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嵌入式網路通訊裝置耗能評比基準與工具之研發 

Power Consumption Benchmarking and Evaluation Tools for Embedded 
Network and Communication Devices 

摘要 

嵌入式網路通訊裝置例如手機等對於系統耗電相當重視，然而在過去開放原始碼的計畫中較缺乏對耗

電測試與評比工具的支援，本計畫的主要目的在於建立一套完整的嵌入式網路通訊裝置耗電量測環

境，蒐集並建立耗電模型以利進行系統層級的耗電評估與改善。在本年度的計畫中，我們建立了嵌入

式網路通訊裝置耗電量測環境，同時設計開發了配合量測環境使用的相關工具程式。本計畫所設計開

發的量測環境，除了可以即時地量測與記錄嵌入式網路通訊裝置的耗電，更進一步可提供測試者設定

各種無線網路的環境與嵌入式網路通訊裝置在無線網路上移動與停留的情形，同時也可以設定裝置在

每一個時間點所執行的程式與動作，用以評估嵌入式網路通訊裝置在實際環境(field trial)中各種應用

程式服務等的真實的耗電行為。建立在此一平台與工具之上，本計畫已陸續完成多款小筆電(Netbook)

以及 Android 手機在不同應用服務與程式和工作模式的耗能量測，目前正進行量測數據的分析並進行

嵌入式網路通訊裝置耗電的改善。除此之外，利用量測數據所建立嵌入式網路通訊裝置各元件的耗電

模型，本計畫同時完成嵌入式系統耗電剖析工具，協助嵌入式開發者在無須硬體耗電設備的環境下，

進行嵌入式系統耗電之高階耗能分析、評估與改善。 

 

1. Introduction 

Recently, energy-efficiency has become an important focus in the design of embedded systems in order 

to handle the growing complexity of embedded software while minimizing the energy consumption of 

embedded systems. However, there is a lack in support of power measurement platform and evaluation tools 

in the open source community. Hence the main goal of this project is to build an integrated power 

measurement environment and analyzing tools for the embedded networking devices, to collect and establish 

relevant power consumption models in order to evaluate and improve system-level power consumption 

behaviors. There are several challenges in building such a power consumption evaluation platform for 

embedded networking devices effectively and efficiently. In this project, we focus on the following two 

subjects: 

 

1) Power Consumption Measurement Environment for Mobile Devices (PowerMeMo)  

It is difficult to capture the system’s power consumption behavior in the real usage scenario without 

involving massive and labor-intensive field trials. In addition, to be able to analyze the captured data 

effectively, it is often needed to replay the exact context of the data capturing scenario which is commonly 

not available. As we know the battery life time is very sensitive to the signal strength of the situated wireless 

network and the specific user usage, but this detail is often not listed in the specification of the embedded 

networking devices which makes comparisons relatively difficult. Thus to be able to evaluate the 

effectiveness of a proposed power saving strategy, it is vital to include the relevant wireless network 

deployment information together with user mobility patterns and the specific software application usage 

within a controllable and reproducible environment to measure the power consumption of the embedded 
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networking devices.  

In this project, we have built the measurement environment and related software toolkits. In this 

measurement environment, we can measure the power consumption of embedded networking device in real 

time as well as providing user the freedom of configuring numerous wireless network environment settings 

and mobility patterns. Using the measurement environment, user can also configure the sequence of actions 

and executing software applications at any point of time to better emulate the power consumption behavior 

of embedded networking device in the physical field trials. 

 

2) Advanced High-Level Software Energy Profiling Toolkit (SEProf)  

In energy-efficiency research, energy estimation of embedded software is very critical in examining the 

effectiveness of energy-efficiency strategies and in analyzing the effects of power management, e.g. DVFS 

[1], on the execution time and energy consumption of embedded software. Prior works on energy estimation 

of embedded software could be classified into two categories, measurement-based [2] and modeling-based, 

according to the way that they estimate the power consumption of embedded processors. Some 

modeling-based approaches model the power consumption of embedded processors at lower level, such as 

architecture-level [3] and instruction-level [4], based on power measurement or low-level, e.g. circuit-level 

and gate-level, power estimation. Although most of them are able to produce accurate energy estimation 

results by performing detailed analysis on hardware events and software behaviors, they usually need to 

spend a lot of time to perform detailed energy analysis of larger systems. Since most embedded software 

remains the same in the design phase of energy-efficiency strategies, a detailed energy analysis for all 

embedded software may not be necessary every time the strategies are slightly modified. Therefore, 

estimating the energy consumption of embedded software at higher level may be an attractive option. In 

high-level modeling-based approaches, the power consumption of embedded processors is modeled at 

software level, such as basic-block-level [4] and function-level [5][6], based on measurement-based 

approaches or lower level modeling-based approaches. They are usually coupled with performance analysis 

tools which are executed on the target system to collect execution information. With proper design of power 

models, high-level modeling-based tools could estimate the energy consumption of embedded software 

more quickly while maintaining reasonable accuracy. Unfortunately, most of the existing high-level 

modeling-based tools do not consider that the operating voltage and frequency of embedded processors 

which support power management features may be dynamically changed. Without noticing the power levels 

of embedded processors, the accuracy of software energy estimation results could be significantly degraded. 

 Thus in this project, a high-level modeling-based software energy profiling tool, SEProf, is presented. It 

is aware of the changes in the operating voltage and frequency of embedded processors at runtime, and 

supports software energy estimation on OS-based embedded systems. Besides, an extensible software design 

is proposed and adopted in SEProf to meet different requirements of accuracy and efficiency. 

 

2. Methodology and Design 

1) Power Consumption Measurement Environment for Mobile Devices (PowerMeMo)  

In this section, we describe the design architecture of the proposed measurement 

platform—PowerMeMo. The following graph shows the measurement platform, that can enable the users to 
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evaluate and diagnose power consumption issue in a mobile wireless network environment in the lab 

without the cumbersome field trial. And it also can help the users to reproduce the testing scenarios 

encountered in field trial to better analyze the problems. 

Using adjustable wireless network deployment settings and suitable channel models, user can easily 

(re-)produce the desired measurment infrastructure. By specifying the mobility pattern and activating any 

installed software application on the embedded networking device, user can have detail measurement data 

corresponding to each interested actions. In this measurement platform, we also aim at providing a source 

level power consumption debugging feature which can provide the user with a good insight about the power 

consumption behavior of their program. 

 Figure 1 demonstrates the system architecture and its major software/hardware components. This is a 

fully automatic power evaluation platform for the embedded networking devices. It includes a portable DAQ 

card, attenuator, shielded box, host PC and control software. Through the programmable attenuator, it can be 

used to emulate different network environment and channel conditions. By using the digital meter and 

probes, it can be used to measure and analyze power consumption. With add-on software, it can supports 

source code level tracing, supports user defined scenarios and after the measurement it can provides a 

detailed power consumption report. Using Labview, we have constructed a graphical user interface for user 

to manipulate our platform with ease. As can be seen in the Figure 2, user can freely choose the 

measurement source and specify the mobility pattern with channel models to simulate his or her interested 

testing scenario. When the user starts the experiment, the panel at the right will show the measured power 

related information. At present, we have incorporated one simple WLAN model, namely one slope 

(log-distance model) which models the signal strength in relation to the distance between the mobile device 

and the access point as a demonstration. 

  

Figure 1. System architecture and demonstration of the proposed power measurement environment 
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Figure 2. Graphical user interface of the proposed PowerMeMo 

 

2) Advanced High-Level Software Energy Profiling Toolkit, SEProf: 

First, a brief description on the architecture of SEProf is described. The proposed high-level software 

energy profiling tool, SEProf, consists of two software components, (1) power table registrations and (2) a 

kernel patch, see Figure 3.  

 

Figure 3. Overview of SEProf 

 

Before using SEProf, the power consumption of the processor executing the embedded software has 

been measured by using our measurement platform and suitable high-level power libraries is established. 

These power libraries have to be inserted into embedded software, and registered through system calls 

provided by SEProf for energy estimation at runtime. In SEProf, the energy consumption of embedded 

software is calculated and maintained in kernel space, thus the OS kernel has to be patched before 
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compilation. When the patched kernel and user-level programs are compiled and executed, SEProf estimates 

the energy consumption for each thread at runtime and stores the estimated results in kernel space. Users can 

access the results through system calls provided by SEProf. The two software components are described in 

more detail in the following sections. 

a) Power Table Registration 

By using high-level power modeling techniques, users of SEProf have to build power libraries for 

embedded software as a reference of the average power consumption of the executing embedded software. A 

power library is consisted of one or more power tables, and each power table records a number of average 

power consumptions of an embedded processor executing a specific sequence of instructions, e.g. a 

basic-block, a function, or a program. The number of average power consumptions recorded in a power table 

is determined by the number of configurable power levels supported by the embedded processor. After 

building power libraries, users have to register and unregister power tables in embedded software through a 

system call provided by SEProf. 

 

Figure 4. An example of using power tables 

 

An example of using power tables is depicted in Figure 4. Assuming the embedded processor supports 

up to five different power levels. Each power table records five average power consumptions of the 

embedded processor operating at different power levels. In this example, three power tables are built by 

users, and described as follows. The power table 1 records the average power of all programs on the system. 

It is registered when a thread is created, and unregistered when a thread is terminated. The power table 2 

records the average power of the example program. It is registered at the beginning of the main function in 

the example program, and unregistered at the end of it. The power table 3 records the average power of all 

system calls. It is registered at the beginning of the system call handler in OS kernel, and unregistered at the 

end of it. SEProf uses the currently registered power table to calculate the power consumption as execution 

goes. 

b) Energy Estimation 

When the OS kernel and user-level programs with power table registered are executing, SEProf 

calculates the energy consumption of each thread by the following formula 
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where Ethread is the energy consumption of a thread, N is the number of runtime periods of a thread, Ti is the 

execution time of the thread in the ith runtime period, CIDi is the identification (ID) of the embedded 

processor core executing the thread in the ith runtime period, PL(CIDi) is the power level of the processor 

core whose ID is CIDi, PTi is the power table used in the ith runtime period, and PTi[PL(CIDi)] is the 

average power in the ith runtime period. A runtime period used in formula (1) is a period of time in the 

execution time of a thread. A runtime period of a thread is divided and used to estimate the energy 

consumption of the thread when one of the following four events occurs. 

 A thread registers or unregisters a power table. It means that the average power consumption of the 

embedded processor is changed. Therefore, the previous power table is used to estimate the energy 

consumption during the former runtime period, and the new power table is applied during the latter 

ones. 

 When the power level of the embedded processor which executes a thread is changed, the power 

consumption of the processor executing the thread is also changed. Hence, the previous power level is 

used to estimate the energy consumption during the former runtime period, and the new power level is 

applied in the following ones. 

 The total energy consumption of a thread is retrieved while the thread is running. Before returning the 

total energy consumption of the thread to users, SEProf adds the energy consumption of the thread 

since it was last calculated to the total energy consumption of the thread. 

 When a thread is dead, the energy consumption of the thread since it was last calculated is added to the 

total energy consumption of the thread. 

 

3. Experiments 

1) Power Consumption Measurement Environment for Mobile Devices (PowerMeMo) 

To demonstrate the effectiveness of our measurement environment, we have conducted several power 

measurements for netbooks and Android phones based on the measurement environment that was built. The 

first experiment measured the power consumption of Asus EeePC 1000 in combinations of different working 

mode and utilization rate. 

Table 1. Power consumption of each working mode 

 

System power mode 

Super performance 

External Freq.: 142.5 MHz 

Processor Freq.: 1.71 GHz 

High performance 

External Freq.: 133.3 MHz 

Processor Freq.: 1.6 GHz 

Power saving 

External Freq.: 104.5 MHz  

Processor Freq.: 1.25 GHz 

Average Power (W) Average Power (W) Average Power (W) 

System suspend to ram 0.51 0.51 0.51 

System idle 8.11 7.91 6.30 

System busy 12.12 11.82 9.83 

 

From the above table we can see that: 1) when system is suspended to ram, both CPU and LCD is 
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turned off, there are no difference in power consumptions for different working mode. 2) But when the 

system is idle, that is CPU and LCD is on but there is no work to do, we can see the advantage of lowering 

the processor frequency can bring down the average power consumption from 8.11W to 6.30W which is 

about 20% saving. 3) Similar effect is observed when system is busy with 100% utilization, if we can 

withstand the performance loss, about 20% power saving can be enjoyed by lowering the processor 

frequency. 

The second experiment conducted was to measure the power consumption of HTC G1. From Table 2, 

we can see that the power consumption in idle mode is far greater than in Sleep mode, because processor 

and LCD are the major sources of power consumption. This can also be confirmed by observing the small 

differences in power consumption in idle mode with or without communication devices turn on. When we 

turn off both processor and LCD, the power consumption of communication device, Wi-Fi and GSM, can be 

seen in clearer view. 

Table 2. Power consumption of HTC Android G1 under different working modes 

 

Idle Mode Sleep Mode 

Airplane Wi-Fi on GSM on Airplane Wi-Fi on GSM on 

Current (mA) 64.9 70.6 68.8 1.3 7.4 6.5 

Voltage (V) 4.18 4.16 4.12 4.19 4.18 3.79 

Power (mW) 271.6 293.9 283.0 5.4 30.9 24.5 

 

2) Advanced High-Level Software Energy Profiling Toolkit, SEProf: 

To demonstrate the feasibility of SEPorf, SEProf was adopted to estimate the energy consumption of 

embedded software executing on an ARM11 MPCore processor [7]. The experimental platform is a Core 

Tile, CT11MPCore, which has an ARM11 MPCore test chip that implements the ARM11 MPCore processor 

stacked on the top of a RealView Emulation Baseboard. ARM11 MPCore processor is a multi-core 

processor which supports up to four MP11 central processing units (CPUs). On this platform, all MP11 

CPUs on the ARM11 MPCore processor has the same power supply and clock source. The voltage level of 

the ARM11 MPCore processor could be changed by writing values to a digital to analog converter (DAC) on 

the CT11MPCore, and the voltage and current values of the processor are able to be obtained from an analog 

to digital converter (ADC). In the experiments, SEProf was integrated into Linux kernel 2.6.19, and a 

patched OProfile [8] was adopted to build power libraries and verify the accuracy of the power estimation 

results. OProfile is a system-wide profiler for Linux systems using statistical sampling. It could be used to 

profile Linux kernel, shared libraries, and applications. Originally, OProfile samples the context and 

program counter (PC) value of the running task on each sampling interrupt, but we extended it to sample the 

power consumption of the processor as well. We set the sampling rate of OProfile to 1 kHz, and assumed 

that a power sample could represent the average power consumption during the last sampling period.  

There are four testing programs used in out experiments. Three of them are CG, IS, and DC applications 

from the OpenMP Implementation of NAS Parallel Benchmarks (NPB) (Version 3.3) [9]. Basically, they 

represent computation intensive applications. The last one testing program is an I/O intensive application 

named FileRW which is written by us. It is a simple application which just writes and reads a 10 MB file on 

a file system mounted via network file system (NFS). 
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Since we have not successfully scaled the frequency of the ARM11 MPCore processor without resetting 

it, the experiments are divided into two parts. One is voltage and frequency scaling (VFS) experiment and 

the other is dynamic voltage scaling (DVS) experiment. In VFS experiment, the accuracy of the power 

estimation using SEProf was verified by comparing the estimated power consumption with the measured 

power consumption of the processor operating at different voltage and frequency levels. On the other hand, 

in DVS experiment, we demonstrated the power estimation results for embedded software executing on the 

processor with DVS enabled. 

We iterate through the five power levels for the ARM11 MPCore processor during the experiment. Each 

power level represents a combination of the voltage and frequency levels of the processor. In the power 

analysis stage, only one MP11 CPU was active during the experiment, because it was easier to map the 

measured power consumption back to the embedded software. The other three CPUs were in wait for 

interrupt (WFI) mode which means that their clocks were stopped and only the logics required for wake-up 

were powered. After analyzing the power consumption of the embedded software using the patched OProfile, 

we built seven power libraries for six applications and the Linux kernel, since they took almost all CPU time 

during the experiment.  

For simplicity, each power library only contains one power table, and each power table is consisted of 

five average power consumptions. The user-level power tables of the six applications are registered to 

SEProf at the beginning of the applications, and unregistered at the end of it. A kernel-level power table for 

the Linux kernel, ―vmlinux,‖ is registered to SEProf when each thread on the system is created, and 

unregistered when the thread is dead. It is also registered when a thread calls a system call, and unregistered 

when the thread returns from the system call. After building and registering power tables, the applications 

and the Linux kernel have to be re-compiled. While they are in execution, SEProf uses the registered power 

tables to estimate their energy consumption. The accuracy of the power estimation results show in Table 3. 

In most cases, the average estimation error is less than 2% and the standard deviation of the estimation error 

is less than 5%. 

Table 3. Power estimation error in VFS experiment 

Power Level 
Application Name 

/ Overall 

Number of 

Samples 

(1ms/sample) 

Average 

Estimation Error 

Standard 

Deviation 

1 

cg.S 14,279  0.24% 1.47% 

is.S 1,414  0.31% 2.76% 

dc.S 6,365  -0.13% 3.56% 

FileRW 5,712  1.52% 2.31% 

Overall 39,072  0.51% 2.97% 

2 

cg.S 12,434  0.55% 1.57% 

is.S 1,185  0.40% 2.77% 

dc.S 5,626  -0.07% 3.91% 

FileRW 5,307  2.00% 2.21% 

Overall 33,326  0.67% 3.10% 

3 

cg.S 10,393  0.57% 1.75% 

is.S 1,007  0.33% 2.81% 

dc.S 5,097  -0.05% 4.08% 

FileRW 4,978  1.37% 2.60% 

Overall 30,822  0.77% 3.32% 

4 

cg.S 9,118  -0.05% 1.85% 

is.S 897  0.37% 2.86% 

dc.S 4,802  0.02% 4.15% 

FileRW 4,892  1.11% 2.37% 
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Overall 28,227  0.48% 3.09% 

5 

cg.S 8,639  0.83% 1.91% 

is.S 794  0.51% 2.82% 

dc.S 4,384  -0.25% 4.17% 

FileRW 4,589  1.17% 2.03% 

Overall 27,480  0.82% 3.01% 

 

In DVS experiment using ARM MPCore, the clock frequency of the processor operating at each power 

level is the same, since we have not successfully scaled the frequency of the processor without resetting it. 

Nevertheless, it does not prevent us from examining that SEProf supports the above mentioned feature, 

because the power consumption of the processor is also changed dynamically by scaling the voltage of the 

processor at runtime. In DVS experiment, as in VFS experiment, only one MP11 CPU was active, and seven 

power tables were built for six applications and the Linux kernel. 

In DVS experiment, the voltage of the processor was periodically scaled at three different time intervals, 

100 ms, 1 s, and 10 s. At each time interval, the power level of the processor was incremented by one. If the 

power level of the processor reached to five, then it was set to one at the next time interval. It can be seen 

from Table 4 that the estimated power consumption is usually very close to the measured one. The power 

estimation error in DVS experiment is shown in Table 4. It can be seen that in most cases, the average 

estimation error is still within 2%. 

Table 4. Power estimation error in DVS experiment 

DVS Interval 
Application 

Name / Overall 

Number of 

Samples 

(1ms/sample) 

Average 

Estimation Error 

Standard 

Deviation 

100 ms 

cg.S 14,059 -0.41% 4.80% 

is.S 1,411 -0.54% 5.33% 

dc.S 6,347 -0.92% 5.90% 

FileRW 5,729 0.54% 4.97% 

Overall 38,149 -0.34% 5.37% 

1 s 

cg.S 14,105 1.15% 2.08% 

is.S 1,428 0.88% 2.72% 

dc.S 6,347 0.61% 3.98% 

FileRW 5,755 2.01% 2.79% 

Overall 38,231 1.18% 3.26% 

10 s 

cg.S 14,150 -0.32% 1.53% 

is.S 1,431 -0.91% 2.63% 

dc.S 6,395 -1.27% 3.66% 

FileRW 5,748 0.68% 2.24% 

Overall 38,060 -0.39% 2.78% 

 

4. Conclusions 

In this year, we have established a power consumption measurement environment, called PowerMeMo, 

together with a high-level modeling-based software energy profiling tool, SEProf. PowerMeMo evaluates 

the power consumption of mobile applications and services in a wireless emulation and mobile environment 

with user adjustable choices of channel model, mobility pattern and application usage. Which can help the 

user to understand and diagnose the power consumption behavior of mobile applications/services before 

field trial/deployment. Some measurements of netbooks and Android phone have be conducted using 

PowerMeMo, in one of the experiment also shows the importance of incorporating wireless network 
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configuration into battery life experiment. SEProf estimates the energy consumption of each thread by 

maintaining a power table list for each thread and tracking the power levels of embedded processors at 

runtime which makes SEProf more suitable for energy estimation on larger systems with power management 

enabled. We have implemented SEProf in Linux kernel 2.6.19, and conducted a number of experiments on 

an ARM11 MPCore processor. Experimental results show that the average power estimation error using 

SEProf is within 2-4%. 

 

5. Project Self-Assessment 

We have released the beta version of the SEProf tool on Open Foundry [10]. The beta version of the 

PowerMeMo will be released very soon. Also, we have one conference paper which has been accepted [11] 

and two journal papers [12][13] which are under preparation based on the results of this project.  
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一、參加會議經過 

本次參加 14th Intl Conference on Parallel and Distributed Systems/Second Asia Pacific Workshop 

on Embedded Systems Education and Research (APESER 2008)於 2008/12/05 前往澳洲墨爾本，

於 12/08 至 12/10 為期三天參加會議，於 12/11 返國。本次除擔任 Second Asia Pacific Workshop 

on Embedded Systems Education and Research (APESER 2008)之會議共同主席外，並發表論文” 

A Practical Implementation Course of Operating Systems: Curriculum Design and Teaching 

Experiences”。本次會議除參加 Second Asia Pacific Workshop on Embedded Systems Education 

and Research (APESER 2008)，主持會議，參與討論外，另外參加會議第一天以及第二天之

Keynote，分別為 Professor Hamid R. Arabnia, University of Georgia, USA 之” A Scalable and 

Reconfigurable Network Topology for Medical Imaging”演講以及 Professor Lionel M. Ni, The 

Hong Kong University of Science and Technology, Hong Kong 之”Digital City Monitoring and 

Emergency Management”兩場演講皆以應用為主，介紹相當多先進的技術。其中 Professor 

Lionel M. Ni近幾年在香港大陸上實際應用視訊圖像處理以及Sensor Network的經驗與發現十

分有趣，值得更進一步研究在真實環境中相關技術所遭遇的實際問題。 

 

二、與會心得 

本次參與之 Second Asia Pacific Workshop on Embedded Systems Education and Research 

(APESER 2008)為國內發起專門討論嵌入式系統教學與研究之會議，2007 第一屆亞太地區嵌

入式系統教學與研究會議(The 1st Asia-Pacific Workshop on Embedded System Education and 

Research, APESER 2007)於新竹舉辦，獲得國際學者肯定，今年繼續在澳洲墨爾本舉辦第二次

會議，亦有相當多亞太學者的參加，會中與來自日本九州大學的 Koji Nakano 教授，來自新加

坡南洋大學的 Ian Vince McLoughlin、Nicholas Vun 教授，以及大陸浙江大學 Wei Hu 博士等針

對近幾年在各國嵌入式研究與教學上遇到的挑戰與研究課題進行討論，有相當不錯的成果。

預計在今年 2009 年繼續舉辦第三屆會議，會議地點將於新加坡或大陸廣東做一選擇，本人亦

會繼續擔任大會共同主席，並繼續在國內以及亞大地區推廣嵌入式教學與研究之活動，促進

同領域學者間之交流。 


