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Abstract

This paper deals with an N policy M/G/1 queueing system with a single removable and unreliable server whose arrivals
form a Poisson process. Service times, repair times, and startup times are assumed to be generally distributed. When the
queue length reaches N(N P 1), the server is immediately turned on but is temporarily unavailable to serve the waiting
customers. The server needs a startup time before providing service until there are no customers in the system. We analyze
various system performance measures and investigate some designated known expected cost function per unit time to
determine the optimal threshold N at a minimum cost. Sensitivity analysis is also studied.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider an N policy M/G/1 queueing system in which the server is typically subject to unpredictable
breakdowns. It is assumed that arrivals of customers follow a Poisson process and the breakdown times of the
server follow the negative exponential distribution. We assume that the service times, the repair times, and the
startup times obey a general distribution. The term ‘removable server’ is just an abbreviation for the system of
turning on and turning off the server, depending on the number of customers in the system. When the number
of customers in the system reaches the threshold N(N P 1), the server is immediately turned on but is tempo-
rarily unavailable to serve waiting customers. He requires for the preparatory work (i.e., begin startup) before
starting service. Once the startup is terminated, the server immediately starts serving the waiting customers.

It is assumed that arrivals of customers follow a Poisson process with rate k. The service times for a cus-
tomer are independent and identically distributed (i.i.d.) random variables obeying an arbitrary distribution
function S(t)(t P 0) with a mean service time lS and a finite variance r2

S. The server is subject to breakdowns
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at any time with Poisson breakdown rate a when he is working. When the server fails, he is immediately
repaired at a repair facility, where the repair times are independent and identically distributed random vari-
ables having a general distribution function R(t)(t P 0) with a mean repair time lR and a finite variance r2

R.
Arriving customers form a single waiting line at a server based on the order of their arrivals. The server can
serve only one customer at a time and the service is independent of the arrival process. A customer who arrives
and finds the server busy or broken down must wait in the queue until a server is available. Although no ser-
vice occurs during the repair period of the server, customers continue to arrive following a Poisson process.
Furthermore, when the queue length reaches a specific level, denoted by N, the server is immediately turned on
(i.e. begin startup) but is temporarily unavailable to serve the waiting customers. He needs a startup time with
random length before starting service. Again, the startup times are independent and identically distributed
random variables obeying a general distribution function U(t)(t P 0) with a mean startup time lU and a finite
variance r2

U. Once the startup is terminated, the server begins serving the waiting customers until the system
becomes empty. Service is allowed to be interrupted if the server breaks down, and the server is immediately
repaired. Once the server is repaired, he immediately returns to serve customers until there are no customers in
the system.

For a reliable server, Yadin and Naor [1] first introduced the concept of controllable queueing system under
N policy. The N policy M/G/1 queueing system was first studied by Heyman [2] and was investigated by such
authors as Bell [3], Tijms [4], Wang and Ke [5], and others. Exact steady-state solutions of the N policy M/Ek/1
and M/Hk/1 queueing systems were first developed by Wang and Huang [6] and Wang and Yen [7], respec-
tively. Exact steady-state solutions of the N policy M/M/1 queueing system with exponential startup times
were first derived by Baker [8]. Borthakur et al. [9] extended Baker’s model to general startup times. The N

policy M/G/1 queueing system with startup times was investigated by several authors such as Medhi and Tem-
pleton [10], Takagi [11], Lee and Park [12], Krishna et al. [13], Hur and Paik [14], etc. For an unreliable server,
exact steady-state solutions of the N policy M/M/1, M/Ek/1, M/H2/1, and M/Hk/1 queueing systems were
developed by Wang [15], Wang [16], Wang et al. [17], and Wang et al. [18], respectively. Wang and Ke [19]
studied three control policies in an M/G/1 queueing system and demonstrated that in three control policies,
the probability that the server is busy in the steady-state is equal to the traffic intensity. Recently, Ke [20]
examined the N policy M/G/1 queueing system with server vacations, startup and breakdowns. Furthermore,
Ke and Pearn [21] investigated the N policy M/M/1 queueing system with heterogeneous arrivals, in which the
server is characterized by breakdowns and vacations. Analytical sensitivity analysis of the N policy M/G/1
queueing system is investigated by Pearn et al. [22]. Exact steady-state solutions of the N policy M/M/1 queue-
ing system with exponential startup times were first developed by Wang [23].

In this paper, we first develop various system performance measures, such as the expected number of cus-
tomers, the expected length of the turned-off, complete startup, busy, and breakdown periods in the N policy
M/G/1 queueing system with server breakdowns and general startup times. Next, we construct the total
expected cost function per unit time to determine the optimal threshold N numerically in order to minimize
the cost function. In addition, sensitivity analysis and some numerical examples are also investigated.

2. Justification of practical applications

A number of practical problems arise which may be formulated as one in which the server meets unpredict-
able breakdowns and requires a startup time before providing service. Such models have potentially useful in
practical production(manufacturing) systems. For example, in reflow work for printed circuit board (PCB)
surface mount. Assume that PCB arrives according to a random process. For cost concern, it is desirable that
the reflow machine begins operating whenever the number of PCB reaches a critical value N. It takes random
time for warming up before the reflow machine starts working. Moreover, the reflow process may be inter-
rupted when machine encounters unpredicted breakdowns. When reflow interruptions occur (breakdowns),
it is emergently recovered with a random time. Another possible application is wire bonding in integrated cir-
cuit (IC) assembly. To save cost, it is desirable that the wire bonder begins operating whenever the number of
unbounded IC reaches a critical value N. It requires a random time for setup before the wire bonder starts
working. The bonding process may be interrupted when the bonder meets breakdowns. When bonding inter-
ruptions occur (breakdowns), it is emergently recovered.
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3. System performance measures

The primary objective of this section is to develop the various system performance measures, such as (i)
expected number of customers in the system; (ii) expected length of the turned-off period, the complete startup
period, the busy period, and the breakdown period; (iii) expected length of the busy cycle; and (iv) the prob-
ability that the server is turned-off, startup, busy and broken down.

3.1. Expected number of customers in the system

Let H be a random variable representing the completion time of a customer, which includes both the service
time of a customer and the repair time of a server. Applying the well-known formula for the p.g.f. of the num-
ber of customers in the ordinary M/G/1 queueing system with reliable server, the p.g.f. of the number of cus-
tomers in ordinary M/G/1 queueing system with unreliable server is given by
GðzÞ ¼ ð1� qHÞð1� zÞ�f Hðk� kzÞ
�f Hðk� kzÞ � z

; ð1Þ
where qH = kE[H]. In addition, E[H] = lS(1 + alR) and E½H 2� ¼ ð1þ alRÞ
2ðl2

S þ r2
SÞ þ alSðl2

R þ r2
RÞ. It is to

be noted that the traffic intensity qH is assumed to be less than unity. We note that expression (1) is obtained
only by replacing service times by completion times in the formula of the ordinary M/G/1 queueing system
with reliable server.

For the N policy M/G/1 queueing system with server breakdowns requiring startup time, we consider that
the server is on ‘extended vacation’ during the turned-off period plus the startup period. Following the result
of Medhi and Templeton [10], we obtain
GN ðzÞ ¼
½1� W ðzÞ�GðzÞ
W 0ð1Þð1� zÞ ; ð2Þ
where

GN(z) = the p.g.f. of number of customers in the N policy M/G/1 queueing system with server breakdowns and
general startup times.

W(z) = the p.g.f. of the number of customers that arrive during the turned-off period plus the startup period;

= [the p.g.f. of the number of customers that arrive during the turned-off period] · [the p.g.f. of the num-

ber of customers that arrive during the startup period];
= zN �f Uðk� kzÞ, where �f Uð�Þ is the LST of startup time.
We have W 0ðzÞ ¼ NzN�1�f Uðk� kzÞ þ zN �f ð1ÞU ðk� kzÞð�kÞ. It follows that W 0(1) = N + klU, where lU ¼
��f ð1ÞU ð0Þ is the mean startup time. Let qU = klU. From (1) and (2), we obtain
GN ðzÞ ¼
½1� zN �f Uðk� kzÞ�ð1� qHÞ�f Hðk� kzÞ

ðN þ qUÞ½�f Hðk� kzÞ � z�
:

Let LN denote the expected number of customers in the N policy M/G/1 queueing system with server break-
downs and general startup times. Thus we have
LN ¼ G0NðzÞjz¼1 ¼
1

N þ qU

NðN � 1Þ
2

þ NqU þ
k2E½U 2�

2

� �
þ kE½H � þ k2E½H 2�

2½1� kE½H �� : ð3Þ
3.2. Expected length of the turned-off, complete startup, busy, and breakdown periods

The turned-off period terminates when the Nth customer arrives in system. Since the complete startup per-
iod starts when the turned-off period terminates, the complete startup period is represented by the sum of the
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startup period and the complete period. The server begins startup when there are at least N waiting customers
in the system. This is called the startup period. The startup period terminates when the server starts to serve
the waiting customers. Since the complete period begins when the startup period is over and terminates when
the system becomes empty, the complete period is represented by the sum of the busy period and the break-
down period. The busy period is initiated when the server completes his startup and begins serving the waiting
customers. During the busy period, the server may break down and starts his repair immediately. This is call
the breakdown period. After the server is repaired, he returns immediately and provides service until there are
no customers in the system.

Let Ho be the complete period of the ordinary M/G/1 queueing system with server breakdowns. Using the
well-known result of Kleinrock [24, p. 213], we obtain the expected length of the complete period for the ordin-
ary M/G/1 queueing system with server breakdowns as
E½Ho� ¼
lSð1þ alRÞ

1� qð1þ alRÞ
: ðq ¼ klSÞ ð4Þ
3.2.1. Expected length of the turned-off period

We know that the turned-off period IN terminates when the Nth customer arrives in system. Since the length
of times between two successive arrivals are independently, identically and exponentially distributed with
mean 1/k, thus the expected length of the turned-off period, E[IN], for the N policy M/G/1 queueing system
with server breakdowns and general startup times is given by
E½IN � ¼
N
k
: ð5Þ
3.2.2. Expected length of the complete startup period

Let VN represent the complete startup period for the N policy M/G/1 queueing system with server break-
downs and general startup times. Since the complete startup period is the sum of the complete period and the
startup period which implies VN = HN + UN, where HN and UN denote the complete period and the startup
period, respectively. Let �f V N ð�Þ be the LST of the distribution of the complete startup period of the N policy
M/G/1 queueing system with server breakdowns.

The following notations are used.

• [F V N ð�Þ –] distribution function of the complete startup period VN of the N policy M/G/1 queueing system
with server breakdowns and general startup times;

• [�f Uð�Þ –] the LST of startup time;
• [F Hoð�Þ –] distribution function of the complete period Ho of the ordinary M/G/1 queueing system with ser-

ver breakdowns;
• [F ðNþnÞ

Ho
ð�Þ –] (N + n)-fold convolution of F Hoð�Þ.

By conditioning on the length of the startup time U and the number of arrivals during U, we obtain (see [25,
p. 277])
F V N ðxÞ ¼
Z x

0

X1
n¼0

Pr fgiven any startup time ¼ t; complete startup period generated by

N customers plus n arrivals in the complete period H o during t 6 x� tgdUðtÞ

¼
Z x

0

X1
n¼0

e�ktðktÞn

n!
F ðNþnÞ

Ho
ðx� tÞdUðtÞ: ð6Þ
Taking the LST of both sides of (6) yields
�f V N ðsÞ ¼
Z 1

0

Z x

0

X1
n¼0

e�sx e�ktðktÞn

n!
F ðNþnÞ

Ho
ðx� tÞdUðtÞdx: ð7Þ
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Changing the order of integration of (7), it finally gets
�f V N ðsÞ ¼
Z 1

0

e�kt dUðtÞ
X1
n¼0

ðktÞn

n!

Z 1

t
e�sxF ðNþnÞ

Ho
ðx� tÞ

� �
dx

" #

¼
Z 1

0

e�kt dUðtÞ
X1
n¼0

ðktÞn

n!
e�st½�f HoðsÞ�

Nþn

" #

¼ ½�f HoðsÞ�
N
Z 1

0

e�ðsþkÞt
X1
n¼0

½k�f HoðsÞt�
n

n!
dUðtÞ

¼ ½�f HoðsÞ�
N
Z 1

0

e�½sþk�k�f Ho ðsÞ�t dUðtÞ

¼ ½�f HoðsÞ�
N �f U ½sþ k� k�f HoðsÞ�:

ð8Þ
Differentiating (8) with respect to s, we obtain the expected length of the complete startup period as follows:
E½V N � ¼ ðN þ klUÞE½H o� þ lU ¼
ðN þ klUÞlSð1þ alRÞ

1� qð1þ alRÞ
þ lU: ð9Þ
3.2.3. Expected length of the busy and breakdown periods

The expected length of the complete period and the expected length of the startup period are denoted by
E[HN] and E[UN], respectively. Recall that VN = HN + UN which implies E[VN] = E[HN] + E[UN]. Hence from
(9) and (4), we obtain
E½H N � ¼ ðN þ klUÞE½H o� ¼
ðN þ klUÞlSð1þ alRÞ

1� qð1þ alRÞ
; ð10Þ

E½U N � ¼ lU: ð11Þ
Let E[BN] and E[DN] be the expected length of the busy period and the expected length of the breakdown
period, respectively. Recall that the complete period is the sum of the busy period and the breakdown period
which implies E[HN] = E[BN] + E[DN]. Hence from (10) we have
E½BN � ¼
ðN þ klUÞlS

1� qð1þ alRÞ
; ð12Þ

E½DN � ¼
ðN þ klUÞalSlR

1� qð1þ alRÞ
: ð13Þ
3.3. Expected length of the busy cycle

The busy cycle for the N policy M/G/1 queueing system with server breakdowns and general startup times,
denoted by CN, is the length of time from the beginning of the last turned-off period to the beginning of the
next turned-off period. Since the busy cycle is the sum of the turned-off period (IN), the startup period (UN),
the busy period (BN), and the breakdown period (DN), we get
E½CN � ¼ E½IN � þ E½U N � þ E½BN � þ E½DN � ¼ E½IN � þ E½V N �: ð14Þ

From (5) and (9), we obtain
E½CN � ¼
N þ klU

k½1� qð1þ alRÞ�
: ð15Þ
3.4. Probability that the server is turned-off, startup, busy and broken down

In steady-state, let

P IN = probability that the server is turned-off;
P UN = probability that the server is startup;
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P BN = probability that the server is busy;
P DN = probability that the server is broken down.

We obtain
P IN ¼
E½IN �
E½CN �

; ð16Þ

P UN ¼
E½U N �
E½CN �

; ð17Þ

P BN ¼
E½BN �
E½CN �

; ð18Þ

P DN ¼
E½DN �
E½CN �

: ð19Þ
Substituting E[IN] in (5), E[UN] in (11), E[BN] in (12), E[DN] in (13), and E[CN] in (15) into relations
(16)–(19) yields the probability that the server is turned-off, startup, busy and broken down in the following:
P IN ¼
Nð1� qHÞ

N þ qU

; ð20Þ

P UN ¼
qUð1� qHÞ

N þ qU

; ð21Þ

P BN ¼ q; ð22Þ
P DN ¼ aqlR: ð23Þ
We prove from (22) that the probability that the server is busy in the steady-state is equal to q.

4. The optimal N policy

We develop an expected cost function per unit time for the N policy M/G/1 queueing system with server
startup and breakdowns in which N is a decision variable. Our objective is to determine the optimum value
of the control parameter N, say N*, so as to minimize this function. We define:

Ch = holding cost per unit time for each customer present in the system;
Cs = setup cost for per busy cycle;
Ci = cost per unit time for keeping the server off;
Csp = startup cost per unit time for the preparatory work of the server before starting the service;
Cb = cost per unit time for keeping the server on and in operation;
Cd = breakdown cost per unit time for a failed server.

Utilizing the definition of each cost listed above, the expected cost function per unit time per customer is
given by
F oðNÞ ¼ ChLN þ Cs
1

E½CN �
þ Ci

E½IN �
E½CN �

þ Csp
E½U N �
E½CN �

þ Cb
E½BN �
E½CN �

þ Cd
E½DN �
E½CN �

; ð24Þ
where LN is given in (3). We note that qH þ k2E½H2�
2ð1�qHÞ

; E½BN �
E½CN � and E½DN �

E½CN � do not involve the decision variable N. Omit-

ting these cost terms are not a function of the the decision variable N. The optimization problem in (24) is
equivalent to minimize the following equation:
F ðNÞ ¼ 1

N þ qU

Ch

2
N 2 � Ch

1

2
� qU

� �
� Cið1� qHÞ

� �
N þ Ch

k2E½U 2�
2

þ ðCskþ CspqUÞð1� qHÞ
� �

ð25Þ
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Differentiating F(N) with respect to N, we get
dF ðNÞ
dN

¼ Ch

2
� Ch

2ðN þ qU Þ
2

qU þ k2r2
U þ

2½Cskþ ðCsp � CiÞqU�
Ch

ð1� qHÞ
� �
Setting dF(N)/dN = 0 yields
N � ¼ �qU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU þ k2r2

U þ
2½Cskþ ðCsp � CiÞqU�

Ch

ð1� qHÞ

s
; ð26Þ
where
qU ¼ klU ¼
k
c

lU ¼
1

c

� �
;

and
qH ¼ kE½H � ¼ klSð1þ alRÞ ¼
k
l

1þ a
b

� �
lS ¼

1

l
; lR ¼

1

b

� �
:

Differentiating F(N) with respect to N twice and using (26), we obtain
d2F ðNÞ
dN 2

¼ Ch qU þ k2r2
U þ

2½Cskþ ðCsp � CiÞqU�
Ch

ð1� qHÞ
� ��1=2

> 0; ðqH < 1Þ:
Thus N* is the unique minimizer of F(N). If N* is not an integer, the best positive integer value of N is one of
the integers surrounding N*.

5. Sensitivity analysis

A system analyst often concerns with how the system performance measures can be affected by the changes
of the input parameters in the investigated queueing service model. Sensitivity investigation on the queueing
model with critical input parameters may provide some answers to this question. In the following, we conduct
some sensitivity investigations on the optimal value N* based on changes in the values of the system param-
eters k,l,a,b,c and cost parameters Ch,Cs,Ci,Csp. From (26), we perform some algebraic manipulations with
respect to system parameters k,l,a,b,c. Differentiating N* with respect to k, we obtain
oN �

ok
¼ �lU þ

ðlU þ h1Þ1=2

2
ffiffiffi
k
p ; if r2

U � h1E½H � ¼ 0; ð27Þ

oN �

ok
¼ �lU þ

lU þ 2kr2
U þ h1ð1� 2qHÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU þ k2r2

U þ kh1ð1� qHÞ
q ; if r2

U � h1E½H � 6¼ 0; ð28Þ
where
h1 ¼
2½Cs þ ðCsp � CiÞlU�

Ch

:

Setting (27) and (28) to zero, and then solving for k, we find
k ¼ lU þ h1

4l2
U

; if r2
U � h1E½H � ¼ 0; ð29Þ

k ¼ lU þ h1

2ðr2
U � h1E½H �Þ �1þ lUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
U � r2

U þ h1E½H �
p

" #
; if r2

U � h1E½H � 6¼ 0: ð30Þ
Note that in (30) the conditions of l2
U � r2

U þ h1E½H � > 0 are required. Differentiating (27) and (28) with
respect to k again and substituting (29) and (30) into the resulting differentiation from (27) and (28), respec-
tively, we have
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o2N �

ok2
¼ � l2

UðlU þ h1Þ
2

< 0; if r2
U � h1E½H � ¼ 0; ð31Þ

o2N �

ok2
¼ � 2ðl2

U � r2
U þ h1E½H �Þ3=2

lU þ h1

< 0; if r2
U � h1E½H � 6¼ 0: ð32Þ
The above results show that the graph of N* is concave downward with respect to k, which attains its max-
imum value under two different parameter settings satisfying (29) and (30), respectively. Differentiating N*

with respect to l yields
oN �

ol
¼ qh1qH

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU þ k2r2

U þ kh1ð1� qHÞ
q > 0; ð33Þ
where q = klS = k/l. Thus, N* is increasing in l. Similarly, differentiating N* with respect to a and b, respec-
tively, we obtain
oN �

oa
¼ �kqh1

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU þ k2r2

U þ kh1ð1� qHÞ
q < 0; ð34Þ

oN �

ob
¼ kqah1

2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU þ k2r2

U þ kh1ð1� qHÞ
q > 0: ð35Þ
From (34) and (35), we see that N* is decreasing in a and N* is increasing in b. If the startup time distribution is
given, we can easily see how c affects N* because r2

U is a function of the parameter c. For example, suppose the
startup time distribution obeys the Erlang-k (k > 1) stage distribution with mean lU (=1/c). Substituting
r2

U ¼ l2
U=k into (26) and then differentiating N* with respect to lU, we get
oN �

olU

¼ �kþ
2k2

k lU þ kh2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

k l2
U þ klUh2 þ kh3

q ; ð36Þ
where
h2 ¼ 1þ 2ðCsp � CiÞ
Ch

ð1� qHÞ and h3 ¼
2Cs

Ch

ð1� qHÞ:
Two situations are considered while investigating the behavior of oN*/olU:

Case (i): If h2
2 � 4kh3 > 0 and setting oN*/olU = 0, then we obtain
lU ¼
k

2k
�h2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh2

2 � 4kh3

k � 1

s0
@

1
A; ð37Þ
which is a unique solution. Differentiating oN*/olU with respect to lU again and using (37), we finally get
o
2N �

ol2
U

¼ �
k2

k ðkh2
2 � 4kh3Þ

4 k2

k l2
U þ klUh2 þ kh3

h i3=2
< 0: ð38Þ
Hence N* is a concave downward function of lU. Since lU = 1/c, then it implies that N* is also a concave
downward function of c. Therefore, from (37), we may obtain
c ¼ 2ðk � 1Þk
kðh2

2 � 4kh3Þ
h2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh2

2 � 4kh3

k � 1

s0
@

1
A: ð39Þ

Case (ii): If h2
2 � 4kh3 6 0, we can see from (36) that N* is a decreasing function of lU. It also implies that

N* is an increasing function of c.
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In Case (i) and Case (ii) we see how the value N* is affected by the input parameter c. On the other hand, it
can easily see from (26) that N* is increasing in Cs, Csp and decreasing in Ci, Ch.

6. Numerical computations

We present some numerical computations to demonstrate the analytical results obtained, and show how to
make the decision based on minimizing the cost function (see (25)). Since the cost function is only related to
system parameters k,l,a,b,c in which lS = 1/l, lR = 1/b, lU = 1/c and r2

U is a function of c, then (25) is inde-
pendent of service time distribution and repair time distribution except for startup time distribution. The sen-
sitivity investigation focuses on the Erlang-2 startup time distribution. First, we fix the following cost
parameters Cs = 1000, Ch = 5, Csp = 100, Ci = 60 and consider the following five cases.

Case 1: We select l = 0.5,1,1.5,2, a = 0.05, b = 3, c = 3, and vary the values of k.
Case 2: We select k = 0.2,0.4,0.6,0.8, a = 0.05, b = 3, c = 3, and vary the values of l.
Fig. 1. Plots of (k,N*) with l = 0.5, 1.0, 1.5, 2.0, a = 0.05, b = 3, c = 3, Cs = 1000, Ch = 5, Csp = 100, Ci = 60.

Fig. 2. Plots of (l,N*) with k = 0.2, 0.4, 0.6, 0.8, a = 0.05, b = 3, c = 3, Cs = 1000, Ch = 5, Csp = 100, Ci = 60.



Table 1
The optimal N* and minimum expected F(N*) with various (k,l)

a = 0.05, b = 3, c = 3, Cs = 1000, Ch = 5, Csp = 100, Ci = 60

(k,l) (0.3, 0.5) (0.3, 1.0) (0.3, 1.5) (0.3, 2.0) (0.2, 1.0) (0.4, 1.0) (0.6, 1.0) (0.8, 1.0)

N* 7 9 10 10 8 10 10 8
F(N*) 55.3856 85.1964 94.5549 99.1349 85.5034 82.2018 69.7010 47.7634

Fig. 3. Plots of (a,N*) with k = 0.5, l = 1, b = 1,2,3,4 c = 3, Cs = 1000, Ch = 5, Csp = 100, Ci = 60.
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We observe from Fig. 1 that (i) the local maximum value of N* is moving from left to right as l increases;
and (ii) as k is fixed, N* is getting larger as l increases. From Fig. 2, we see that (i) N* increases in l; (ii) if l is
small enough, N* increases quickly; (iii) if l is large and q = k/l is small enough, N* is insensitive; and (iv) if l
is fixed and large enough, N* increases in k. Numerical results of Case 1 and Case 2 are provided in Table 1.

Case 3: We select k = 0.5, l = 1, b = 1,2,3,4, c = 3 and vary the values of a.
Case 4: We select k = 0.5, l = 1, a = 0.4,0.8,1.2, 1.6, c = 3 and vary the values of b.
Fig. 4. Plots of (b,N*) with k = 0.5, l = 1, a = 0.4,0.8,1.2,1.6, c = 3, Cs = 1000, Ch = 5, Csp = 100, Ci = 60.



Table 2
The optimal N* and minimum expected F(N*) with various (a,b)

k = 0.5, l = 1, c = 3, Cs = 1000, Ch = 5, Csp = 100, Ci = 60

(a,b) (0.5, 1.0) (0.5, 2.0) (0.5, 3.0) (0.5, 4.0) (0.4, 2.0) (0.8, 2.0) (1.2, 2.0) (1.6, 2.0)

N* 7 9 9 9 9 8 6 4
F(N*) 48.6806 63.8626 68.4962 70.8162 66.7410 54.7399 41.5367 26.2598

Fig. 5. Plots of (c,N*) with k = 0.3, l = 1, a = 0.05, b = 3, Cs = 1000, Ch = 5, Csp = 100, Ci = 60.
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We observe from Fig. 3 that (i) N* decreases in a. As a is fixed, the larger b has larger N*; (ii) N* has an
upper bound as a closes to zero; and (iii) N* is not insensitive to a. It can easily observe from Fig. 4 that
(i) N* increases in b but N* is insensitive to b as b is large; and (ii) as b is fixed, the larger a has smaller
N*. Numerical results of Case 3 and Case 4 are listed in Table 2.

Case 5: We select k = 0.3, l = 1, a = 0.05, b = 3 and vary the values of c.

Fig. 5 indicates that N* increases in c if h2
2 � 4kh3 6 0. However, for another set of cost parameters

Cs = 500, Ch = 5, Csp = 100, Ci = 40. Parameters satisfying h2
2 � 4kh3 > 0, N* has a unique maximum value
Fig. 6. Plots of (c,N*) with k = 0.3, l = 1, a = 0.05, b = 3, Cs = 500, Ch = 5, Csp = 100, Ci = 40.



Table 3
The optimal N* and minimum expected F(N*) with various c

k = 0.3, l = 1, a = 0.05, b = 3, cs = 1000, ch = 5, csp = 100, ci = 60

c 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

N* 9 9 9 9 9 9 9 9
F(N*) 85.4241 85.2503 85.2181 85.2068 85.2016 85.1987 85.1970 85.1959

Table 4
The optimal N* and minimum expected F(N*) with various (cs,ch)

k = 0.3, l = 1, a = 0.05, b = 3, c = 3, csp = 100, ci = 60

(cs,ch) (1000, 5) (1000, 10) (1000, 15) (1000, 20) (400, 10) (600, 10) (800, 10) (900, 10)

N* 9 6 5 5 4 5 6 6
F(N*) 85.1964 101.9221 114.0319 124.3333 78.3476 87.3775 95.0861 98.5041

Table 5
The optimal N* and minimum expected F(N*) with various (csp,ci)

k = 0.3, l = 1, a = 0.05, b = 3, c = 3, cs = 1000, ch = 5

(csp,ci) (80, 20) (80, 30) (80, 40) (80, 50) (35, 25) (45, 25) (55, 25) (65, 25)

N* 9 9 9 9 9 9 9 9
F(N*) 57.5492 64.4228 71.2964 78.1701 60.6423 60.7187 60.7951 60.8714
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at c ¼ 2ðk�1Þk
kðh2

2�4kh3Þ
h2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh2

2�4kh3

k�1

q� �
(see Fig. 6). Figs. 5 and 6 show that N* may be too insensitive to changes in c

as c is greater than 0.4. The numerical results are presented in Table 3.

To see how N* changes when cost parameter changes, we select k = 0.3, l = 1, a = 0.05, b = 3, c = 3,
choose Csp = 100, Ci = 60, and vary the specified values of (Cs,Ch). Table 4 shows that N* increases in Cs

and decreases in Ch. On the other hand, we select Cs = 1000, Ch = 5 and change the specified values of
(Csp,Ci). Table 5 reveals that N* is insensitive to (Csp,Ci).
Fig. 7. The total expected cost Fo(N) for different values of c and N.
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Finally, we make comparisons between our model and existing literature (see Pearn et al. [22]). According
to the parameters setting by [22], we perform a numerical experiment based on k = 0.4, lS = 1, rS = 1,
a = 0.05, lR = 0.2, rR = 1, Ch = 5, Cb = 50, Ci = 10, Cd = 100 and Cs = 200. In addition, we fix startup cost
Csp = 90 and vary the parameter values (c) of exponential startup distribution from 0.1 to 1 and N from 1 to
25. Fig. 7 shows that our model approaches to that by [22] as c tends to large enough (lU tends to small
enough).
7. Conclusion

In this paper,we considered the optimal control N policy for the M/G/1 queueing system with server break-
downs and general distributed startup times. We developed the theoretical results for system performance
measures, such as the expected number of customers in system, the expected length of the turned-off, complete
startup, busy, and breakdown periods, and the expected length of the busy cycle. In the N policy M/G/1
queueing system with general service times and startup times, we proved that the probability that the server
is busy in the steady-state is equal to the traffic intensity q. We constructed a cost model to determine the opti-
mal threshold N so as to minimize an expected cost function. We also provided sensitivity analysis to discuss
how the system performance measures can be affected by the changes of the input parameters (or cost param-
eters) in the investigated queueing service model.
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