PRl 7y E LR ¢ & 82F

{vE o REa

A

RN G RLAF & k2
RN R NG R

T8 &y

s S
HoF R
#HFHE =

DO s A

: NSC 97-2218-E-009-041-

S97TE 102 0L p 2 98 & 0772 31F
PR FEY AT E Kk (4T)

. :?K NN I,“;

DA FET AL E AR L BE R

AR REE R ERELEF LG



’fff =

HEREPFLR B RE T

(?L%.ﬁﬁt)

S TUE EUEE BN SR
3 %% 1 NSC97—2218—E—009—041—
HNEHRE2008# 107" 1 p 2 2009# 7% 31F

Pl AR RN 1 J
=R
gL R ERE

P
*=
-\%-
N
o
]
e
7\
=
3
ok
—t

raFER ) R O

A R ST RE 2
(AR Z Y s @EE -
(A A s B LAY o H4FES - ,,\
DR REE e R FEL R P A2
Rz e T aWAmg L3 - »

3w
N
4*1%
.
%
(
3
q
%
|
Ny

2 R

BJLS N AR LT RDAERE A RTELYE
ﬂ%;&%;T;W%%ﬁ?L,QLQmﬂﬁgﬁ
(12 &l 2w FEMAR - #[]- 27 oF 43

REFE- Rzl ~F P A1ER %



Fibrous composites of piezoelectric and piezomagnetic
phases

Hsin-Yi Kuo'* and Kaushik Bhattacharya?
"Department of Civil Engineering,
National Chiao Tung University,
Hsinchu 30010, Taiwan
2Division of Engineering and Applied Science,
California Institute of Technology, Pasadena, CA 91125, USA

Abstract

We propose a theoretical framework for evaluation of magnetoelectroelastic poten-
tials in a fibrous composite with pizoelectric and piezomagnetic phases, motivated by
the technological desire for materials with large magnetoelectric coupling. We show
that the problem with transversely isotropic phases can be decomposed into two inde-
pendent problems, plane strain with transverse electromagnetic fields and anti-plane
shear with in-plane electromagnetic fields. We then consider the second problem in
detail, and generalize the classic work of Lord Rayleigh [1] to obtain the electrostatic
potential in an ordered conductive composite and its extension to a disordered system
by Kuo and Chen [2] to the current coupled magnetoelectroelastic problem. We use
this method to study BaTiO3-CoFeyO4 composites and provides insights into obtaining
large effective magnetoelectric coefficient.

1 Introduction

A variety of technological applications including magnetic field sensors, magnetically con-
trolled opto-electric devices and magneto-electric memories have motivated the study of
magneto-electric coupling in materials and composites [3, 4]. The magneto-electric coupling
was predicted by Landau and Lifshitz [5] and observed by Astrov [6] and by Rado and Folen
[7] over fifty years ago. The coupling is weak in monolithic materials, and this has moti-
vated the study of composites of piezoelectric and piezomagnetic media. The idea is that
the applied magnetic field causes a deformation of the piezomagnetic material which in turn
induces a deformation in the piezoelectric material thereby inducing an electric field.
The performance of a piezomagnetic/piezoeletric composite depends on the micro-geometry

of the phases since one has to provide effective strain coupling and avoid electromagnetic
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shielding. This has motivated a number of micromechanical models to predict the effective
moduli of multiferroic composites. For example, Nan [8] and Huang and Kuo [9] used the
Green’s function method to study a fibrous composite consisting of BaTiO3 and CoFe,Oy,.
For such transversely isotropic fibrous composites, Benveniste [10] derived exact connections
among effective magnetoelectroelastic moduli using the uniform field concept. Particulate
composites were investigated by Harshé et al. [11] using a cubic model and by Lee et al.
[12] using finite element method. Eshelby’s approach and the mean field Mori-Tanaka model
have been generalized to multiferroic composites by Li and Dunn [13, 14], Huang [15], Li [16],
Wu and Huang [17], Huang and Zhou [18] and Srinivas et al. [19]. Frequency dependence of
magnetoelectric coefficients of multiferroic laminates was studied by Bichurin et al. [20, 21].
Nan et al. [4] provide an extensive review of the literature and the state of the art.

However, much of this work uses approximate methods and models based on single in-
clusions, and focus on the effective properties of composites with somewhat uncontrolled
microstructure. There is a need for exact methods that can be used to evaluate these ap-
proximate methods. Further, a method that provides the detailed fields is useful to provide
insights for developing better microstructures and more complex processes like dielectric
breakdown and failure [22]. Similarly, detailed statistical methods require the fields asso-
ciated with multiple particles [23]. Furthermore, recent advances in synthesis allows the
fabrication of composites with highly controlled microstructure. For example, Ren et al.
[24] have recently used a diblock copolymer precursors to produce a self-assembled hexago-
nal array of CFO nanofibers in a PZT matrix. Therefore, there is a need for obtaining the
fields and properties of composites with controlled microstructure. All of these motivate the
current work.

In a classic work, Lord Rayleigh [1] computed the electric potential for a conducting
composite consisting of a periodic array of inclusions (cylinders and spheres). This was
extended to arbitrary arrangements by Kuo and Chen [2, 25]. These works concern single
fields. In this paper, we generalize this methodology to multiple coupled fields, specifically
electrostatic, magnetostatic and mechanical.

We consider a composite medium made of piezoelectric and piezomagnetic phases ar-
ranged in a microstructure consisting of parallel cylinders in a matrix in Section 2. We show
in Section 2.1 that if the phases are transversely isotropic, then the general problem can be
decomposed into two independent problems, plane strain with transverse electromagnetic
fields and anti-plane shear with in-plane electromagnetic fields. We then focus on the latter
problem for much of paper. We notice in Section 2.2 that the coupling between the fields
occurs only through the interface conditions. We exploit this in Section 2.3 to obtain a repre-
sentation of the solution. The basic idea is to follow Kuo and Chen [2] and expand each field
in each medium in a series. We consider periodic arrays in Section 3. We obtain effective
properties in Section 4, and significantly show that the macroscopic properties depend solely
on a single expansion coefficient (amongst the infinite).

This methodology is illustrated in Section 5 using composites of BaTiO3 and CoFe;Qy.
We choose this material pair for its practical potential and also because it enables comparison
with previous work. We observe that the composite medium has a nontrivial magnetoelectric
coupling even though the individual components do not. Further, we observe significant
difference between composites with BTO fibers in a CFO matrix and its complement.

We briefly comment on the first problem — the plane elasticity with transverse electro-



Figure 1: The cross-section of the fiber composite.

magnetic fields — in Section 6 and show the opportunity for extremely large magnetoelectric
coupling.

2 Arbitrary arrangement of circular cylinders

2.1 General setting

Let us consider an infinite medium R?® containing N arbitrarily distributed, parallel and
separated circular cylinders. The domain of the pth circular cylinder is denoted V,, p =
1,2,---,N,and the remaining matrix is denoted €2,,. We assume that the cylinders and
the matrix are made of distinct phases!. Further, we assume that each phase is either
piezoelectric or piezomagnetic. The constitutive laws for the rth phase is given by (see
Alshits et al. [26], for example)

o1 = QM) _ (TORE _ TH,
DO = e IR LA, (1)
BO — M) AOEC) £ OHE),

where o, D, B, ¢, E and H are the stress, electric displacement, magnetic flux, strain, electric
field, and the magnetic field respectively. C is the fourth-order tensor of elastic moduli, and
k , 1 and A are the second order tensors of dielectric permittivity, magnetic permeability
and magnetoelectric coefficients.

Now assume that each phase is transversely isotropic (i.e., has 6mm symmetry) with the
symmetry axes oriented with the cylinders. We introduce a Cartesian coordinate system
with the z— and y— axes in the plane of the cross-section and z— along the axes of the
cylinders. In the Voigt notation the properties C, e, q, k, u, and A are given by Nye [27]:

ILater we shall specialize to a two-phase situation where all the cylinders belong to one phase and the
matrix to another.
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Consistent with known material properties, the magnetoelectric coupling coefficients A7) is
negligible though we do not explicitly use this fact here.

To obtain the effective properties of this medium, we need to solve for equilibrium equa-
tions

V.o=0V-D=0, V-B=0, (3)

along with the analogous interfacial conditions and appropriate boundary conditions.
It is shown in the appendix, that for this cylindrical geometry and transversely isotropic
material symmetry, the problem splits naturally into two independent problems:

e Plane strain and transverse electromagnetic fields

Uz (2, y) 0 0
u= Uy (ZL‘,y) I E: O ) H: O I (4)
0 B, (z,y) H. (z,y)

e Anti-plane shear and in-plane electromagnetic fields

0 E; (2,y) H, (z,y)
u= 0 yE=| E,(x,y) |, H=| H,(z,y) |. (5)
uz (2, y) 0 0

In other words, the solution to any general problem can be obtained by the superposition of
the two problems above. Therefore, it is sufficient to treat each of these problems. In this
work, we largely focus on the second, i.e., anti-plane shear with in-plane electromagnetic
fields with brief comments on the first in Section 6.



2.2 Anti-plane shear with in-plane electromagnetic fields

We consider

Uy = Uy =0, u, =w(z,y),
¢ = oY),
v o= ¥(x,y), (6)

where u,, u,, u. are the mechanical displacements along the z—, y—, and z— axes, and ¢
and 1 are the electric and magnetic potentials, respectively. The constitutive laws of the
constituents and of the composite for the non-vanishing fields can be recast in the form

0zj Cu 15 q15 €zj
Dj = €15 —K11 —>\11 —Ej (7)
Bj Q15 —Au1 —Hn _Hj

where j denotes the component z,y. We can write this compactly as

Ezﬁ :LqD\I!Z\jI.n (I)J‘Ij:w7907w7 j =Y, (8)
where
| 0 Cu es5  qs . €zj
Y = Dj s L= €15 —Ki11 —)\11 y 7’ = —E]’ . (9)
B; @15 —Au1 —Hn —H;

The shear strains €., and ¢, in-plane electric fields F, and E,, and in-plane magnetic fields

H, and H, can be derived from the gradient of elastic displacement, electric potential, and
magnetic potential as follows:

e, = Qwo 0w
zr or y Eay = ay )
Oy Oy
Ea: - 8£C’ Ey - ay )
o 0

In the absence of body force, electric charge density and electric current density, the
equilibrium equations are given by

00, 00,y

Ox oy =0
oD, 0D,
Ox + oy 0
0B, OB,
U 11
ox * dy (11)



Substitution of Eq. (8) into Eq.(11) yields,

CuVw + 615V2<P + q15 VQ v = 0,
615V2w - /€11V290 — A1t V2 v = 0,
q15V2w - )\11V290 — H11 V2 v = 0, (12)

where V? = 9?/0x* + 0% /0y? represents the two-dimensional Laplace operator for the var-
ialbe z and y. Since L is a nonsingular matrix, generically we can decouple (12) into three
independent Laplace equations,

Viw=0, V=0, and V=0 (13)

in the interior of each phase. In other words, the three fields — displacement, electrostatic
potential and magnetostatic potential — are completely decoupled in the interior of each
phase.

In addition to these differential equations, we have to use interface and boundary condi-
tions. We assume that the interfaces are perfectly bonded, and therefore the fields satisfy

(2] = [[(LZ)n']] =0,  [[Z¢]=0 (14)

where [[-]] denotes the jump in some quantity across the interface, n is the unit normal to
the interface and t is the unit tangent to the interface, and the repeated index j denotes
summing over the components x,y. Since L is different in the two phases, the fields w, ¢
and ¢ are generally coupled by the interface equations.

2.3 Representation of the solution

In the anti-plane shear problem, we showed above that the fields are decoupled in the interior
of every phase, but are coupled at the interfaces. Therefore, we may follow Kuo and Chen
[2] and use a series expansion for each field in the interior of each phases and then obtain
the coefficients by enforcing the interface and boundary conditions.
We consider a situation where the composite is subjected to a macroscopically uniaxial
loading
Wext = €22, Pext = _Eacx7 ¢ext = _H:vx7 (15)

for constants z.,, £, and H,. We may rewrite this in short as
Doyt = Lo, (16)

where ® represents the approprlate field — the anti-plane deformation w, electric potential
©, or magnetic potential ¢ — and Zq) the corresponding applied field - &.,, —E,, or —H,.
We rewrite the governing equation, Eq. (13) in polar coordinates (r, ),

2?d 100 10%°®
oz " rar o
where ® can be w, ¢ or ¢. The potential field for the pth circular cylinder and its surrounding
matrix can be expanded with respect to its center O, as

Vi = =0, (17)

<I> +Z 7“ > cosnb, + F), ()7’ sinnb,) (18)



for the inclusion, and

) = Ag’(l’) + [(Af(p)rg + BE(”)T;") cosnb, + (Dg’(p)r; + Ef(p)r;”) sinng,]  (19)
—1

n

for the matrix. Here (r,,6,) is the local polar coordinate centered at the origin of the pth
circle, the subscripts ¢ and m denote the inclusion and matrix, respectively. The coefficients
AP® pe®) PP are some unknowns to be determined. The superscripts p in (18) and
(19) indicate that the fields that are expanded with respect to the pth cylinder center.

We recall the interface conditions (14) which we rewrite as

(p) _ @ (p) _ (p)
o, ‘8Vp = @, ov,’ (Eé)n]; "Ny av, = (Eé)ip "Ny, ov, (20)
where
Ew - (sz7 Uzy) 5 Ecp - (Da:7 Dy) 5 Ezp = (Bwa By) > (21)

0V, : r, = a, denotes the interface between the matrix and the pth circular cylinder, and n,
is the unit outward normal of the interface OV,,.
Using the orthogonality properties of trigonometric functions, the conditions (20) provide

ang) — a;Q"T(p)bgp), CT(Lp) — af" (T(p) + I) bglp)’ (22)
dglp) — Q;QHT(p)e%p)j fT(Lp) — G;Zn (T(p) + I) eglzo)7 (23)

and AT? = CFP) | where

Az(p) B;f(p) C’ff(p)
a7(Tp) — Aﬁ(p) bglp) _ B,f(p) Cgp) — C’ﬁf(p) : (24)
Af(p) B:f(p) C}f(p)
DTuLf(p) E;f(p) F;Lv(p)
dq(lp) — Dﬁ(p) eglp) — E?f(p) fT(LP) — Ff(”) : (25)
T = (L0 — L(p))—l (L0 + L®) (26)

and I is the 3 x 3 identity tensor.
We now need to relate the solutions to the applied boundary conditions. We do so by
applying the Green’s second identity [28] to the matrix domain €,,. This gives

/Q (G (x;xX') V2D, (x') — @, (X') V?C (x;X')] dA’
= /89 G (x;x")V'®,, (X) — P, (x') VG (x;x)] - n'ds, (27)

where the prime / denotes the operation in reference to the x’ coordinate, n’ is the outward
unit normal to the matrix’s boundary 012,,, dA’ represents the area element for the x’
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coordinate, ds’ is the differential arc length. Here G (x;x’) is the free-space Green’s function
for Laplace operator satisfying V3G (x;x') = =6 (x — x'), where § (x — x') is the Dirac-delta
distribution. Following the procedure in Kuo and Chen [2], it can be shown that Eq. (27)
yields

D, (x) = Doy (X) + Z Z (B2Dr ™ cosmby + E2Vr ™ sinmé,) . (28)
I=1 m=1
This is the consistency equation which relates the external applied fields to the local potential
expansions.
For convenience, we introduce the complex variable notation z = x + iy for x = (x,¥)
with respect to the matrix and z, for the cylinder centered at O,. Now, equation (28) can
be rewritten as

N oo
D, (X) = Zgz + Z Z [BYRe (z — ) ™" — EpIm (2 — z)™"], (29)

where 7; represents the corresponding applied field z,,, —F,, or —H,. Note that the field
identity (29) is written based on different coordinates. To proceed, we shift the origin of
the expansions (29) to a fixed point, say z,. For point z satisfying the inequality |z — z,| <
|z, — 21|, we can then expand the term (z — z;)” " using the binomial theorem as [28]

()™ =3 (1) ( mresd ) (Ziz__—;% (30)

Introducing (30) into (29), we have the expansion

dW (x) = ZgRez, + ZgRe(z — 2,)

m, near

+ Z [B2PRe (2 — 2,) ™" — Ep®Im (2 — 2,) "]

m=1
o0 oo i - 1

P Y ()
l#p s=0 m=1

N (NS TS T

(2p — 1) (2p = 2)
valid for the domain
|z — zp| <min(|z, — z|), forl=1,2,--- /N, p#IL. (32)

Since the expansion (31) are valid for points satisfying the condition (32), which generally
applies to points near the pth inclusion, this expansion will be referred to as a near-field
expansion, denoted as @%? near (X). Further, since x lies in the matrix domain, Equations



(31) and (19) should be identical. This provides the condition

AZO) +Z PRe (z — 2,)" + D2PIm (2 — z,)"]
SRR 3 3 SIEE (LR B
I#p s=0 m=1
{B‘P(Z)Re (2 —2)° _ Eq)(l)lmﬂ} ) (33)
m (Zp . Zl)m-i-s m (Zp . Zl)m-l-s

Taking the real part and the imaginary part of (33), we find the two conditions

Af(p) . Z Z (_1)n ( m4+n—1 ) [Bgz;(l)Re (Zp i Zl)fmfn N E;{:L(Z)Im (Zp . Zl)fmfn]

l#p m=1 n
= 7;Rezp5n,o + 72(5,171, (34)
and
- n m-+n— 1 —m—n —m—n
P 4 Z Z (—1) < n ) [Bgi(l)lm (zp — 21) + E*ORe (2, — 2) | =o.
l#p m=1
(35)

Equations (34), (35), (22);, and (23); constitute an infinite set of linear algebraic equations.
Upon appropriate truncations of the expansion terms, we can determine the expansion co-
efficients AX®W p*® ... pP@)

Y

3 Periodic arrays

The analysis carried out in the previous section for the arbitrary system with a finite number
of cylinders may also be adapted for the case of a periodic array of cylinders. There are five
possible ways of packing cylinders in regular arrays in two dimensions (see [29], for instance).
Here we concentrate on the two lattices, rectangular and hexagonal. Further, we sketch the
outline of the derivation focussing on the differences from the previous situation. Finally, we
limit ourselves to the case of anti-plane shear with in-plane electromagnetic fields.

Let us first introduce a Cartesian coordinate system (z,y) positioned at the center O of
one of the cylinders in a square or a hexagonal array, as shown in Figure 2. The radius of the
cylinders is a and we may assume unit distance between the centers of neighboring cylinders
without loss of generality. Uniform intensities E, and H, are applied along the positive =
axis, and an anti-plane shear deformation ., is applied out of the zy plane. In terms of
polar coordinates, the general solution has the admissible form

o, = Cy + Z C*r™ cosnf (36)
n=1
for r < a, and
®,, = AY + Z (A%r™ + B2r™™) cos nd (37)
n=1



(3) (b)

Figure 2: A schematic representation of a unit cell (a) A square array, (b) A hexagonal array.

for r > a. The coefficients A%, B® and C? are unknown constants to be determined from
the interface and boundary conditions. Note that the sine terms that would be present in
a general expansion are missing since we impose a uniaxial loading along the x— direction.
Further, ® (r,#) has to be antisymmetric with respect to the y— axis, and thus only terms
with an odd number are included. Finally, for a hexagonal lattice, all terms in which n is a
multiple of three are disallowed [30].

Analogous to (22), the continuity conditions at the interface will give constraints (22)
between the coefficients.

Next, imposing the periodicity conditions analogous to imposing the boundary condition
we did to derive (34), leads to a generalized Rayleigh’s identity

n

A+ ( mtn=l ) SminBE = Zobn1. (38)
m=1

Here the quantities
Sm = Z Rez ™ (39)
l#o
are the lattice sums characterizing the geometry of the periodic structure, and z; is the center
of the lth cylinder when measured at the central point O. The index [ runs over all cylinders’
centers underlying the periodic array except the central one. A list of non-zero normalized
lattice sums for square and hexagonal arrays can be found in Berman and Greengard [31].
Equations (38) and (22); constitute an infinite set of linear algebraic equations. Upon

appropriate truncations of the expansion terms, we can determine the expansion coefficients
> po @
AL, By, and C}).
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4 Effective moduli

We are interested in the effective behavior for a situation where we have a large number of
cylinders. The effective material properties are defined in terms averaged fields,

(&) =1"(Z), (40)

where the angular brackets denote the average over the representative volume element (unit
cell in the case of periodic composites)

<zj>:%/vzj dx, (Z7) :%/sz dx, (41)

and L* denotes the effective magnetoelectroelastic parameters of the composite.
We can compute the average Z’ by noting that each component is a gradient and applying

the divergence theorem. We obtain
T

(Z3) = Zs. (42)

Next, to find (£%), we again use the divergence theorem and the equilibrium condition
(including the interface conditions) to obtain:

1 1 1
Ye)== | XYz dx== [ V- (23s) dx =— b)) ‘nd 43
Ei = [ Bhax =g [ V@)t [ a®),mas @)

where g is defined in (21). We then use the expansions (19) for the fields to obtain

N
1 —
— v (Zy), nds=Zy—2 Za;zﬁB?(l), (44)
where
Zw = (5zx75zy) ) Z<p = - (E:va Ey) y Zd) = - (Hma Hy) y (45)
and f; is the volume fraction of phase [ defined as f; = wa?/V for square arrays and is

\2/—%0112 /V for hexagonal arrays. Putting (43) and (44) together, and recalling the constitutive
relation (7) for the matrix, we obtain

(02z) Cu €5 @5 o €z — 2 Zl]\il anleiv(l)
(Dz) | =] es —ku —An ~E, -2 a fiBYY | (46)
(Bz) q15 —A1 —Hn —H, -2 Zf\; anleib(l)

Putting together (40) and (46) and noting that the coefficients BY depend linearly on the
applied field Zg, we obtain set of equations for the effective property L*. We can determine
this by applying different loading combinations between ¢,,, F, and H,.

11



Table 1: Material parameters of BaTiO3 and CoFeyOy, [14]

Property BaTiO; CoFe;, 0y
Cy (N/m?) 43 x 10 45.3 x 10°
€15 (C/mQ) 11.6 0

@15 (N/Am)

k11 (C?/Nm?) 11.2x 107° 0.08 x 107
,ull(NSQ/C2) 5 x 1076 -590 x 1076
)\11(NS/VC) 0 0

0 950

5 Numerical results and discussion

In order to have a better understanding for the theoretical results above, we perform a
numerical computation for a two-phase transversely isotropic piezoelectric-piezomagnetic
composite with 6mm material symmetry about the fiber axis. Specifically we consider a
composite of BaTiO3z and CoFe,O4 which has been studied by other researchers. We consider
square and hexagonal arrays, and both case, i.e., both BTO fibers in a CFO matrix and CFO
fibers in a BTO matrix. The independent material constants of these constituents are given
in Table I, where the xy plane is isotropic and the unique axis is along the z— direction.
Note that in both materials magnetoelectric coefficients are zero, i.e. A;; = 0.

We begin with a composite of BTO fibers in a CFO matrix. Figure 3 shows the effective
elastic, dielectric, magnetic, piezoelectric, piezomagnetic and magnetoelectric moduli for this
composite. They vary nonlinearly with volume fraction, and the curves stop at f = 7/4 and
f = m/2+/3 for the square and hexagonal arrays respectively, when the inclusions touch. The
magnetoelectric coefficient is non-zero for every (non-zero) volume fraction even though this
coefficient is zero for each component. This reflects the coupling of the various fields across
the boundary. Further, it initially increases with increasing volume fraction, then reaches a
maximum before dropping just as the fibers are close to touching. To gain insight into this
behavior, we plot the the contours of displacement, electric potential and magnetic potential
for a square array in Figure 5(a-c) with an applied magnetic field. The magnetic field induces
a mechanical stress in the CFO which in turn results in an electric displacement in the BTO
fiber. The effective electric displacement in the horizontal direction depends on the average
along the vertical direction. Thus, the effective electric displacement depends on the span of
the fiber in the vertical direction. This is why the ME coefficient starts at zero and increases
with volume fraction. The magnetic field is attracted by the BTO (since it has a smaller
magnetic permeability) and thus the scaling deviates from being proportional to the span
and is close to linear initially. Further, as the particles come close to touching, there is very
little CFO to induce stress and thus the ME coefficient drops dramatically.

Finally, Figure 3 also compares the effective moduli with those predicted by Benveniste
[10] who used the composite cylinder assemblage (CCA) which is a mean-field theory. In
CCA, there is no upper limit on the volume fraction since one can have fibers with various
sizes. Still, the overall magnitudes and trends agree well between our periodic and his CCA.

We now turn to the composite of CFO fibers in a BTO matrix. Figure 4 shows the
effective moduli for this composite. Again, magnetoelectric coefficient is non-zero for every

12



Square array I
5.4e+010 - Square array == == Hexagonal array :
— — Hexagonal array = 0L |-~~~ Derived from CCA I,
_____ TIPS y PN
52e+010 Derived from CCA ,/ \ \\ I:
\
|I 8+ Il
5e+010 - [ !
e ' o i
& = ]
\E : S 6 = I
] !
< 4.8e+010 ! = [
i ' = |
8] 'l " 4L !
4.6e+010 - | |
1 I i
¥ 1
| 2k !
4464010 : I/
i . /, e 7
424010 : : : : ' 0 : ' :
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
BaTiO; volume fraction BaTiO; volume fraction
(a) (d)
600
1.2e-008 Square array
Squal'e [Il‘l'[ly i
S— S — He‘{aﬁoml array ! - - HEXHgOHH] amey
TREOTE ey | N T Derived from CCA
----- Derived from CCA F
19'008 [ Er1VeEs ‘om Il 500
i
]
8-009 |- .' 400+
o ' -
I 1 =
g 1 <
< 6e-009f : = 300
8} h :
s H -
. 1 =
S se000| ] 2001
!
I
2e-009 / i 100
/f
.
0 T T — L ) 0 L L L L >
0 0.2 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1
BaTiO; volume fraction BaTiO; volume fraction
(b) (e)
_ 8e-012
0.0002 Square array Square array
—— = Hexagonal array = ~ Hexagonal array - T
----- Derived from CCA = —=—- Denved from CCA . e \ \‘
“2 \
0 : 6e-012 | 2 b
]
sy ]
(@) 1
g = |
o Z !
s -0.0002 7 4e-012f |
Z 2 !
* = !
= < 1
= |
1
-0.0004 2e-012+ |
1
[}
]
1
1
-0.0008 1 L 1 1 | 0 L L 1 il !
0 0.2 04 0.6 0.8 1 0] 0.2 0.4 0.6 0.8 1
BaTiO; volume fraction BaTiO; volume fraction

(c) (f)

Figure 3: Effective moduli of a composite of BTO fibers in a CFO matrix versus BTO fiber
volume fractions (a) Effective elastic modulus, (b) Effective dielectric permittivity, (c¢) Effec-
tive magnetic permeability, (d) Effective piegaglectric modulus, (e) Effective piezomagnetic
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(non-zero) volume fraction even though this coefficient is zero for each component. However,
in this case it is monotone increasing with a sharp rise as the particles are close to touching.
Figure 5(d-f) show the potential contours for an applied magnetic field. Now, the magnetic
field is expelled by the fibers giving rise to a displacement which deforms the matrix to induce
an electric displacement. The amount of deformation it can cause in the matrix increases
with volume fraction, and this is reflected in the magnetoelectric coeffecient. Further, it
increases dramatically as the particles touch.

We finally turn to the magnetoelectric voltage coefficient, which is the important figure
of merit for magnetic field sensors. It relates the overall electric field that is generated in the
composite when it is subjected to a magnetic field. It combines the coupling and dielectric
coefficients, and is defined by

ap1 = A/ (47)

Figure 6 shows how this coefficient depends on the volume fraction for the various cases.
Note that there is a qualitative difference between the case of BTO fibers in CFO and its
complement. In the former, the maximum coefficient is for an intermediate volume fraction
of f =0.35 where aj;;; = 0.0306 V/ecmOe independent of the square or hexagonal geometry.
In contrast, in the case of CFO fibers in the BTO matrix, the maximum is attained as the
fibers begin to touch. These trends are similar to those of the magnetoelectric coefficient
described before, and follow from the same reasons.

6 Plane strain with transverse electromagnetic fields

We briefly discuss the other problem described in (4), and the potential for using it for large
effective magnetoelectric coefficient. Consider a situation where the average normal stress
as well as the average electric displacement along the fibers are zero

<Uzz> =0, <Dz> =0. (48)

The constitutive equations (2) specialized to the current setting (see (A.1) and (A.2)) then
implies that

<C33> €2z = — <Cl3 (Em + 5yy)> + <633> EZ + <Q33> HZa (49)
(€33) €22 = — (€31 (€uw + Eyy)) — (K33) B — (A33) H.. (50)

Eliminating ¢,, between the two equations above, we obtain

(es3)

(= (Chrz (Eze +&yy)) + (€33) B2 + (33) H.) = — (€31 (€xx + €yy)) — (Kz3) B — (Az3) H,

(Css)
(51)
(i?iz>%—<maﬁ> E. = <QB><C?2§?;%_€MJ>‘_<€31&%x—F€mJ>
()
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in a BTO matrix, (a), (d) Vertical displacement (m), (b), (e) Electric potential (V'), (c), (f)
Magnetic potential (C'/s). 16



0.025 -
0.04 - m - - —SgQuare array
quateanm, w—  w== Hexagonal array
== == Hexagonal array
0.02 |
0.03
o o
3 N\ 2 0015
£ N 5
L o
> 002 \ >
*x \ "= 001
h \
0.01
\ 0.005
\
\
D 1 Il 1 1 1 D 1 1 1 ]
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
BaTiO; volume fraction CoFe,0,4 volume fraction

(a) (b)

Figure 6: Effective magnetoelectric voltage coefficient of the composite versus the fiber
volume fraction. (a) BTO fibers in a CFO matrix. (b) CFO fibers in a BTO matrix.

We now assume further that the average planar strain is zero (alternately, we can proceed

exactly the same if the effective planar stress is zero). Then, strain depends linearly on FE,
and H,, and thus, we can write

(e33) (C3 (Exx + €4y))
(Cs3)

A and B depend on the solution of the plane strain homogenization problem. Substituting
(53) into (52), we obtain

<€33>2 _ o _ _ (e33) (g33) _
<<033> A+ < 33>> E, = (B <033> <)‘33>) H.. (54)

The magnetoelectric voltage coefficient is the ratio of the two terms in parenthesis,

— (€31 (€40 +yy)) = AE. + BH.. (53)

(Cs3)
2

B_ (e33)(g33) <>\33>
Sy — A ()

(55)

* _
Opg3 =

In particular, we concentrate on the denominator. Notice that only A depends on the
microgeometry and the planar moduli where as the rest of the terms do not. Thus, it
is possible to tune the microgeometry to reduce the denominator to get extremely large
coupling.

We may use the methodology described in this paper to compute A and B. However,
in contrast to anti-plane shear, plane strain elasticity is a vectorial problem and thus the
method is significantly more difficult to implement. This is the topic of current work and
will be presented elsewhere.
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7 Concluding remarks

In summary, we have extended Rayleigh’s formulation on periodic conductive composites
to a magnetoelectroelastic composite consisting of arbitrarily distributed or periodic arrays
of cylinders under anti-plane shear deformation, in-plane electric and in-plane magnetic
intensities. Expressions for the elastic, electric and magnetic potentials for the cylinders
and the matrix are derived, and used to compute the effective moduli. It is shown that the
effective properties solely depend on one particular constant B among the infinite number of
expansion coefficients. Finally, as a practical example, explicit numerical calculations for field
distributions and the magnetoelectric effects in BaTiO3-CoFe,O4 composites are presented
and discussed. This example shows the important difference between the case of BTO fibers
in a CFO matrix from its complement. The present theoretical framework provides a general
guideline for the selection of the best combination with an efficient coupling of piezoelectric
and piezomagnetic properties. It can also provide a rigorous basis against which several
approximate micromechanical models can be compared.
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Appendix

We substitute Eq. (2) into Eq.(1) and obtain

Ozz [ Chigg, + Clrogyy + Cise.. 1 es1 q31 .
Oyy Cla€zs + Crigyy + Cise.. es1 B, g1 H.
0wz | _ | Cis€an + Cigeyy + Cssezs | | essby | | assH: (A1)
Oy 20448 2y e15 by qsH, |’ '
Ozx 20445213 615Ex q15Hx
| 0wy | i 2C66E 2y ] | 0 ] 0
[ D, ] [ 2€31624 | [ ki E; ] [ AnH, ]
Dy = 26315zy -+ lillEy + >\11Hy s (A2)
L Dz | L €31€zz + €31Eyy + €33Ezz | | '%33Ez ] L )\33Hz ]
[ B, | [ 2q31€.22 ] [ A\uEs ] [ i H,
B, | = 2q31€2y + | Aukly |+ | ey |- (A.3)
| B. | | 931€20 + G31Eyy T 33E22 | | AszE. | | wssH, |

Let us consider the displacement, electric and magnetic fields are independent of fiber axis,
z— axis. That is,

uj =u;(z,y), E; =Ej(x,y), H; = H;(z,y), j=x,y,%. (A.4)
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We have
€20 =0, €2y = Usy, Erp = Usy. (A.5)

With the above and the equilibrium equations (3), the problem splits naturally into the two
problems
e Plane elasticity and transverse electromagnetic fields

Constitutive laws:

Oz Cllgmc + C1125yy _631Ez _q3le
Oyy 0125:1:23 + Cllgyy _631Ez _Q31Hz
Oxy = 20665303; + 0 + 0 . (AG)
D, €31€zz T €31Eyy ka3l As3H .
B, 431€zz T Q31Eyy Ag3F, sz H
Equilibrium:
Orx,x + Ozyy — 07
Opyz + Oyyy = 0. (A.7)
e Anti-plane shear and in-plane electromagnetic fields
Constitutive laws:
[ Oz ] [ 20445zx ] [ _615Ez 1 [ _QISHz 1
Oy 20445zy _615Ey _q15Hy
D, €152z ki By A H,
Dy €15E 2y IillEy )\llHy ( )
B, q15€ 2z A H, pi1E,
L By J q15€zy | )\11Hy i L [L11Ey
Equilibrium:
Ozz.x + Ozyy — 07
Dm,x + Dy,y = Oa
By, +B,, = 0. (A9)
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Potential fields of an infinite medium containing arbitrarily positioned

elliptic cylinders

Hsin-Yi Kuo*
Department of Civil Engineering, National Chiao Tung University,
Hsinchu 30010, Taiwan

The transport phenomena of a heterogeneous medium consisting of multiple cylinders embedded in
a host matrix have been a subject of numerous studies. A large number of these studies focused on
overall properties of composite materials. In contrast, there have been relatively few studies focused
on the details of field solutions. The distributions of the local field are of theoretical and
technological values in interpreting various physical phenomena. For instance, it characterizes the
extent to which the mutual interactions actually act between the inclusions, and higher-order
estimates of the overall properties often require detailed field solutions of the boundary value
problem.

The objective of this work is to propose a theoretical framework for evaluation of the potential
fields in an unbounded isotropic medium containing a number of elliptic cylinders. We consider the
case that the cylinders are arbitrarily positioned subjected to a remotely prescribed potential field.
Throughout the formulation, we assume that the cylinders may have different sizes, aspect ratios
and with different conductivities. The framework of this study is based on the concept of a
multipole expansion formalism, together with a construction of consistency conditions and
translation operators. Compared to the integral equations method which often involves a
discretization along the interface or over the domain, the interface continuity conditions are directly
fulfilled in the formulation, and thus the computation time is greatly reduced. We show that the
coefficients of the field expansions are governed by an infinite set of linear algebraic equations.
Numerical results are presented for a few different configurations. The derived field solutions can
be used to assess the effective conductivity of a random heterogeneous medium.

*E-mail: hykuo@mail.nctu.edu.tw
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