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Power Consumption Benchmarking and Evaluation Tools for Embedded
Network and Communication Devices

e

PlAcE S R R AR TR AR 0 2 B ROt F 0 e L e

i\*“‘”’

TRl A E o AP FA B p RN ES - 2R ﬁmy%*% ALY T ERER
B wﬁgﬁi’,g—;;'giﬁg MAET SRR B PE TR ETL o A ERanEE Y o A2 ﬁk’x\
ARREALEEATERBEE FRREE TR ERIRE R il 1 RN o AP F R
FORRITRE T TR RRE S SRR EAKE DT LB HTRERIFFRL

LR SR TR B bh’q,\/\’\ PR R R B ARRER %%ﬁvbb’l%@’m'fj"l RS TR TEE &

F - P BT F AR B 1 P R g Ve R A Y AR Rk (field trial)? & AR
ARNIRIFENE R R (75 o E 2 At - i;ﬁliij’%&iéwiéﬁﬁﬂ |- £ % (Netbook)
122 Android £ 48 7 I * PRAFE AL oL (TR e e R PR 2R @:ﬁima 7 4 38 7
q;)x;\..qkﬁ)‘;ﬁ:%;‘t“;&mmpzioﬁf pLzoeh s il g o g;;:}jiwg:%ﬁ',{ gl o kR )é,;u/ m;i.
W3 AP ERFR SR SN ARERTINTL S BER A SRE A B ﬁPHW%? % e ’
AT N N RS T 2 F AR A TRy o

1. Introduction

Recently, energy-efficiency has become an important focus in the design of embedded systems in order
to handle the growing complexity of embedded software while minimizing the energy consumption of
embedded systems. However, there is a lack in support of power measurement platform and evaluation tools
in the open source community. Hence the main goal of this project is to build an integrated power
measurement environment and analyzing tools for the embedded networking devices, to collect and establish
relevant power consumption models in order to evaluate and improve system-level power consumption
behaviors. There are several challenges in building such a power consumption evaluation platform for
embedded networking devices effectively and efficiently. In this project, we focus on the following two
subjects:

1) Power Consumption Measurement Environment for Mobile Devices (PowerMeMo)

It is difficult to capture the system’s power consumption behavior in the real usage scenario without
involving massive and labor-intensive field trials. In addition, to be able to analyze the captured data
effectively, it is often needed to replay the exact context of the data capturing scenario which is commonly
not available. As we know the battery life time is very sensitive to the signal strength of the situated wireless
network and the specific user usage, but this detail is often not listed in the specification of the embedded
networking devices which makes comparisons relatively difficult. Thus to be able to evaluate the
effectiveness of a proposed power saving strategy, it is vital to include the relevant wireless network
deployment information together with user mobility patterns and the specific software application usage
within a controllable and reproducible environment to measure the power consumption of the embedded
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networking devices.

In this project, we have built the measurement environment and related software toolkits. In this
measurement environment, we can measure the power consumption of embedded networking device in real
time as well as providing user the freedom of configuring numerous wireless network environment settings
and mobility patterns. Using the measurement environment, user can also configure the sequence of actions
and executing software applications at any point of time to better emulate the power consumption behavior
of embedded networking device in the physical field trials.

2) Advanced High-Level Software Energy Profiling Toolkit (SEProf)

In energy-efficiency research, energy estimation of embedded software is very critical in examining the
effectiveness of energy-efficiency strategies and in analyzing the effects of power management, e.g. DVFS
[1], on the execution time and energy consumption of embedded software. Prior works on energy estimation
of embedded software could be classified into two categories, measurement-based [2] and modeling-based,
according to the way that they estimate the power consumption of embedded processors. Some
modeling-based approaches model the power consumption of embedded processors at lower level, such as
architecture-level [3] and instruction-level [4], based on power measurement or low-level, e.g. circuit-level
and gate-level, power estimation. Although most of them are able to produce accurate energy estimation
results by performing detailed analysis on hardware events and software behaviors, they usually need to
spend a lot of time to perform detailed energy analysis of larger systems. Since most embedded software
remains the same in the design phase of energy-efficiency strategies, a detailed energy analysis for all
embedded software may not be necessary every time the strategies are slightly modified. Therefore,
estimating the energy consumption of embedded software at higher level may be an attractive option. In
high-level modeling-based approaches, the power consumption of embedded processors is modeled at
software level, such as basic-block-level [4] and function-level [5][6], based on measurement-based
approaches or lower level modeling-based approaches. They are usually coupled with performance analysis
tools which are executed on the target system to collect execution information. With proper design of power
models, high-level modeling-based tools could estimate the energy consumption of embedded software
more quickly while maintaining reasonable accuracy. Unfortunately, most of the existing high-level
modeling-based tools do not consider that the operating voltage and frequency of embedded processors
which support power management features may be dynamically changed. Without noticing the power levels
of embedded processors, the accuracy of software energy estimation results could be significantly degraded.

Thus in this project, a high-level modeling-based software energy profiling tool, SEProf, is presented. It
is aware of the changes in the operating voltage and frequency of embedded processors at runtime, and
supports software energy estimation on OS-based embedded systems. Besides, an extensible software design
is proposed and adopted in SEProf to meet different requirements of accuracy and efficiency.

2. Methodology and Design
1) Power Consumption Measurement Environment for Mobile Devices (PowerMeMo)

In this section, we describe the design architecture of the proposed measurement
platform—PowerMeMo. The following graph shows the measurement platform, that can enable the users to
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evaluate and diagnose power consumption issue in a mobile wireless network environment in the lab
without the cumbersome field trial. And it also can help the users to reproduce the testing scenarios
encountered in field trial to better analyze the problems.

Using adjustable wireless network deployment settings and suitable channel models, user can easily
(re-)produce the desired measurment infrastructure. By specifying the mobility pattern and activating any
installed software application on the embedded networking device, user can have detail measurement data
corresponding to each interested actions. In this measurement platform, we also aim at providing a source
level power consumption debugging feature which can provide the user with a good insight about the power
consumption behavior of their program.

Figure 1 demonstrates the system architecture and its major software/hardware components. This is a
fully automatic power evaluation platform for the embedded networking devices. It includes a portable DAQ
card, attenuator, shielded box, host PC and control software. Through the programmable attenuator, it can be
used to emulate different network environment and channel conditions. By using the digital meter and
probes, it can be used to measure and analyze power consumption. With add-on software, it can supports
source code level tracing, supports user defined scenarios and after the measurement it can provides a
detailed power consumption report. Using Labview, we have constructed a graphical user interface for user
to manipulate our platform with ease. As can be seen in the Figure 2, user can freely choose the
measurement source and specify the mobility pattern with channel models to simulate his or her interested
testing scenario. When the user starts the experiment, the panel at the right will show the measured power
related information. At present, we have incorporated one simple WLAN model, namely one slope
(log-distance model) which models the signal strength in relation to the distance between the mobile device
and the access point as a demonstration.
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Figure 1. System architecture and demonstration of the proposed power measurement environment
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Figure 2. Graphical user interface of the proposed PowerMeMo

2) Advanced High-L evel Software Energy Profiling Toolkit, SEProf:

First, a brief description on the architecture of SEProf is described. The proposed high-level software
energy profiling tool, SEProf, consists of two software components, (1) power table registrations and (2) a
kernel patch, see Figure 3.
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Figure 3. Overview of SEProf

Before using SEProf, the power consumption of the processor executing the embedded software has
been measured by using our measurement platform and suitable high-level power libraries is established.
These power libraries have to be inserted into embedded software, and registered through system calls
provided by SEProf for energy estimation at runtime. In SEProf, the energy consumption of embedded
software is calculated and maintained in kernel space, thus the OS kernel has to be patched before



compilation. When the patched kernel and user-level programs are compiled and executed, SEProf estimates
the energy consumption for each thread at runtime and stores the estimated results in kernel space. Users can
access the results through system calls provided by SEProf. The two software components are described in
more detail in the following sections.
a) Power Table Registration

By using high-level power modeling techniques, users of SEProf have to build power libraries for
embedded software as a reference of the average power consumption of the executing embedded software. A
power library is consisted of one or more power tables, and each power table records a number of average
power consumptions of an embedded processor executing a specific sequence of instructions, e.g. a
basic-block, a function, or a program. The number of average power consumptions recorded in a power table
is determined by the number of configurable power levels supported by the embedded processor. After
building power libraries, users have to register and unregister power tables in embedded software through a
system call provided by SEProf.

Thread Creation Thread Exit
Thepower tablel is PT: Power Table Thepower tablel is
registered by SEProf PL: Power Level unregisteredby SEProf
FL | Avg Power(u'W)
] gt | usag? T
3 575,741 i| Enteringthemain function Leavingthemain function |:
: p— 5 Thepower table2 is Thepower table2 is
registered by thethread unregisteredby thethread

PL | Avg Power(fuW)

1 250,522

using PT2 |

" using PT2

2

3 447 586
4 574,385
5 719,613

Invoking a system call Leavingthe system call
Thepower table 3 ig Thepower table 3 ig
registered by SEProf unregisteredby SEProf

Power Table 3

PL | Avg Power(uW) |,
1 235219 Y
2 318705
3 316,343

using PT3

3 @16, 34
3 529,410
5 662,030

Figure 4. An example of using power tables

An example of using power tables is depicted in Figure 4. Assuming the embedded processor supports
up to five different power levels. Each power table records five average power consumptions of the
embedded processor operating at different power levels. In this example, three power tables are built by
users, and described as follows. The power table 1 records the average power of all programs on the system.
It is registered when a thread is created, and unregistered when a thread is terminated. The power table 2
records the average power of the example program. It is registered at the beginning of the main function in
the example program, and unregistered at the end of it. The power table 3 records the average power of all
system calls. It is registered at the beginning of the system call handler in OS kernel, and unregistered at the
end of it. SEProf uses the currently registered power table to calculate the power consumption as execution
goes.

b) Energy Estimation

When the OS kernel and user-level programs with power table registered are executing, SEProf

calculates the energy consumption of each thread by the following formula
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Ethread = iTI x I:)T|[F>|-(CID| )] (1)

i=1

where Eread IS the energy consumption of a thread, N is the number of runtime periods of a thread, T; is the

execution time of the thread in the ith runtime period, CID; is the identification (ID) of the embedded

processor core executing the thread in the ith runtime period, PL(CID;) is the power level of the processor

core whose ID is CID;, PT; is the power table used in the ith runtime period, and PT;[PL(CID;)] is the

average power in the ith runtime period. A runtime period used in formula (1) is a period of time in the

execution time of a thread. A runtime period of a thread is divided and used to estimate the energy

consumption of the thread when one of the following four events occurs.

® A thread registers or unregisters a power table. It means that the average power consumption of the
embedded processor is changed. Therefore, the previous power table is used to estimate the energy
consumption during the former runtime period, and the new power table is applied during the latter
ones.

® When the power level of the embedded processor which executes a thread is changed, the power
consumption of the processor executing the thread is also changed. Hence, the previous power level is
used to estimate the energy consumption during the former runtime period, and the new power level is
applied in the following ones.

® The total energy consumption of a thread is retrieved while the thread is running. Before returning the
total energy consumption of the thread to users, SEProf adds the energy consumption of the thread
since it was last calculated to the total energy consumption of the thread.

® When a thread is dead, the energy consumption of the thread since it was last calculated is added to the
total energy consumption of the thread.

3. Experiments
1) Power Consumption Measurement Environment for Mobile Devices (PowerMeMo)

To demonstrate the effectiveness of our measurement environment, we have conducted several power
measurements for netbooks and Android phones based on the measurement environment that was built. The
first experiment measured the power consumption of Asus EeePC 1000 in combinations of different working
mode and utilization rate.

Table 1. Power consumption of each working mode

System power mode

Super performance High performance Power saving
External Freq.: 142.5 MHz | External Freq.: 133.3 MHz | External Freq.: 104.5 MHz
Processor Freq.: 1.71 GHz | Processor Freq.: 1.6 GHz | Processor Freq.: 1.25 GHz

Average Power (W) Average Power (W) Average Power (W)
System suspend to ram 0.51 0.51 0.51
System idle 8.11 7.91 6.30
System busy 12.12 11.82 9.83

From the above table we can see that: 1) when system is suspended to ram, both CPU and LCD is
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turned off, there are no difference in power consumptions for different working mode. 2) But when the
system is idle, that is CPU and LCD is on but there is no work to do, we can see the advantage of lowering
the processor frequency can bring down the average power consumption from 8.11W to 6.30W which is
about 20% saving. 3) Similar effect is observed when system is busy with 100% utilization, if we can
withstand the performance loss, about 20% power saving can be enjoyed by lowering the processor
frequency.

The second experiment conducted was to measure the power consumption of HTC G1. From Table 2,
we can see that the power consumption in idle mode is far greater than in Sleep mode, because processor
and LCD are the major sources of power consumption. This can also be confirmed by observing the small
differences in power consumption in idle mode with or without communication devices turn on. When we
turn off both processor and LCD, the power consumption of communication device, Wi-Fi and GSM, can be
seen in clearer view.

Table 2. Power consumption of HTC Android G1 under different working modes

Idle Mode Sleep Mode
Airplane Wi-Fi on GSM on Airplane Wi-Fi on GSM on
Current (mA) 64.9 70.6 68.8 1.3 7.4 6.5
Voltage (V) 4.18 4.16 4.12 4.19 4.18 3.79
Power (mW) 271.6 293.9 283.0 5.4 30.9 24,5

2) Advanced High-Level Software Energy Profiling Toolkit, SEProf:

To demonstrate the feasibility of SEPorf, SEProf was adopted to estimate the energy consumption of
embedded software executing on an ARM11 MPCore processor [7]. The experimental platform is a Core
Tile, CT11MPCore, which has an ARM11 MPCore test chip that implements the ARM11 MPCore processor
stacked on the top of a RealView Emulation Baseboard. ARM11 MPCore processor is a multi-core
processor which supports up to four MP11 central processing units (CPUs). On this platform, all MP11
CPUs on the ARM11 MPCore processor has the same power supply and clock source. The voltage level of
the ARM11 MPCore processor could be changed by writing values to a digital to analog converter (DAC) on
the CT11MPCore, and the voltage and current values of the processor are able to be obtained from an analog
to digital converter (ADC). In the experiments, SEProf was integrated into Linux kernel 2.6.19, and a
patched OProfile [8] was adopted to build power libraries and verify the accuracy of the power estimation
results. OProfile is a system-wide profiler for Linux systems using statistical sampling. It could be used to
profile Linux kernel, shared libraries, and applications. Originally, OProfile samples the context and
program counter (PC) value of the running task on each sampling interrupt, but we extended it to sample the
power consumption of the processor as well. We set the sampling rate of OProfile to 1 kHz, and assumed
that a power sample could represent the average power consumption during the last sampling period.

There are four testing programs used in out experiments. Three of them are CG, IS, and DC applications
from the OpenMP Implementation of NAS Parallel Benchmarks (NPB) (Version 3.3) [9]. Basically, they
represent computation intensive applications. The last one testing program is an 1/O intensive application
named FileRW which is written by us. It is a simple application which just writes and reads a 10 MB file on
a file system mounted via network file system (NFS).




Since we have not successfully scaled the frequency of the ARM11 MPCore processor without resetting
it, the experiments are divided into two parts. One is voltage and frequency scaling (VFS) experiment and
the other is dynamic voltage scaling (DVS) experiment. In VFS experiment, the accuracy of the power
estimation using SEProf was verified by comparing the estimated power consumption with the measured
power consumption of the processor operating at different voltage and frequency levels. On the other hand,
in DVS experiment, we demonstrated the power estimation results for embedded software executing on the
processor with DVS enabled.

We iterate through the five power levels for the ARM11 MPCore processor during the experiment. Each
power level represents a combination of the voltage and frequency levels of the processor. In the power
analysis stage, only one MP11 CPU was active during the experiment, because it was easier to map the
measured power consumption back to the embedded software. The other three CPUs were in wait for
interrupt (WFI) mode which means that their clocks were stopped and only the logics required for wake-up
were powered. After analyzing the power consumption of the embedded software using the patched OProfile,
we built seven power libraries for six applications and the Linux kernel, since they took almost all CPU time
during the experiment.

For simplicity, each power library only contains one power table, and each power table is consisted of
five average power consumptions. The user-level power tables of the six applications are registered to
SEProf at the beginning of the applications, and unregistered at the end of it. A kernel-level power table for
the Linux kernel, “vmlinux,” is registered to SEProf when each thread on the system is created, and
unregistered when the thread is dead. It is also registered when a thread calls a system call, and unregistered
when the thread returns from the system call. After building and registering power tables, the applications
and the Linux kernel have to be re-compiled. While they are in execution, SEProf uses the registered power
tables to estimate their energy consumption. The accuracy of the power estimation results show in Table 3.
In most cases, the average estimation error is less than 2% and the standard deviation of the estimation error
is less than 5%.

Table 3. Power estimation error in VFS experiment

Power Level Application Name Ng{;ﬁ)&;:f Average Standard
/ Overall (1ms/sample) Estimation Error Deviation
cg.S 14,279 0.24% 1.47%
is.S 1,414 0.31% 2.76%
1 dc.S 6,365 -0.13% 3.56%
FileRW 5,712 1.52% 2.31%
Overall 39,072 0.51% 2.97%
cg.S 12,434 0.55% 1.57%
is.S 1,185 0.40% 2.77%
2 dc.S 5,626 -0.07% 3.91%
FileRW 5,307 2.00% 2.21%
Overall 33,326 0.67% 3.10%
cg.S 10,393 0.57% 1.75%
is.S 1,007 0.33% 2.81%
3 dc.S 5,097 -0.05% 4.08%
FileRW 4,978 1.37% 2.60%
Overall 30,822 0.77% 3.32%
cg.S 9,118 -0.05% 1.85%
4 is.S 897 0.37% 2.86%
dc.S 4,802 0.02% 4.15%
FileRW 4,892 1.11% 2.37%




Overall 28,227 0.48% 3.09%
cg.S 8,639 0.83% 1.91%
is.S 794 0.51% 2.82%
5 dc.S 4,384 -0.25% 4.17%
FileRW 4,589 1.17% 2.03%
Overall 27,480 0.82% 3.01%

In DVS experiment using ARM MPCore, the clock frequency of the processor operating at each power
level is the same, since we have not successfully scaled the frequency of the processor without resetting it.
Nevertheless, it does not prevent us from examining that SEProf supports the above mentioned feature,
because the power consumption of the processor is also changed dynamically by scaling the voltage of the
processor at runtime. In DVS experiment, as in VFS experiment, only one MP11 CPU was active, and seven
power tables were built for six applications and the Linux kernel.

In DVS experiment, the voltage of the processor was periodically scaled at three different time intervals,
100 ms, 1's, and 10 s. At each time interval, the power level of the processor was incremented by one. If the
power level of the processor reached to five, then it was set to one at the next time interval. It can be seen
from Table 4 that the estimated power consumption is usually very close to the measured one. The power
estimation error in DVS experiment is shown in Table 4. It can be seen that in most cases, the average
estimation error is still within 2%.
Table 4. Power estimation error in DVS experiment

L Number of
DVS Interval Application Samples . Avgrage Staf.‘d‘%rd
Name / Overall Estimation Error Deviation
(1ms/sample)
cg.S 14,059 -0.41% 4.80%
is.S 1,411 -0.54% 5.33%
100 ms dc.S 6,347 -0.92% 5.90%
FileRW 5,729 0.54% 4.97%
Overall 38,149 -0.34% 5.37%
cg.S 14,105 1.15% 2.08%
is.S 1,428 0.88% 2.72%
1s dc.S 6,347 0.61% 3.98%
FileRW 5,755 2.01% 2.79%
Overall 38,231 1.18% 3.26%
cg.S 14,150 -0.32% 1.53%
is.S 1,431 -0.91% 2.63%
10s dc.S 6,395 -1.27% 3.66%
FileRW 5,748 0.68% 2.24%
Overall 38,060 -0.39% 2.78%

4. Conclusions

In this year, we have established a power consumption measurement environment, called PowerMeMo,
together with a high-level modeling-based software energy profiling tool, SEProf. PowerMeMo evaluates
the power consumption of mobile applications and services in a wireless emulation and mobile environment
with user adjustable choices of channel model, mobility pattern and application usage. Which can help the
user to understand and diagnose the power consumption behavior of mobile applications/services before
field trial/deployment. Some measurements of netbooks and Android phone have be conducted using
PowerMeMo, in one of the experiment also shows the importance of incorporating wireless network
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configuration into battery life experiment. SEProf estimates the energy consumption of each thread by
maintaining a power table list for each thread and tracking the power levels of embedded processors at
runtime which makes SEProf more suitable for energy estimation on larger systems with power management
enabled. We have implemented SEProf in Linux kernel 2.6.19, and conducted a number of experiments on
an ARM11 MPCore processor. Experimental results show that the average power estimation error using
SEProf is within 2-4%.

5. Project Self-Assessment

We have released the beta version of the SEProf tool on Open Foundry [10]. The beta version of the
PowerMeMo will be released very soon. Also, we have one conference paper which has been accepted [11]
and two journal papers [12][13] which are under preparation based on the results of this project.
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