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Abstract

We establish the polynomial-time solvability of a class of vector partition problems with linear objectives subject to
restrictions on the number of elements in each part. (©) 2000 Published by Elsevier Science B.V. All rights reserved.

1. Shaped partition problems

The shaped partition problem concerns the parti-
tioning of n vectors 4',...,4" in d-space into j» parts
$0 as to maximize an objective function which 's con-
vex on the sum of vectors in each part subject to ar-
bitrary constraints on the number of elements i1 each
part. This class of problems has applications in di-
verse fields that include circuit layout, clusteriag, in-
ventory, scheduling and reliability (see [2,3,5,7] and
references therein) as well as important recent appli-
cations to symbolic computation [11]. In its outmost
generality, the shaped partition problem instantly cap-
tures NP-hard problems hence is intractable [8]. The
purpose of this article is to exhibit polynomicl-time
solvability for a broad class of shaped partition prob-
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lems with linear objectives. To define the problem for-
mally, describe our results and raise some remaining
questions, we next introduce some notations.

Let Q and N denote, respectively, the rational
numbers and nonnegative integers. All vectors are
columns by default. The vectors of all-ones and
all-zeros, of dimension that is clear from the context,
are denoted by 1 and 0, respectively. A p-partition
of the set [n]:={l,...,n} is an ordered collection
n=(my,...,n,) of pairwise disjoint (possibly empty)
sets whose union is [#]. The shape of n is the tuple
\m):=(|m1],...,|%,|) of nonnegative integers which
describes the number of elements in each part of =.
Let NZ:={AeN?:1") = n} denote the set of all
p-shapes of n. The first ingredient of the problem data
is a subset A C Nf of admissible shapes. The feasible
solutions to the problem are then all partitions = of [#]
of admissible shape |7| € A. The second ingredient of
the problem data is a d x n matrix 4 whose jth col-
umn 4’ represents d numerical attributes associated
with the jth element of the partitioned set [n]. With
each p-partition 7 of [n] we associate the following
d x p matrix whose kth column represents the total

0167-6377/00/$ - see front matter (©) 2000 Published by Iilsevier Science B.V. All rights reserved.
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attribute vector of the kth part,

A= ZA/ ..... ZA/ e Q¥xr

JEM JET,

with 37 A’:=0 when m; = ). The third ingredient
of the problem data is a convex functional C: Q“*/ —
). The objective value of a partition « is then de-
fined by C(4™). We consider the following algorith-
mic problem.

Shaped partition problem Given positive integers
d, p.n, matrix 4 € Q¢*", shape set A C N/, and con-
vex functional C: Q¢ r Q, either assert that A
is empty or find a partition 7* of admissible shape
In*| € A attaining maximum objective value, that is,

C(4™ ) = max{C(4"): |n|€A}.

A natural example is clustering, where n ob-
servation points 4',...,4" € Q¢ are to be grouped
into p clusters in such a way that the sum of suit-
ably defined cluster variances is minimized. The
restriction of shapes to a shape set A4 may al.ow
to reflect a priori information about the anticipeted
number of data points in different clusters. For in-
stance, when minimizing the sum of the /> ¢ us-
ter variances Y7 (1/|m)) 32, o o 14/ — A™|]?, viith

=(1/ i) > ien A’ the cluster barycenter, and the
a priori indication that all clusters have the same num-
ber of elements, the clustering problem becomes a
shaped partition problem with A={n/p-1} and C cna
matrix M € Q¥*? given by C(M)=a- (M, M) —j, v/ith
the constants « = ( p/n)’ and B = (p/n)z;’=I 141,
and with (M, M):=S"% M7

The shaped partition problem m its full generality,
with d, p, n variable, with A arbitrary and possibly pre-
sented by a membership oracle, and C arbitrary convex
and possibly presented by an evaluation oracle, hus a
very broad expressive power. In fact, as explained in
[8], even with fixed d = 1 or p = 2, the problem m-
mediately captures NP-hard problems. A major result
of Hwang et al. [8] was that, with both d, p fixed, the
problem can be solved in polynomial-time with A and
C arbitrary and presented by oracles.

In the present article, we restrict the class of convex
functionals and assume C to be linear, but allov/ d
and p to vary as part of the input. The functional C

2. Any explicitly given set A= {i',...,

is then identified with a matrix C € Q“*?, and the
objective value of a partition 7 becomes (C,4™). We
prove in Theorem 1 the polynomial-time solvability
of the problem for a broad class of shape sets, which
in particular implies:

Corollary 1. Given d, p,n, matrix A€ Q/*", and
CeQ9%P, the shaped partition problem can be
solved in polynomial-time for every shape set A of
one of the following two types:

l. Any set A=NJN{i: I<i<u} of shapes defined
by given lower and upper bounds.

A" CNY of

shapes.

Note that, while the shaped partition problem is
obviously intractable if A is presented by a mere
membership oracle, Corollary 1 part 2 implies that if
p is fixed then it is solvable in polynomial oracle time
since an explicit presentation of /A can be obtained by
querying the oracle on each element of {0, 1,...,n}?.
It would be interesting to find more general shape sets
under weak presentations for which the shaped par-
tition problem is polynomial-time solvable. In partic-
ular, for which of the following presentations (of in-
creasing generality ), of shape sets which are convex in
the sense A =N} Nconv(A), is the problem tractable?

e Convex shape sets presented by an inequality sys-
tem conv(A) = {i: UA<u}?

e Convex shape sets presented by a separation oracle
(cf. [6]) over conv(A)?

2. Optimization over shaped partition polytopes

The linear-shaped partition problem can be embed-
ded into the problem of maximizing C € Q¢*? over
the convex hull of matrices of feasible partitions, de-
fined as follows.

Shaped partition polytope The shaped partition poly-
tope of matrix 4 € Q“*" and shape set A C N7 is
defined to be the convex hull of all matrices of ad-
missible partitions,

Pli=conv {4™: |n| € A} C Q¥*P.

Shaped partition polytopes form a broad class which
captures and generalizes many classical polytopes (see
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{2,4,7,8,10] and references therein for more details).
Since a shaped partition polytope is defined is the
convex hull of an implicitly presented set whose size
is typically exponential in the input size even when
both p and 4 are fixed, an efficient representation as
the convex hull of vertices or as the intersect on of
half-spaces is not readily expected. It was shown in
[8], however, that if both p and d are fixed th:n the
number of vertices is polynomial in n, which was the
key to the polynomial-time solution in [8] of shaped
partition problems with fixed d, p. Related bounds
were given in [1].

In the present article we allow 4 and p to be « vari-
able part of the input. In this situation, the enumera-
tive methods of Hwang et al. [8] fail: indeed, even if
one of d and p remains fixed, the number of vertices
of the shaped partition polytope may be expor ential
in n. For instance, if d =1, p=n, 4 =11,...,n],
and A = {1} then partitions correspond to permuta-
tions and P is the permutohedron having n! ve tices.
If p=2,d=n, A=1 is the n x n identity matrix,
and A= N?Z then P/ is affinely equivalent to the: cube
having 2" vertices.

We now take a closer look at the shaped patition
polytope of the identity 7,

PY=P! = conv{I™: |n| € A} CQ"*?.

We aim to derive an inequality description of P,
Consider the polytope 7! defined by

Th={XeQ™”: X>0, X1 =1, 1'X € conv(4)}.

Since each matrix /™ is {0, 1}-valued with a unique
1 per row, it follows that P' C T for any shade set
ACNY. The converse is usually false. For ins:ance,
let n=p=2andlet A={(2,0),(0,2)} be a nonconvex
set of two shapes. Then the 2 x 2 identity / lies in 7!
since 17/ = (1,1) € conv(A), but

“ZPA:HZ i:z}:0<a<l}.

Next assume that A is convex, that is, 4 = N/ N
conv(A). If conv(A) has the inequality descr:ption
conv(A)={1eQ”: i>0, 1" i=n, Ui <u} then T4
has the description

T'={XeQ™?”: X>0, X1=1, UX"I<u}. (1)

As demonstrated below in Example 1, convexity is not
sufficient for equality P! = T, We need a more re-
strictive assumption on A that we describe next. Recall

from [12] that a matrix is totally unimodular if all its
subdeterminants, in particular all entries, are —1,0, 1.

Proposition 1. Let A=N/JN{i: UL<u} be a convex
shape set with U being an integer matrix and u an
integer vector. If the matrix a(U ):=[1 UT)" is totally
unimodular then

conv(A)={AeQ” i20,1"A=n, Ui<u}. (2)

Proof. Clearly conv(A) is contained on the right-hand
side of (2). Now, since a(U) is totally unimodular,
it follows (cf. [12]) that all vertices of the right-hand
side of (2) are integers. But A is precisely the set of
integer points on the right hand side of (2) since A =
N7 {A: UA<u}. Hence, all vertices of the right-hand
side of (2) lie in A and the proposition follows. [

However, as the following example shows, P! may
be strictly contained in 74 even if A is convex and
a(U) (and hence U) is totally unimodular.

Example 1. Let n = p =4 and let 4 = {(2,0,0,2),
(1,1,1,1),(0,2,2,0)} be a convex shape set with A =
NiNn{i: UL<2-1}, where a(U) is totally unimodular
with

1 0 1 0

0 1 0 1
=11 1 0 o
0 0 1 1
Then both 7' and P are 10-dimensional polytopes
in the space Q*** of 4 x 4 matrices. However, P! has
24 facets and 36 vertices which are the {0, 1}-matrices
I™, whereas 7% has 16 facets and 84 vertices. The
only integer vertices of T are the 36 matrices /™. To
verify directly that P is indeed strictly contained in
T4, define two identical matrices

0 0 0 1
0 05 05 0
05 0 0 0.5
1 0 0 0

V=C:=

Then V satisfies the inequalities defining 7! but at-
tains the value (C,7) =}, . C;;Vi; =3 under the
functional C, which is strictly larger than the value
(C,I™) for any © with |n] € A.

Let U=[U',...,U®] be an m x p matrix, let
[U'1Y,...,UP1"] be the m x pn matrix obtained
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from U by replicating each column n times, anc let
I be the n x n identity matrix. Define the following
(n+ m) X pn matrix:

MU= oyt T urlT |

We then have the following sufficient condition for
equality P = T to hold.

Lemma 1. Let A =Ny N {A: UA<u} be a convex
shape set with U an integer matrix and u an integer

vector. If the matrix n(U) is totally unimodular then
PA=TA

Proof. We use the total unimodularity of n(U)
twice. First, if n(U) is totally unimodular then so is
a(U) = [1 UT]"; indeed, a(U) is the submatrix of
n(U) corresponding to rows (n +i: i =0,...,m) and
columns (j-n: j=1,..., p). Thus, by Proposition 1,
conv(A) has the description in (2), hence T* has the
description in (1). Now, identifying Q%7 = Q#" via
X = [Xl,la e ,X,,‘l, e aXl,p’ e ,Xn,p], this inequality
description of 74 becomes

T'={X Q" X >0,

. -1
I -+ I l.x<!| 1]}V, (3)
vl ... yr1t u

Second, since n(U) is totally unimodular, so is the co-
efficient matrix of (3); hence, it follows (cf. [12]) that
all vertices of T/ are integers. But the integer points in
T are precisely all {0, 1 }-matrices which equal /™ for
some 7 with || € A. Thus T4 = conv{l™: |n| € A} =
P4 as claimed. O

Note that a necessary condition for n(U) to be to-
tally unimodular is that U itself is, which implies at
once that the same holds for the replicated marix
[U'17,...,UP1"]. However, this condition is not suf-
ficient in general: the matrix U in Example 1 (and
a(U), moreover) is totally unimodular but n(U) is not.

Using Lemma 1 and Proposition 1 we obtain the
following statement.

Theorem 1. The shaped partition problem can be
solved in polynomial-time for any d, p,n, matrix
A€ Q%" linear functional C € Q*%?_ and shape set

A= NF N {A UL<u} with U and u being integers
and n(U) totally unimodular.

Proof. Define W:=4"C € Q"*?. By Lemma 1 we
have P4 = T4, which, by Proposition 1, has the in-
equality description (1). Therefore, we can solve the
maximization problem max{ (W, X): X € P} of W
over P! = P4 in polynomial-time by linear program-
ming over T/ using the description in (1), and ob-
tain an optimal vertex which equals /™ for some 7*
with |n*| € A. For any partition 7, we have (C,4™) =
(C,AI™) = (W,I™). Therefore, n* is an optimal solu-
tion to the shaped partition problem, and it can be
uniquely recovered from /™ by n¥:={i: I7; = 1} for
j=1...,p. O

We can now demonstrate Corollary 1 stated in Sec-
tion 1.

Proof of Corollary 1. Part 1, where A = N/ N
{A: I<A<u}, is a direct consequence of Theorem
1. To see part 2, let A = {4',...,A"} CN/ be an
explicitly given shape set. For i = 1,...,m, solve a
shaped partition problem with A':={4'} using part
1 with the lower and upper bounds /":=u':=A' and
obtain an optimal partition 7' of shape A’. Any best
partition among the =’ is an optimal solution to the
shaped partition problem with 4. T
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