et al. [26], for example)

σ(r) = C(r)ε(r) − eT (r)E(r) − qT (r)H(r),

D(r) = e(r)ε(r)+κ(r)E(r)+λ(r)H(r), (1)

B(r) = q(r)ε(r)+λ(r)E(r)+µ(r)H(r),

where σ, D, B, ε, E and H are the stress, electric displacement, magnetic flux, strain, electric
field, and the magnetic field respectively. C is the fourth-order tensor of elastic moduli, and
κ , µ and λ are the second order tensors of dielectric permittivity, magnetic permeability
and magnetoelectric coefficients.

Now assume that each phase is transversely isotropic (i.e., has 6mm symmetry) with the
symmetry axes oriented with the cylinders. We introduce a Cartesian coordinate system
with the x− and y− axes in the plane of the cross-section and z− along the axes of the
cylinders. In the Voigt notation the properties C, e, q, κ, µ, and λ are given by Nye [27]:

1Later we shall specialize to a two-phase situation where all the cylinders belong to one phase and the
matrix to another.
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C(r) =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66



(r)

,

e(r) =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

(r)

,

q(r) =

 0 0 0 0 q15 0
0 0 0 q15 0 0
q31 q31 q33 0 0 0

(r)

,

κ(r)=

 κ11 0 0
0 κ11 0
0 0 κ33

(r)

, µ(r)=

 µ11 0 0
0 µ11 0
0 0 µ33

(r)

, λ(r)=

 λ11 0 0
0 λ11 0
0 0 λ33

(r)

.

(2)
Consistent with known material properties, the magnetoelectric coupling coefficients λ(r) is
negligible though we do not explicitly use this fact here.

To obtain the effective properties of this medium, we need to solve for equilibrium equa-
tions

∇ · σ = 0, ∇ ·D = 0, ∇ ·B = 0, (3)

along with the analogous interfacial conditions and appropriate boundary conditions.
It is shown in the appendix, that for this cylindrical geometry and transversely isotropic

material symmetry, the problem splits naturally into two independent problems:

• Plane strain and transverse electromagnetic fields

u =

 ux (x, y)
uy (x, y)

0

 , E =

 0
0

Ez (x, y)

 , H =

 0
0

Hz (x, y)

 , (4)

• Anti-plane shear and in-plane electromagnetic fields

u =

 0
0

uz (x, y)

 , E =

 Ex (x, y)
Ey (x, y)

0

 , H =

 Hx (x, y)
Hy (x, y)

0

 . (5)

In other words, the solution to any general problem can be obtained by the superposition of
the two problems above. Therefore, it is sufficient to treat each of these problems. In this
work, we largely focus on the second, i.e., anti-plane shear with in-plane electromagnetic
fields with brief comments on the first in Section 6.
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2.2 Anti-plane shear with in-plane electromagnetic fields

We consider

ux = uy = 0, uz = w (x, y) ,

ϕ = ϕ (x, y) ,

ψ = ψ (x, y) , (6)

where ux, uy, uz are the mechanical displacements along the x−, y−, and z− axes, and ϕ
and ψ are the electric and magnetic potentials, respectively. The constitutive laws of the
constituents and of the composite for the non-vanishing fields can be recast in the form σzj

Dj

Bj

 =

 C44 e15 q15

e15 −κ11 −λ11

q15 −λ11 −µ11

 εzj
−Ej
−Hj

 (7)

where j denotes the component x, y. We can write this compactly as

Σj
Φ = LΦΨZ

j
Ψ, Φ,Ψ = w,ϕ, ψ, j = x, y, (8)

where

Σj =

 σzj
Dj

Bj

 , L =

 C44 e15 q15

e15 −κ11 −λ11

q15 −λ11 −µ11

 , Zj =

 εzj
−Ej
−Hj

 . (9)

The shear strains εzx and εzy, in-plane electric fields Ex and Ey, and in-plane magnetic fields
Hx and Hy can be derived from the gradient of elastic displacement, electric potential, and
magnetic potential as follows:

εzx =
∂w

∂x
, εzy =

∂w

∂y
,

Ex = −∂ϕ
∂x
, Ey = −∂ϕ

∂y
,

Hx = −∂ψ
∂x

, Hy = −∂ψ
∂y
. (10)

In the absence of body force, electric charge density and electric current density, the
equilibrium equations are given by

∂σzx
∂x

+
∂σzy
∂y

= 0,

∂Dx

∂x
+
∂Dy

∂y
= 0,

∂Bx

∂x
+
∂By

∂y
= 0. (11)
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Substitution of Eq. (8) into Eq.(11) yields,

C44∇2w + e15∇2ϕ+ q1552 ψ = 0,

e15∇2w − κ11∇2ϕ− λ1152 ψ = 0,

q15∇2w − λ11∇2ϕ− µ1152 ψ = 0, (12)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 represents the two-dimensional Laplace operator for the var-
ialbe x and y. Since L is a nonsingular matrix, generically we can decouple (12) into three
independent Laplace equations,

∇2w = 0, ∇2ϕ = 0, and ∇2ψ = 0 (13)

in the interior of each phase. In other words, the three fields – displacement, electrostatic
potential and magnetostatic potential – are completely decoupled in the interior of each
phase.

In addition to these differential equations, we have to use interface and boundary condi-
tions. We assume that the interfaces are perfectly bonded, and therefore the fields satisfy

[[Σjnj]] = [[(LZj)nj]] = 0, [[Zjtj]] = 0 (14)

where [[·]] denotes the jump in some quantity across the interface, n is the unit normal to
the interface and t is the unit tangent to the interface, and the repeated index j denotes
summing over the components x, y. Since L is different in the two phases, the fields w,ϕ
and ψ are generally coupled by the interface equations.

2.3 Representation of the solution

In the anti-plane shear problem, we showed above that the fields are decoupled in the interior
of every phase, but are coupled at the interfaces. Therefore, we may follow Kuo and Chen
[2] and use a series expansion for each field in the interior of each phases and then obtain
the coefficients by enforcing the interface and boundary conditions.

We consider a situation where the composite is subjected to a macroscopically uniaxial
loading

wext = εzxx, ϕext = −Exx, ψext = −Hxx, (15)

for constants εzx, Ex and Hx. We may rewrite this in short as

Φext = Z
x

Φx, (16)

where Φ represents the appropriate field – the anti-plane deformation w, electric potential
ϕ, or magnetic potential ψ – and Z

x

Φ the corresponding applied field – εzx, −Ex, or −Hx.
We rewrite the governing equation, Eq. (13) in polar coordinates (r, θ) ,

52Φ =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
= 0, (17)

where Φ can be w,ϕ or ψ. The potential field for the pth circular cylinder and its surrounding
matrix can be expanded with respect to its center Op as

Φ
(p)
i = C

Φ(p)
0 +

∞∑
n=1

(
CΦ(p)
n rnp cosnθp + FΦ(p)

n rnp sinnθp
)

(18)
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for the inclusion, and

Φ(p)
m = A

Φ(p)
0 +

∞∑
n=1

[(
AΦ(p)
n rnp +BΦ(p)

n r−np
)

cosnθp +
(
DΦ(p)
n rnp + EΦ(p)

n r−np
)

sinnθp
]

(19)

for the matrix. Here (rp, θp) is the local polar coordinate centered at the origin of the pth
circle, the subscripts i and m denote the inclusion and matrix, respectively. The coefficients
A

Φ(p)
n , B

Φ(p)
n , · · · , FΦ(p)

n are some unknowns to be determined. The superscripts p in (18) and
(19) indicate that the fields that are expanded with respect to the pth cylinder center.

We recall the interface conditions (14) which we rewrite as

Φ(p)
m

∣∣
∂Vp

= Φ
(p)
i

∣∣∣
∂Vp

, (ΣΦ)(p)
m · np

∣∣∣
∂Vp

= (ΣΦ)(p)
i · np

∣∣∣
∂Vp

(20)

where
Σw = (σzx, σzy) , Σϕ = (Dx, Dy) , Σψ = (Bx, By) , (21)

∂Vp : rp = ap denotes the interface between the matrix and the pth circular cylinder, and np

is the unit outward normal of the interface ∂Vp.
Using the orthogonality properties of trigonometric functions, the conditions (20) provide

a(p)
n = a−2n

p T(p)b(p)
n , c(p)

n = a−2n
p

(
T(p) + I

)
b(p)
n , (22)

d(p)
n = a−2n

p T(p)e(p)
n , f (p)

n = a−2n
p

(
T(p) + I

)
e(p)
n , (23)

and A
Φ(p)
0 = C

Φ(p)
0 , where

a(p)
n =

 A
w(p)
n

A
ϕ(p)
n

A
ψ(p)
n

 , b(p)
n =

 B
w(p)
n

B
ϕ(p)
n

B
ψ(p)
n

 , c(p)
n =

 C
w(p)
n

C
ϕ(p)
n

C
ψ(p)
n

 , (24)

d(p)
n =

 D
w(p)
n

D
ϕ(p)
n

D
ψ(p)
n

 , e(p)
n =

 E
w(p)
n

E
ϕ(p)
n

E
ψ(p)
n

 , f (p)
n =

 F
w(p)
n

F
ϕ(p)
n

F
ψ(p)
n

 , (25)

T(p) =
(
L(m) − L(p)

)−1 (
L(m) + L(p)

)
, (26)

and I is the 3× 3 identity tensor.
We now need to relate the solutions to the applied boundary conditions. We do so by

applying the Green’s second identity [28] to the matrix domain Ωm. This gives∫
Ωm

[
G (x; x′)∇′2Φm (x′)− Φm (x′)∇′2G (x; x′)

]
dA′

=

∫
∂Ωm

[G (x; x′)∇′Φm (x′)− Φm (x′)∇′G (x; x′)] · n′ds′, (27)

where the prime ′ denotes the operation in reference to the x′ coordinate, n′ is the outward
unit normal to the matrix’s boundary ∂Ωm, dA

′ represents the area element for the x′
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coordinate, ds′ is the differential arc length. Here G (x; x′) is the free-space Green’s function
for Laplace operator satisfying ∇2G (x; x′) = −δ (x− x′) , where δ (x− x′) is the Dirac-delta
distribution. Following the procedure in Kuo and Chen [2], it can be shown that Eq. (27)
yields

Φm (x) = Φext (x) +
N∑
l=1

∞∑
m=1

(
BΦ(l)
m r−ml cosmθl + EΦ(l)

m r−ml sinmθl
)
. (28)

This is the consistency equation which relates the external applied fields to the local potential
expansions.

For convenience, we introduce the complex variable notation z = x + iy for x = (x, y)
with respect to the matrix and zp for the cylinder centered at Op. Now, equation (28) can
be rewritten as

Φm (x) = Z
x

Φz +
N∑
l=1

∞∑
m=1

[
BΦ(l)
m Re (z − zl)−m − EΦ(l)

m Im (z − zl)−m
]
, (29)

where Z
x

Φ represents the corresponding applied field εzx, −Ex, or −Hx. Note that the field
identity (29) is written based on different coordinates. To proceed, we shift the origin of
the expansions (29) to a fixed point, say zp. For point z satisfying the inequality |z − zp| <
|zp − zl| , we can then expand the term (z − zl)−m using the binomial theorem as [28]

(z − zl)−m =
∞∑
s=0

(−1)s
(
m+ s− 1

s

)
(z − zp)s

(zp − zl)m+s . (30)

Introducing (30) into (29), we have the expansion

Φ(p)
m, near (x) = Z

x

ΦRezp + Z
x

ΦRe (z − zp)

+
∞∑
m=1

[
BΦ(p)
m Re (z − zp)−m − EΦ(p)

m Im (z − zp)−m
]

+
∑
l 6=p

∞∑
s=0

∞∑
m=1

(−1)s
(
m+ s− 1

s

)
×
[
BΦ(l)
m Re

(z − zp)s

(zp − zl)m+s − E
Φ(l)
m Im

(z − zp)s

(zp − zl)m+s

]
(31)

valid for the domain

|z − zp| < min (|zp − zl|) , for l = 1, 2, · · · , N, p 6= l. (32)

Since the expansion (31) are valid for points satisfying the condition (32), which generally
applies to points near the pth inclusion, this expansion will be referred to as a near-field
expansion, denoted as Φ

(p)
m, near (x). Further, since x lies in the matrix domain, Equations

8



(31) and (19) should be identical. This provides the condition

A
Φ(p)
0 +

∞∑
n=1

[
AΦ(p)
n Re (z − zp)n +DΦ(p)

n Im (z − zp)n
]

= Z
x

ΦRezp + Z
x

ΦRe (z − zp) +
∑
l 6=p

∞∑
s=0

∞∑
m=1

(−1)s
(
m+ s− 1

s

)
×[

BΦ(l)
m Re

(z − zp)s

(zp − zl)m+s − E
Φ(l)
m Im

(z − zp)s

(zp − zl)m+s

]
. (33)

Taking the real part and the imaginary part of (33), we find the two conditions

AΦ(p)
n −

∑
l 6=p

∞∑
m=1

(−1)n
(
m+ n− 1

n

)[
BΦ(l)
m Re (zp − zl)−m−n − EΦ(l)

m Im (zp − zl)−m−n
]

= Z
x

ΦRezpδn,0 + Z
x

Φδn,1, (34)

and

DΦ(p)
n +

∑
l 6=p

∞∑
m=1

(−1)n
(
m+ n− 1

n

)[
BΦ(l)
m Im (zp − zl)−m−n + EΦ(l)

m Re (zp − zl)−m−n
]

= 0.

(35)
Equations (34), (35), (22)1, and (23)1 constitute an infinite set of linear algebraic equations.
Upon appropriate truncations of the expansion terms, we can determine the expansion co-
efficients A

Φ(p)
n , B

Φ(p)
n , · · · , FΦ(p)

n .

3 Periodic arrays

The analysis carried out in the previous section for the arbitrary system with a finite number
of cylinders may also be adapted for the case of a periodic array of cylinders. There are five
possible ways of packing cylinders in regular arrays in two dimensions (see [29], for instance).
Here we concentrate on the two lattices, rectangular and hexagonal. Further, we sketch the
outline of the derivation focussing on the differences from the previous situation. Finally, we
limit ourselves to the case of anti-plane shear with in-plane electromagnetic fields.

Let us first introduce a Cartesian coordinate system (x, y) positioned at the center O of
one of the cylinders in a square or a hexagonal array, as shown in Figure 2. The radius of the
cylinders is a and we may assume unit distance between the centers of neighboring cylinders
without loss of generality. Uniform intensities Ex and Hx are applied along the positive x
axis, and an anti-plane shear deformation εzx is applied out of the xy plane. In terms of
polar coordinates, the general solution has the admissible form

Φi = CΦ
0 +

∞∑
n=1

CΦ
n r

n cosnθ (36)

for r < a, and

Φm = AΦ
0 +

∞∑
n=1

(
AΦ
nr

n +BΦ
n r
−n) cosnθ (37)
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(a) (b)

Figure 2: A schematic representation of a unit cell (a) A square array, (b) A hexagonal array.

for r > a. The coefficients AΦ
n , B

Φ
n , and CΦ

n are unknown constants to be determined from
the interface and boundary conditions. Note that the sine terms that would be present in
a general expansion are missing since we impose a uniaxial loading along the x− direction.
Further, Φ (r, θ) has to be antisymmetric with respect to the y− axis, and thus only terms
with an odd number are included. Finally, for a hexagonal lattice, all terms in which n is a
multiple of three are disallowed [30].

Analogous to (22), the continuity conditions at the interface will give constraints (22)
between the coefficients.

Next, imposing the periodicity conditions analogous to imposing the boundary condition
we did to derive (34), leads to a generalized Rayleigh’s identity

AΦ
n +

∞∑
m=1

(
m+ n− 1

n

)
Sm+nB

Φ
m = Z

x

Φδn,1. (38)

Here the quantities

Sm =
∑
l 6=o

Rez−ml (39)

are the lattice sums characterizing the geometry of the periodic structure, and zl is the center
of the lth cylinder when measured at the central point O. The index l runs over all cylinders’
centers underlying the periodic array except the central one. A list of non-zero normalized
lattice sums for square and hexagonal arrays can be found in Berman and Greengard [31].

Equations (38) and (22)1 constitute an infinite set of linear algebraic equations. Upon
appropriate truncations of the expansion terms, we can determine the expansion coefficients
AΦ
n , B

Φ
n , and CΦ

n .

10



4 Effective moduli

We are interested in the effective behavior for a situation where we have a large number of
cylinders. The effective material properties are defined in terms averaged fields,〈

Σj
〉
≡ L∗

〈
Zj
〉
, (40)

where the angular brackets denote the average over the representative volume element (unit
cell in the case of periodic composites)

〈
Σj
〉

=
1

V

∫
V

Σj dx,
〈
Zj
〉

=
1

V

∫
V

Zj dx, (41)

and L∗ denotes the effective magnetoelectroelastic parameters of the composite.
We can compute the average Zj by noting that each component is a gradient and applying

the divergence theorem. We obtain
〈Zx

Φ〉 = Z
x

Φ. (42)

Next, to find 〈Σx
Φ〉, we again use the divergence theorem and the equilibrium condition

(including the interface conditions) to obtain:

〈Σx
Φ〉 =

1

V

∫
V

Σx
Φ dx =

1

V

∫
V

∇ · (xΣΦ) dx =
1

V

∫
∂V

x (ΣΦ)m · n ds, (43)

where ΣΦ is defined in (21). We then use the expansions (19) for the fields to obtain

1

V

∫
∂V

x (ZΦ)m · n ds = Z
x

Φ − 2
N∑
l=1

a−2
l flB

Φ(l)
1 , (44)

where
Zw = (εzx, εzy) , Zϕ = − (Ex, Ey) , Zψ = − (Hx, Hy) , (45)

and fl is the volume fraction of phase l defined as fl = πa2
l /V for square arrays and is

2π√
3
a2
l /V for hexagonal arrays. Putting (43) and (44) together, and recalling the constitutive

relation (7) for the matrix, we obtain 〈σzx〉〈Dx〉
〈Bx〉

 =

 C44 e15 q15

e15 −κ11 −λ11

q15 −λ11 −µ11

(m)
 εzx − 2

∑N
l=1 a

−2
l flB

w(l)
1

−Ex − 2
∑N

l=1 a
−2
l flB

ϕ(l)
1

−Hx − 2
∑N

l=1 a
−2
l flB

ψ(l)
1

 . (46)

Putting together (40) and (46) and noting that the coefficients BΦ
1 depend linearly on the

applied field Z
x

Φ, we obtain set of equations for the effective property L∗. We can determine
this by applying different loading combinations between εzx, Ex and Hx.
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Table 1: Material parameters of BaTiO3 and CoFe2O4 [14]

Property BaTiO3 CoFe2O4

C44 (N/m2) 43× 109 45.3× 109

e15 (C/m2) 11.6 0
q15 (N/Am) 0 550
κ11 (C2/Nm2) 11.2× 10−9 0.08× 10−9

µ11(Ns2/C2) 5× 10−6 -590× 10−6

λ11(Ns/VC) 0 0

5 Numerical results and discussion

In order to have a better understanding for the theoretical results above, we perform a
numerical computation for a two-phase transversely isotropic piezoelectric-piezomagnetic
composite with 6mm material symmetry about the fiber axis. Specifically we consider a
composite of BaTiO3 and CoFe2O4 which has been studied by other researchers. We consider
square and hexagonal arrays, and both case, i.e., both BTO fibers in a CFO matrix and CFO
fibers in a BTO matrix. The independent material constants of these constituents are given
in Table I, where the xy plane is isotropic and the unique axis is along the z− direction.
Note that in both materials magnetoelectric coefficients are zero, i.e. λ11 = 0.

We begin with a composite of BTO fibers in a CFO matrix. Figure 3 shows the effective
elastic, dielectric, magnetic, piezoelectric, piezomagnetic and magnetoelectric moduli for this
composite. They vary nonlinearly with volume fraction, and the curves stop at f = π/4 and
f = π/2

√
3 for the square and hexagonal arrays respectively, when the inclusions touch. The

magnetoelectric coefficient is non-zero for every (non-zero) volume fraction even though this
coefficient is zero for each component. This reflects the coupling of the various fields across
the boundary. Further, it initially increases with increasing volume fraction, then reaches a
maximum before dropping just as the fibers are close to touching. To gain insight into this
behavior, we plot the the contours of displacement, electric potential and magnetic potential
for a square array in Figure 5(a-c) with an applied magnetic field. The magnetic field induces
a mechanical stress in the CFO which in turn results in an electric displacement in the BTO
fiber. The effective electric displacement in the horizontal direction depends on the average
along the vertical direction. Thus, the effective electric displacement depends on the span of
the fiber in the vertical direction. This is why the ME coefficient starts at zero and increases
with volume fraction. The magnetic field is attracted by the BTO (since it has a smaller
magnetic permeability) and thus the scaling deviates from being proportional to the span
and is close to linear initially. Further, as the particles come close to touching, there is very
little CFO to induce stress and thus the ME coefficient drops dramatically.

Finally, Figure 3 also compares the effective moduli with those predicted by Benveniste
[10] who used the composite cylinder assemblage (CCA) which is a mean-field theory. In
CCA, there is no upper limit on the volume fraction since one can have fibers with various
sizes. Still, the overall magnitudes and trends agree well between our periodic and his CCA.

We now turn to the composite of CFO fibers in a BTO matrix. Figure 4 shows the
effective moduli for this composite. Again, magnetoelectric coefficient is non-zero for every

12



(a) (d)

(b) (e)

(c) (f)

Figure 3: Effective moduli of a composite of BTO fibers in a CFO matrix versus BTO fiber
volume fractions (a) Effective elastic modulus, (b) Effective dielectric permittivity, (c) Effec-
tive magnetic permeability, (d) Effective piezoelectric modulus, (e) Effective piezomagnetic
modulus, (f) Effective magnetoelectric coefficient.
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(a) (d)

(b) (e)

(c) (f)

Figure 4: Effective moduli of a composite of CFO fibers in a BTO matrix versus CFO fiber
volume fractions (a) Effective elastic modulus, (b) Effective dielectric permittivity, (c) Effec-
tive magnetic permeability, (d) Effective piezoelectric modulus, (e) Effective piezomagnetic
modulus, (f) Effective magnetoelectric coefficient.
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(non-zero) volume fraction even though this coefficient is zero for each component. However,
in this case it is monotone increasing with a sharp rise as the particles are close to touching.
Figure 5(d-f) show the potential contours for an applied magnetic field. Now, the magnetic
field is expelled by the fibers giving rise to a displacement which deforms the matrix to induce
an electric displacement. The amount of deformation it can cause in the matrix increases
with volume fraction, and this is reflected in the magnetoelectric coeffecient. Further, it
increases dramatically as the particles touch.

We finally turn to the magnetoelectric voltage coefficient, which is the important figure
of merit for magnetic field sensors. It relates the overall electric field that is generated in the
composite when it is subjected to a magnetic field. It combines the coupling and dielectric
coefficients, and is defined by

α∗E11 = λ∗11/κ
∗
11. (47)

Figure 6 shows how this coefficient depends on the volume fraction for the various cases.
Note that there is a qualitative difference between the case of BTO fibers in CFO and its
complement. In the former, the maximum coefficient is for an intermediate volume fraction
of f = 0.35 where α∗E11 = 0.0306 V/cmOe independent of the square or hexagonal geometry.
In contrast, in the case of CFO fibers in the BTO matrix, the maximum is attained as the
fibers begin to touch. These trends are similar to those of the magnetoelectric coefficient
described before, and follow from the same reasons.

6 Plane strain with transverse electromagnetic fields

We briefly discuss the other problem described in (4), and the potential for using it for large
effective magnetoelectric coefficient. Consider a situation where the average normal stress
as well as the average electric displacement along the fibers are zero

〈σzz〉 = 0, 〈Dz〉 = 0. (48)

The constitutive equations (2) specialized to the current setting (see (A.1) and (A.2)) then
implies that

〈C33〉 εzz = −〈C13 (εxx + εyy)〉+ 〈e33〉Ez + 〈q33〉Hz, (49)

〈e33〉 εzz = −〈e31 (εxx + εyy)〉 − 〈κ33〉Ez − 〈λ33〉Hz. (50)

Eliminating εzz between the two equations above, we obtain

〈e33〉
〈C33〉

(−〈C13 (εxx + εyy)〉+ 〈e33〉Ez + 〈q33〉Hz) = −〈e31 (εxx + εyy)〉 − 〈κ33〉Ez − 〈λ33〉Hz,

(51)
or (

〈e33〉2

〈C33〉
+ 〈κ33〉

)
Ez =

〈e33〉 〈C13 (εxx + εyy)〉
〈C33〉

− 〈e31 (εxx + εyy)〉

−
(
〈e33〉 〈q33〉
〈C33〉

+ 〈λ33〉
)
Hz. (52)

15



(a) (d)

(b) (e)

(c) (f)

Figure 5: Potential contours for a square array composite (f = 0.2, εzx = 0, Ex = 0,
Hx = 1C/ms) (a)-(c) BTO fibers embedded in a CFO matrix, (d)-(f) CFO fibers embedded
in a BTO matrix, (a), (d) Vertical displacement (m), (b), (e) Electric potential (V ), (c), (f)
Magnetic potential (C/s). 16



(a) (b)

Figure 6: Effective magnetoelectric voltage coefficient of the composite versus the fiber
volume fraction. (a) BTO fibers in a CFO matrix. (b) CFO fibers in a BTO matrix.

We now assume further that the average planar strain is zero (alternately, we can proceed
exactly the same if the effective planar stress is zero). Then, strain depends linearly on Ez
and Hz, and thus, we can write

〈e33〉 〈C13 (εxx + εyy)〉
〈C33〉

− 〈e31 (εxx + εyy)〉 = AEz +BHz. (53)

A and B depend on the solution of the plane strain homogenization problem. Substituting
(53) into (52), we obtain(

〈e33〉2

〈C33〉
− A+ 〈κ33〉

)
Ez =

(
B − 〈e33〉 〈q33〉

〈C33〉
− 〈λ33〉

)
Hz. (54)

The magnetoelectric voltage coefficient is the ratio of the two terms in parenthesis,

α∗E33 =
B − 〈e33〉〈q33〉〈C33〉 − 〈λ33〉
〈e33〉2
〈C33〉 − A+ 〈κ33〉

. (55)

In particular, we concentrate on the denominator. Notice that only A depends on the
microgeometry and the planar moduli where as the rest of the terms do not. Thus, it
is possible to tune the microgeometry to reduce the denominator to get extremely large
coupling.

We may use the methodology described in this paper to compute A and B. However,
in contrast to anti-plane shear, plane strain elasticity is a vectorial problem and thus the
method is significantly more difficult to implement. This is the topic of current work and
will be presented elsewhere.
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7 Concluding remarks

In summary, we have extended Rayleigh’s formulation on periodic conductive composites
to a magnetoelectroelastic composite consisting of arbitrarily distributed or periodic arrays
of cylinders under anti-plane shear deformation, in-plane electric and in-plane magnetic
intensities. Expressions for the elastic, electric and magnetic potentials for the cylinders
and the matrix are derived, and used to compute the effective moduli. It is shown that the
effective properties solely depend on one particular constant BΦ

1 among the infinite number of
expansion coefficients. Finally, as a practical example, explicit numerical calculations for field
distributions and the magnetoelectric effects in BaTiO3-CoFe2O4 composites are presented
and discussed. This example shows the important difference between the case of BTO fibers
in a CFO matrix from its complement. The present theoretical framework provides a general
guideline for the selection of the best combination with an efficient coupling of piezoelectric
and piezomagnetic properties. It can also provide a rigorous basis against which several
approximate micromechanical models can be compared.
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Appendix

We substitute Eq. (2) into Eq.(1) and obtain
σxx
σyy
σzz
σzy
σzx
σxy

 =


C11εxx + C12εyy + C13εzz
C12εxx + C11εyy + C13εzz
C13εxx + C13εyy + C33εzz

2C44εzy
2C44εzx
2C66εxy

−

e31Ez
e31Ez
e33Ez
e15Ey
e15Ex

0

−

q31Hz

q31Hz

q33Hz

q15Hy

q15Hx

0

 , (A.1)

 Dx

Dy

Dz

 =

 2e31εzx
2e31εzy

e31εxx + e31εyy + e33εzz

+

 κ11Ex
κ11Ey
κ33Ez

+

 λ11Hx

λ11Hy

λ33Hz

 , (A.2)

 Bx

By

Bz

 =

 2q31εzx
2q31εzy

q31εxx + q31εyy + q33εzz

+

 λ11Ex
λ11Ey
λ33Ez

+

 µ11Hx

µ11Hy

µ33Hz

 . (A.3)

Let us consider the displacement, electric and magnetic fields are independent of fiber axis,
z− axis. That is,

uj = uj(x, y), Ej = Ej(x, y), Hj = Hj(x, y), j = x, y, z. (A.4)
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We have
εzz = 0, εzy = uz,y, εzx = uz,x. (A.5)

With the above and the equilibrium equations (3), the problem splits naturally into the two
problems

• Plane elasticity and transverse electromagnetic fields

Constitutive laws:
σxx
σyy
σxy
Dz

Bz

 =


C11εxx + C12εyy
C12εxx + C11εyy

2C66εxy
e31εxx + e31εyy
q31εxx + q31εyy

+


−e31Ez
−e31Ez

0
κ33Ez
λ33Ez

+


−q31Hz

−q31Hz

0
λ33Hz

µ33Hz

 . (A.6)

Equilibrium:

σxx,x + σxy,y = 0,

σxy,x + σyy,y = 0. (A.7)

• Anti-plane shear and in-plane electromagnetic fields

Constitutive laws:
σzx
σzy
Dx

Dy

Bx

By

 =


2C44εzx
2C44εzy
e15εzx
e15εzy
q15εzx
q15εzy

+


−e15Ex
−e15Ey
κ11Ex
κ11Ey
λ11Hx

λ11Hy

+


−q15Hx

−q15Hy

λ11Hx

λ11Hy

µ11Ex
µ11Ey

 . (A.8)

Equilibrium:

σzx,x + σzy,y = 0,

Dx,x +Dy,y = 0,

Bx,x +By,y = 0. (A.9)
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一、參加經過 
美國工程科學學會（SES, Society of Engineering Science）每年固定舉辦力學與材料會議，每

四年則與美國土木工程學會（ASCE, American Society of Civil Engineering）、美國機械工程學

會(ASME, American Society of Mechanical Engineering)聯合舉行。今年恰逢四年一次的聯合會

議，投稿及與會者眾，約六百人次。會議自 6/24 起至 6/27 間於美國 Virginia Tech 舉行，本

人的報告於 6/25 第二場次近中午時舉行，雖然美國東岸與台灣時差恰為 12 小時，當時身心

還是受時差影響，然報告進行順利，也能理解並回答提問。此次會議為美國本土會議，並無

任何參觀觀光行程，純為學術交流與思想激盪。 

 
 
二、心得 
美國工程科學學會力學與材料會議雖屬美國本土地區性會議，然由於規模較小，互動較佳，

國際間微觀材料力學領域內的頂尖學者皆會與會，例如英國劍橋大學的 Willis 教授、以色列

的 de Botten 教授、美國賓州大學的 Ponte Castaneda、美國猶他大學 Chekerv 教授等等。以前

在期刊論文上常常看到這些人的文章，能夠親眼見到這些人，聽他們的口頭報告，感覺非常

特別。這些人雖已在各自的領域永有一定的聲望，然從其與會時的問答、用餐時的交流，仍

能發現其保有研究熱忱與反思能力，並無顯思想上的老態與懶散。期許自己在學術研究上能

和他們一樣開創一新的研究方向，並隨著時間的增加仍能具有熱忱與開放的心胸。 

 
 
三、建議 
此次會議於 Virginia Tech 舉行，然該校地處偏僻，且校地廣大，無論對外或校內交通皆甚為

不便，會議本身雖極具水準，然相關服務支持功能較少，殊為可惜。建議會議主辦單位除考

慮會議品質外，應亦花費心思顧慮交通的便捷性。 
 
四、攜回資料名稱及內容 
1. The 2009 Joint ASCE-ASME-SES Conference on Mechanics and Materials Program 
   會議行程 
2. 隨身碟：會議文章摘要檔案 
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Potential fields of an infinite medium containing arbitrarily positioned 

elliptic cylinders 
 

Hsin-Yi Kuo* 
Department of Civil Engineering, National Chiao Tung University, 

Hsinchu 30010, Taiwan 
 
The transport phenomena of a heterogeneous medium consisting of multiple cylinders embedded in 
a host matrix have been a subject of numerous studies. A large number of these studies focused on 
overall properties of composite materials. In contrast, there have been relatively few studies focused 
on the details of field solutions. The distributions of the local field are of theoretical and 
technological values in interpreting various physical phenomena. For instance, it characterizes the 
extent to which the mutual interactions actually act between the inclusions, and higher-order 
estimates of the overall properties often require detailed field solutions of the boundary value 
problem. 
 
The objective of this work is to propose a theoretical framework for evaluation of the potential 
fields in an unbounded isotropic medium containing a number of elliptic cylinders. We consider the 
case that the cylinders are arbitrarily positioned subjected to a remotely prescribed potential field. 
Throughout the formulation, we assume that the cylinders may have different sizes, aspect ratios 
and with different conductivities. The framework of this study is based on the concept of a 
multipole expansion formalism, together with a construction of consistency conditions and 
translation operators. Compared to the integral equations method which often involves a 
discretization along the interface or over the domain, the interface continuity conditions are directly 
fulfilled in the formulation, and thus the computation time is greatly reduced. We show that the 
coefficients of the field expansions are governed by an infinite set of linear algebraic equations. 
Numerical results are presented for a few different configurations. The derived field solutions can 
be used to assess the effective conductivity of a random heterogeneous medium. 
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