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中文摘要 

過去十年來，主持人將醫學工程研究經驗投入於禪坐之生理、意識等現象的探討，

已有相當成果。主要以科學化方法來探討禪定過程中之腦電波特性變化，以禪宗佛法之

修行者為主要研究對象；以先進之數位訊號處理的方法理論，從大量記錄、收集之多通

道禪定腦電波中，進行時間、頻率分析。其中觀察到某些特性，值得進一步探究其腦部

動態機制與空間定位之關聯性。 

為瞭解此種非睡眠、超意識狀態下之腦電波活動情形；並了解禪坐中其他生理指標

的關聯性，本研究計畫分兩年探討：（一）禪坐腦電波之空間特性定量(MBM)，（二）
禪坐過程中之MBM 演變情形(MBMS)，（三）MBM 與其他生理現象（如心律變異、
皮膚阻抗）的相關性。研究過程中，除了進行大量腦電波記錄實驗，亦將發展多元化之

數位訊號分析方法，來萃取和量化波形特徵，並能有系統的建立一受測者資料庫。在過

去這一年的計畫中，我們巳經使用頻譜分析和同調性 (coherence)分析的腦殼圖
(topographic map)，完成初步的禪坐腦電波之時空特性研究。 

關鍵詞：禪坐之生理與意識現象、多通道腦電波、時變頻譜之空間特性、腦電波之同調

性。 

 
ABSTRACT 

For more than ten years, the principal investigator has been devoted to the research on 

physiological and mental/conscious phenomena under Chan meditation. A number of 

important results have been reported, of which we mainly focus on investigating the EEG 

(electroencephalograph) characteristics based on the scientific approach. Subjects of the 

experiment practice the Chan Buddhism. From a large amount of meditation EEG signals 

acquired, we characterized their temporal and spectral features by a number of advanced DSP 

methodologies. Some particular findings aroused our attention of further exploring the spatial 
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foci that generate such kind of Chan brain dynamics.  

To understand the phenomena of brain electrical activities and other relevant 

physiological parameters under such a non-sleeping, transcendental state, this two-year 

research proposal is aimed at: (1) quantitative analysis of meditation brain mapping (MBM), 

(2) time-varying MBMs, or the MBM Scenario (MBMS), and (3) correlation between MBM 

and other physiological parameters (for example, heart rate variability HRV and 

galvanometric skin resistance GSR). In the first-year research, we have applied the 

topographic maps of relative power and coherence to investigate the spatiotemporal 

characteristics of Meditation EEG.  

 

Keywords: Physiological state and consciousness under Chan meditation, multi-channel EEG 

(electroencephalograph), Time-varying spatio-spectral EEG characteristics, EEG 

coherence. 

 

 

I. INTRODUCTION 

Since Electroencephalography (EEG) was firstly recorded in 1927, the EEG signals have 

been intensively studied in clinical applications and medical science. Nowadays, EEG 

becomes an important clinical tool for diagnosing and monitoring the nervous system 

regarding normal or pathological conditions. In the field of EEG study, the spatial or 

topographical features provide an access to the detection of focal EEG phenomena that have a 

relationship to focal pathology [1], [2]. The spatial distribution of EEG features (to be called 

the “EEG mapping” or the “brain mapping”) over the scalp surface is thus of great importance. 

In clinical applications, its graphical display is an easy and straightforward aid to visual 

inspection of focal activities. A number of methods and techniques have been used for 
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constructing the EEG mapping [16-22]. According to our study on Chan-meditation EEG 

during the past ten years, a number of EEG characteristics have been found to be evidently 

linked to the Chan-meditation practice. We have reported our findings on frontal alpha 

activity and beta-dominated phenomena, mainly from the temporal and spectral aspects. In 

this study, we particularly focused on EEG spatial properties during meditation. 

I.1 Motivation 

Studies of meditation EEG have attracted a large number of researchers in life science 

and medicine since a half century ago. The EEG is normally composed of the following 

rhythmic components: δ-wave (0~4Hz), θ-wave (4~8Hz), α-wave (8~13Hz), β-wave 

(13~30Hz), and γ (30~70Hz). Researches during the past several decades have disclosed the 

phenomenon that particular EEG patterns correlated closely with some physiological, mental, 

or emotional states. For instance, occipital α-wave becomes dominant during the eye-closed 

relaxation. Significant and numerous achievements have been reported on EEG rhythmic and 

EEG spatial characteristics applied to brain abnormalities and such pathological case study as 

epilepsy [3-5] and Alzheimer’s disease [6]. Accordingly, EEG has become a feasible tool for 

diagnosing neural disorder diseases. 

In the past two decades, scientists and medical experts have been getting more and more 

interested in meditation phenomena due to its benefits to human health[7-11]. A large variety 

of scientific approaches have been applied to meditation study. Since meditation process 
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involves different states of consciousness, EEG thus became the focus of attention of 

researchers. This thesis mainly reports the results of investigating the brain spatial microstates 

of α-wave for subjects practicing Chan meditation. 

    Most researches of brain spatial topography analyzed long-term EEG signal, but in some 

case of pathology, the phenomenon is transient or transitionary. As epilepsy is a disease and 

can be detected by the momentary unusual EEG signal, and it is hard to find in long-term 

EEG analysis. So we used microstate algorism for detection of transient brain state and hope 

for more applications. 

I.2 Organization of Report 

In this section, background and major goal of the research study are presented. Section II 

introduces the methods and experimental protocol. Results of this study are reported in 

Section III. Finally, we draw a summary conclusion in Section IV. 

 

II. THEORIES AND METHODS 

EEG (Electroencephalography) is the neurophysiologic measurement of the electrical 

activity of the brain by recording from electrodes placed on the scalp (non-invasive recording) 

or, in special cases, subdurally or in the cerebral cortex (invasive recording). The resulting 

traces are known as an electroencephalogram (EEG) and represent a summation of 

post-synaptic potentials from a large number of neurons. These are sometimes called 
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brainwaves, though this use is discouraged, because the brain was not known to broadcast 

electrical waves. The EEG offers a medium for the brain function test, but in clinical use it is 

a "gross correlate of brain activity". We actually do not measure the electrical currents, but 

rather the potential differences between different parts of the brain 

EEG applications in clinic have become more and more favorable because of its 

advantages of economy, safety, and convenience. EEG can be used for detecting apoplexy, 

epilepsy, cephalitis, etc. EEG studies have also been employed in patients who are deeply 

unconscious, to distinguish between brain death and possible reversible conditions. And it is 

also used to investigate other conditions that may affect brain function such as strokes, brain 

injuries, liver and kidney disease and dementia. In this study, we adopted 30-channel 

recording montage as shown in Figure 1. 
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Figure 1  Electrode locations of the 30-channel recording montage. 

This Section introduces the main theories and methods applied in this study, including 

the wavelet transform, Mahalanobis distance (MD), fuzzy c-means, and the spatial-microstate 

analysis of the brain. The method for feature classification and clustering was named as 

Mahalanobis fuzzy c-means (MFCM) because we adopted the Mahalanobis distance in the 

fuzzy c-means algorithm. 

    This study was aimed to analyze the brain microstates for two groups of subjects: 

Chan-meditation practitioners and normal, healthy persons within the same age group. The 

meditation duration lasted for almost 50 minutes. We extracted four-second segments for 

brain microstates analysis. How to select appropriate EEG segments, hence, became 

important. Our previous study demonstrated that frontal alpha was highly correlated with 
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meditation state, differing from the occipital alpha often observed in normal subjects during 

eye-closed relaxation. Therefore, we focused on the analysis of the frontal-alpha brain 

microstates. The first task thus was to identify the occurrence of frontal-alpha activities. 

Hence we developed the pattern recognition technique to cluster the alpha activities into 

frontal-, parietal-, and occipital-alpha segments. And we analyzed the frontal and occipital 

alpha in meditation and the others (parietal alpha, occipital alpha) in relax by brain microstate. 

The concept of MD includes the correlations of the data. We thus identified patterns of 

similarity based on this characteristic. In the study, brain spatial distributions were clustered 

by the approach of unsupervised pattern recognition. The aim was to group similar objects 

together. As a measure of similarity, the MD can be used to link similar populations together 

by computing the MD between population means (centroids). In combination with FCM, the 

MD replaced the Euclidean distance in the membership value function. Clustering scheme 

applying the fuzzy concept together with data correlation could achieve better efficiency. 

Results of clustering were then investigated by brain microstate analysis. 

 

II.1 Outline of the scheme 

The entire scheme applied in this study is illustrated in Figure 2. This block diagram 

describes the whole scheme correlating different theories and methods to accomplish our aim 

of characterizing the multi-channel EEG spatial behaviors. Following this flowchart, details 

of theories and methods will be introduced. To quantify alpha power, we applied wavelet 
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analysis to 2-second windowed segments. Based on the block diagram in Figure 2, we then 

present the detailed concept and mathematics of each method in the following sections. 

Firstly, EEG signals were pre-filtered by a band-pass filter with pass band 0.5 – 50 Hz. In 

the next step, wavelet analysis was applied to each 2-second EEG epoch to decompose raw 

EEG into characteristic rhythmic patterns. The epoch was identified to be alpha-dominated if 

the alpha power was at least 50% the total EEG power. 

 In MFCM (Mahalanobis Fuzzy C-means) clustering, we must find the initial cluster 

centers first. This study applied FCM for the determination of the initial centers. Difference 

between MFCM and FCM is that the correlation of data is adopted in MFCM’s computation, 

and distance computation is related to the distribution of data. In some case of clusters that 

cannot be line-separated, but it could be work in MFCM. In microstate analysis, wavelet 

transform was applied to 131ms-windowed EEG that approximately enclosed the longest 

alpha-wave epoch. Because of we went to analysis the mini-second’s brain state, so the 

window would not too bigger and not too to extract the alpha-power. 
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Figure 2  Flowchart of the entire scheme. 

 

II.2 Alpha Wave Detection 

    For researching the effects of the alpha-wave, it is important to make sure that a trail of 

EEG is alpha dominate. We use wavelet transform to extract the wavelet coefficients of α, β, γ, 

δ, θ waves, and reconstructed them to calculate the α, β, γ, δ, θ power. Eq. (1), defines ρ  as 

EEG signal 

Band-pass filter  
(pass-band: 0.5- 50Hz) 

Extraction of alpha power 
by wavelet analysis 

MFCM (Mahalanobis 
Fuzzy C-means) 

clustering 

Segmentation analysis

Obtain landscape and 
extract dipole vector 

Find maxima GFPs of 
EEG 

Microstate 
Analysis 
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the percentage of α power to the total power. If 50%ρ >=  we call the EEG is alpha 

dominate. 

100%p
p p p p p

α

α β γ δ θ

ρ = ×
+ + + +

                               (1) 

    Figure 3 plots a 5-second EEG signal. We computed the ρ  value for each 1-second 

epoch. It is obviously that the signal is alpha dominated when 50%ρ >= ; while the epochs 

with 50%ρ <  have no alpha rhythm. This example clearly demonstrates that ρ-criterion 

method allows us to detect alpha successfully. To deal with 30-channel EEGs, we identifies a 

given segment to be alpha dominated if anyone channel satisfies the ρ-criterion. 

 

Figure 3  Alpha detection: the session with 50%ρ >= is defined as alpha dominated. 

 

II.3 Mahalanobis Fuzzy C-Means (MFCM) 

Techniques based on the measurement of distances between quantitative features or 

attributes commonly apply such distance measures like Euclidean distance (ED) and 

Mahalanobis distance (MD). Both distances can be calculated either in the original variable 

space or in the principal component (PC) space. The ED is easy to compute and interpret, yet, 

this is not the case for the MD. Nevertheless, MD provides better results of feature clustering 

because it measures the correlations between variables[14,15]. In a sense, MD can be used to 
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determine the degree of similarity of an unknown variable to the known one. It differs from 

Euclidean distance in that it takes into account the correlations of the data and is 

scale-invariant, that is, independent of the scale of measurements. 

    Fuzzy c-means (FCM) is a fuzzy classifier based on the cluster means. Instead of 

reaching a crispy decision like “0/1”, “true/false”, or “yes/no”, fuzzy allows the degree of truth 

of a statement ranging between 0 and 1. It is more suitable and feasible for classification and 

analysis of most empirical biomedical data. In this study, we employed MD distance 

measurement in the membership value of FCM and compared the difference of classification 

results with or without correlation computation. 

II.3.1 Mahalanobis Distance 

    The correlation is calculated from the inverse of the variance-covariance matrix of the 

data. However, the computation of variance-covariance matrix could cause problems. When 

the empirical data are measured over a large number of variables (for example, channels), 

they may contain a large amount of redundant or correlated information. The resulting 

variance-covariance matrix may become a singular or nearly singular matrix that can not be 

inversed. 

    In the case of object-i with 30 dimensional map ( )1 2 30, ,i i i ix µ µ µ= L , the ED with 

regard to the center map can be calculated for each object. Assume totally N objects, ED for 

object-i is computed as 

2 2 2
1 2 301 2 30( ) ( ) ( )i i i iED µ µ µ µ µ µ= − + − + −L  for i = 1 to N,          (2) 
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Where 1iµ to 30iµ are the variables of object-i, 1µ and 30µ are the means the variables of 

center objects. 

To be able to compute the MD, first the variance-covariance matrix xC  is calculated: 

1 ( ) ( )
( 1)

T
x c cC X X

N
=

−
,                                         (3) 

where the X  is the data matrix containing N objects in the rows, cX  is the data matrix 

X subtracted by the variable means X ; ( )cX X X= − . For the 30 dimensional map, X  

can be defined as : 

1,1 1,2 1,30

2,1 2,2 2,30

,1 ,2 ,30N N N

X

µ µ µ
µ µ µ

µ µ µ

 
 
 =
 
 
 

L

M O M

L

    N subjects.                            (4) 

The MD for object-i ix  is then 

1( ) ( )T
i i x iMD x x C x x−= − −                                       (5) 

where x  is the center of the data.  

Figure 4(a) plots the simulated data for two variables 1µ  and 2µ  together with the 

circles representing the equal EDs with regard to the center point. Figure 4(b) plots the 

simulated data for two variables 1µ  and 2µ  together with the ellipses representing the equal 

MDs with regard to the center point. This example illustrates the effect of taking into account 

the variance-covariance matrix of the data points. 
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Figure 4 The distances to the center of the data, (a) with the circles representing the equal EDs, (b) with the 

ellipses representing the equal MDs. 

 

II.3.2 Mahalanobis Fuzzy C-Means Algorithm 

The fuzzy-based classification algorism was improved by the scheme of c-means. By 

proper design of the membership function, we may improve the performance of classification. 

FCM (Fuzzy c-means) is different from c-means. Method of c-means performs poorly when 

the data set is fuzzy.  

In this study, we employed the Mahalanobis FCM algorithm. Mahalanobis FCM 

algorithm evaluates the MD instead of ED in the membership-function construction. To 

introduce Mahalanobis FCM, we firstly summarize the parameters and variables in Table 1. 

 

 

 

Table 1  Parameters and variables used in Mahalanobis FCM. 
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Parameters 

c number of clusters 

chn  the variable’s degree 

D setting number of iterations 

ε allowed deviation 

β exponent weight 

N the number of objects 

k the computing iteration 

{ }|1iX x i N= ≤ ≤  input data matrix, with every row is an 

object. 

iX  data matrix belonging to ith class 

{ }0 0 ,1iY y i c= ≤ ≤  initial centers 

Outputs 

{ } ,1iY y i c= ≤ ≤  centers 

( ) ,1 ,1iy i c j Nχ ≤ ≤ ≤ ≤  membership value 

 

 

 

The strategy of Mahalanobis FCM analysis is described below. 

Step1： 
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        Initialization: ,0 00, i ik y y= = , 1 i c≤ ≤  

Step2： 

        Calculate the variance-covariance matrix and the MDs from data to centers 

        , , ,
1 ( ) ( )

( 1)
T

i k i k i kC X X
N

=
−

 , 1 i c≤ ≤  and 1 j N≤ ≤   (6) 

1
, , , ,( ) ( )T

ij k j i k i k j i kd x y C x y−= − − , 1 i c≤ ≤  and 1 j N≤ ≤  (7) 

Step3： 

        Compute the membership value 

12
1

,
,

1 ,

c
ij k

ij k
l lj k

d
d

β

χ

−

−

=

 
  =    
   

∑ , 1 i c≤ ≤  and 1 j N≤ ≤ . (8) 

        If 0l l=  and 
0 , 0l j kd = , we let 

0 ,l j kχ =1, ,ij kχ =0 ( 0i l≠ ) 

Step4： 

        Compute the new centers by, 

        
,

1
, 1

,
1

N

ij k j
j

i k N

ij k
j

x
y

χ

χ

=
+

=

=
∑

∑
 (9) 

Step5： 

        If 
1

22

, 1 ,
1

c

i k i k
i

y y ε+
=

 
− <  

∑ , 

        let , 1i i ky y += , 1 i c≤ ≤ ; ,ij ij kχ χ= , 1 i c≤ ≤  and 1 j N≤ ≤ . 

Terminate the iteration. 

Step6： 

        If k D= , terminate the iteration without attaining converged result.  
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If k D< , update the counter 1k k= + , repeat Steps 2 to 6. 

 

    Since the data have not been classified in the first run of iteration, iX  are not ready at 

the step 2. We thus need to initialize the values of iX . Note that the resulted output may vary 

with the initial centers. Previous research showed that the initial centers significantly affected 

the output. In addition, we developed the scheme of estimating the initial centers by FCM and 

conducting feature clustering by Mahalanobis FCM. 

 

II.3.3 The number of clusters 

    Beginning the clustering we should set the clustering numbers, and this number is 

decided by the correlation coefficients of the centers of clusters; when an correlation 

coefficients larger than θ  that it indicates two cluster are similar, then the number will 

subtracted by one. So the initial number of clusters should be large. And in the past of our 

group’s researches, we decided the 0.3θ =  as an suitable number, the cluster could be 

distinguished in this situation. 

II.4 Brain Spatial Microstates 

Researcher have disclosed changes of alpha power in each cerebral-cortex region under 

different states. These studies show that spontaneous alpha exhibits different distributions 

owing to the variation of alpha sources or the propagation ways. Most substantially, alpha 

distribution might be related to the states of alertness. In these studies, alpha power was 
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calculated by short-time spectral analysis based on Fourier-transformation method within a 

specific time window. Notice that Fourier approach is restricted by the piecewise stationary 

property that requires a narrow window of analysis and the frequency resolution that desires a 

wide window. In general, the window width is in the range from 1 to 5 seconds. However, 

from the viewpoint of the microscopic neural activities, the message is transmitted on the time 

scale of mini-second. The traditional FFT method is restricted to the window length and is 

difficult to explore the cerebral microstate.  

In the research of Lehmann [16,17], he considered that the consistent neural activities 

would results in higher Global Field Power (GFP). The GFP is defined as the sum of the 

powers of all recoding channels at a specific sampling moment. The activity of each neuron 

could be considered as an electrical dipole vector including magnitude and direction. If each 

vector is uncorrelated with others, the activities would be canceled each other. In some 

conditions, neurons are driven by the same source that leads to a large GFP. As larger GFP 

often infers better signal-to-noise ratio (SNR), the driven response can be more significant 

with less noise interference. The appearance of local maximal GFP’s is thus an appropriate 

reference for choosing representative brain mappings (landscapes) to be utilized in the spatial 

microstate analysis. The sites of extremes (maximum and minimum) of a particular brain 

mapping compose a current dipole model generating the brain potential distribution recorded 

on the scalp. 

We analyzed the brain microstates for a given time period ‘segment’. A segment is a 
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continuous time duration within which the electrode sites of maximal and minimal potential 

are almost immobile (staying in a small region). Alternatively speaking, dipole vectors within 

a segment are stationary in a sense. A spatial segmentation algorithm was developed to 

separate different segments of brain topographical activities. Each particular segment class 

contains brain mappings with two sites of extremes appearing most frequently at a given 

region. As a consequence, the method adopted in this thesis provides rather local and subtle 

temporal information which cannot be accessible based on conventional Fourier analysis.  

Lehmann [16,17] used the raw EEG data (potentials on the recording sites) to extract the 

brain landscapes of interest. His method is not practicable for our aim on the analysis of 

alpha-rhythmic behaviors. We applied the alpha-power for the brain landscape for the 

microstate analyzing. 

A number of approaches and methods have been developed to analyze the EEG signals 

in time, frequency, and spatial domains. A number of methods have been proposed to explore 

various EEG features, in either macroscopic or microscopic aspects. Each particular method 

calls for different lengths of EEG segments and different numbers of channels. In our study, 

we firstly performed feature clustering for 20 minutes EEG signals based on the spatial 

characteristics. Then those 4-second EEG epochs with particular topographic features were 

extracted for microstate analysis. We will demonstrate that, based on a short EEG epoch of 

only a few seconds, the microstates method provides a way of exploring the brain 

topographical behaviors under Chan meditation. 
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II.4.1 Global Field Power (GFP) 

Global field power (GFP) at a given time instant represents the summation of EEG 

powers of all channels at that particular time t. A high GFP stands for a potential distribution 

with many peaks and troughs. According to [18], brain mappings with maximal GFP’s 

normally have better SNR (signal-noise-ration) performance. Hence, GFP provides a 

reference for us to select the appropriate time instants for microstates analysis. Assume a 

series kA  represents the data of channel- k . GFP is a function of time as shown below: 

1/ 2
2

1

1( ) ( )
chn

k
kch

GFP i A i
n =

 
=  
 

∑ ,  (10) 

Where i represents the time point of discrete time signal and chn  is number of channel. In 

this thesis, the chn  is defined as 30. 

    Figure 5 displays the GFP of a one-second EEG epoch. Apparently, GFP oscillates at a 

rhythm twice the EEG frequency due to the rectification effect. 
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Figure 5  The GFP of 1 second EEG epoch. 

 

Since alpha activity was our major focus, we applied wavelet decomposition to raw 

EEG to extract alpha-band (8-12Hz) patterns before the GFP evaluation. As a consequence, 

we could reduce the contamination from other rhythmic bands, for example, delta (0-4Hz), 

theta (4-8Hz), and beta (>20Hz). We then computed the GFP of alpha-dominated EEG.  

 

II.4.2 Segmentation Method 
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A brain microstate is defined as the constant landscape (brain topographical mapping) 

that lasts for a momentarily continuous time segment. The landscape was obtained by a 

131msec moving window. Compute the power in the window and it results a 30 dimensional 

map. Note that we recorded 30-channel EEG in our experiment with a sampling rate of 1,000 

Hz. Within a 4-second EEG epoch, we can obtain almost 4,000 maps. Previous study [18] has 

demonstrated that maximum GFP normally resulted in a good signal-to-noise ratio. This is 

accordingly a moderate clue for choosing the representative maps. We thus focused on the 

locations of extremes (maximum and minimum power value) of brain mappings.  

In our study, brain microstates are characterized by the current dipole vector pointing 

from the minimum to the maximum potential of the multichannel EEG mapping on the scalp. 

As a consequence, it becomes important to determine the appropriate locations (EEG 

channels) where extremes occur. Sometimes the extremes might be influenced by the noise. 

To deal with the noise problem, we developed an approach for better extracting the extremes. 

First, we employed the spherical-coordinate model of the EEG electrodes to compute 

the average distance Dn between Cz and each of the rest 29 electrode sites. We then computed 

the local average power (LAP) of brain potentials within the Dn-radius circle centered on each 

channel. From the set of 30 local average powers (LAP’s), extremes (maximum and minimum) 

could be determined in a sense of better statistical significance. Finally, the centered electrode 

of maximal and minimal LAP forms the dipole vector of the brain microstate.  

In order to obtain the data with an optimal SNR, only the maps at the peaks (local 
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maxima) of GFP temporal sequence were selected for brain microstates analysis. These brain 

mappings were reduced to the locations of the extremes (maximum and minimum power 

value).  

The so-called segment of a microstate begins with a particular brain potential map BPM1 

characterized by a given dipole vector, and continues as long as the succeeding maps at the 

GFP peaks come up with the same dipole vector. That is, minimal and maximal LAP locates 

at the same sites as those of the beginning dipole vector obtained from BPM1. The segment 

ends if the extreme LAP sites are out of range and continues if the sites are in the pre-defined 

range. The duration of a segment can be obtained straightforwardly. And the class of a 

segment is defined by the extreme LAP sites whose have the highest occurrence times. 

 In each group, we analyzed four parameters: a) number of maximum GFPs per seconds, 

b) average duration of a segment, c) number of segments per second, and d) maximum 

duration of the segments. 

 

II.4.3 Selection of the Window of Extreme LAP Site 

    In the microstates analysis, we need to designate a circular window for justifying 

whether the extreme LAPs belong to the same microstate. Table 2 lists the results of an 

experimental subject with frontal alpha obtained by different threshold ( Dn : same as the Dn 

before, ie, average of 29 distances from Cz to others). The threshold is used as the radius of 

the circular window. 
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A larger threshold could cause the different microstates as the same state, and on the 

other hand, a smaller threshold could separate one microstate into several segments. Either a 

small or a large threshold may not reliably reflect the evolution of microstates, so we had to 

find a suitable range for this threshold. According to our experiment, the threshold in the 

range of 0.7Dn ~ 1.5Dn provides obviously different dipole vectors with the range of 0.5Dn 

and 2Dn ; while the locations of dipole vectors in range of 0.7Dn ~ 1.5Dn are about the same 

as the frontal alpha, so it represent that the efficacy of segmentation are quiet the same in this 

region. Hence the threshold in this range (0.7Dn ~ 1.5Dn) is feasible. This study adopted Dn as 

the threshold. 

Table 2  Results of microstate analysis with different thresholds 

Threshold 0.5 Dn 0.7Dn Dn 1.5Dn 2Dn 

Dipole 
strength 
(mv^2) 

96.5 200 197 173 67 

Dipole 
location 

CPZ – O1 FCZ – P8 FCZ – P8 FZ – P8 O1 – TP8 

 

 

II.5 Experimental Protocol 

As illustrated in Figure 6, the entire recording experiment involved three sessions: pre-, 

mid-, and post-meditation session for experimental subjects who have been practicing Chan 

meditation, and pre-, mid-, and post-relaxation session for control subjects that are normal, 
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healthy people within the same age range as the experimental subjects.  

 

Figure 6  Experimental protocol. 

 

    In this study we selected eight healthy control subjects and eight healthy experiment 

subjects, and they were no medical or psychological disorders present.  

 

 

III  Experimental Results 

 

Section III discusses the experimental results of this research study. The content is 

organized according to two main tasks conducted in the study: 1) EEG spatial feature analysis 

and classification, and 2) brain microstate analysis, which are presented in Sections III.1 and 

III.2, respectively. 

Inter-subject and intra-subject variations of EEG signals are inevitable and significant. 

Brain spatial microstate is undoubtedly time-dependent. Hence it is important to select the 

epoch of interest from the long EEG record. We used the spatial (brain-mapping) 

classification scheme to extract consecutive four-second epoch within the same class; and 

then analyzed the microstate of the epoch. This chapter presents the results of spatial 
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classification and microstate analysis. 

 

III.1 Results of Brain-Mapping Classification 

In this section, we report the results of classifying brain topographical mappings by 

Mahalanobis FCM. In addition, results are compared between experimental and control group. 

As mentioned in II.1, wavelet analysis was applied to each 2-second (pre-filtered by a 

band-pass filter) EEG epoch to decompose raw EEG into characteristic rhythmic patterns. The 

epoch was identified to be alpha-dominated if the alpha power was at least 50% the total EEG 

power 

 

III.1.1 Control Subjects   

Figures 6 to 8 display the classification results of one representative subject (20040315) 

in the control group. The results were classified into three clusters (classes). Notice that the 

color charts reflect the associate cluster (Cluster 1, 2, or 3) identified at the time instant of the 

2-sec window centering. The color charts thus display the temporal evolution of 

brain-mapping cluster.  
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Figure 6  Results of interpretation and classification of EEG brain mappings for a control subject in the 

pre-session background recording (before main session of relaxation). 
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Figure 7  Classification result of one control subject in the main-session recording. 
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Figure 8  Classification result of one control subject in the post-session recording. 

 

 

According to the results in Figures 6 to 8, all clusters derived contained no frontal-alpha 

activity for all the recording sessions. Very few control subjects had frontal alpha cluster. 

Table 3 shows the correlations between each pair of cluster centers. Table 4 lists the distance 

between each pair of cluster centers, while Table 5 lists the standard deviation of all members 

belonging to the same cluster. The inter-cluster distance were larger than the within-cluster 

standard deviation, justifying the effectiveness of this classification scheme. 

Table 3  Correlations between clusters 

Cluster\Cluster 1 2 3 
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1 1 -0.105 -0.585 

2 -0.105 1 -0.745 

3 -0.585 -0.745 1 

 

Table 4  Distance between cluster centers 

Cluster\Cluster 1 2 3 

1  0.742 0.905 

2 0.742  1.5773 

3 0.905 1.5773  

 

Table 5 Number of each cluster and standard deviation of cluster members 

Cluster number Standard deviation 

1 109 0.550 

2 87 0.675 

3 86 0.646 

 

 

III.1.2 Experimental Subjects 

Figures 9 to 11 display the interpretation and classification results of an experimental 

subject (20040306). Three clusters were derived. Same as previous figures, the color bar 
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charts display the temporal evolution of brain-mapping cluster. 

 

 

Figure 9  Results of interpretation and classification of EEG brain mappings for an experimental subject in the 

pre-session background recording (before main session of meditation). 
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Figure 10  Classification result of one experimental subject in the main-session (Zen meditation) recording 



 33

 

Figure 11  Classification result of an experimental subject in the post-session recording (after main session of 

mediation). 

 

From Figures 9 to 11, alpha activities apparently moved toward the frontal regions for 

the meditation subject. In addition, frontal alpha increased in the meditation session that 

occupied approximately one-third record length of the main session. Table 6 shows the 

correlations between the three class centers, and Table 7 and 8 show the distance between 

centers and the standard deviation. The distances between centers are also larger than the 

standard deviation. 
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Table 6  Correlations between clusters 

Cluster\Cluster 1 2 3 

1 1 -0.620 -0.851 

2 -0.620 1 0.116 

3 -0.851 0.116 1 

 

Table 7  Distance between cluster centers 

Cluster\Cluster 1 2 3 

1  0.938 1.390 

2 0.938  0.624 

3 1.390 0.624  

 

Table 8  Number of each cluster and standard deviation of cluster members 

Cluster number Standard deviation 

1 55 0.603 

2 57 0.632 

3 55 0.525 

 

III.2 Results of Microstate Analysis 

In the analysis of brain topographic (or, spatial) microstates, we focused on particular 
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features extracted by classification in previous sub-section. For the experimental group with 

Zen- meditation experience, four-second frontal alpha and occipital alpha were selected. 

However, control subjects in this study appeared to have rare frontal-alpha activity. We 

accordingly only analyzed the four-second occipital alpha for the control group. 

 

III.2.1 Frontal-alpha and occipital-alpha microstate in experimental group 

According to the results in Table 9 and Figure 12, average duration of the alpha brain 

microstate demonstrates that frontal alpha exhibits a longer, continuous average duration of 

microstate. Figure 13 displays the results of dipolar-vector representation for modeling 

frontal-alpha (FA) and occipital-alpha (OA) microstates. One phenomenon to be further 

investigated is that, FA (OA) dipoles might emerge in the regions other than frontal (occipital) 

area. 

 

Table 9  Frontal-alpha (FA) and occipital alpha (OA) microstate analysis for experimental subjects (4-second 

epoch). 

Subject 1 2 3 4 5 6 7 8 Mean S.D. 
Number of maximum GFPs per second 

FA 25 26.8 28.5 22.8 23 25.8 28.3 20.8 25.1 2.8 
OA 27.5 26.5 27.5 26 28.5 24.8 29.8 23.3 26.7 2.1 

Average duration of an alpha brain microstate (in ms) 
FA 77.0 82.2 83.1 67.4 99.3 88.2 80.2 92.9 83.8 9.8 
OA 63.9 88.7 64.5 70.0 77.5 70.2 58.0 79.3 71.5 9.9 

Number of alpha brain microstates per second 
FA 7 6 6 6 6 7 7 5 6.3 0.7 
OA 7 7 7 6 5 6 9 6 6.8 1.0 
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Maximum duration of an alpha brain microstate (in ms) 
FA 198 251 237 221 251 242 197 172 221 29 
OA 187 182 202 245 278 187 167 163 201 40 

 

 

 

 

 

 

 

Figure 12  Average duration of brain microstate segments( frontal alpha and occipital alpha) 

 

Figure 13  Dipolar vector model for alpha brain microstate with the filed minimum and maximum represented 

by circle and black dot, respectively. 

 

III.2.2 Comparison of occipital-alpha microstates in experimental and control groups 

The result of average duration of microstate for these two groups shows no obviously 
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difference (meditation subjects: 71.5; relax subjects: 68.4). Although the control group’s 

number of microstates is little larger, but its duration is less than experimental group. So we 

think there is no very difference between these two groups. Figure 15 shows the locations of 

the two extreme poles, because of the analyzing signal selection of these two group is 

occipital alpha, the most locations are match with the classification result. 

 

Table 10  Microstate analysis of 4-second occipital alpha mappings for the experiment and control subjects. 

Subject 1 2 3 4 5 6 7 8 Mean S.D. 
Number of maximum GFPs per second 

MD 28 27 28 26 29 25 30 23 26.7 1.9 
Relax 22 25 26 27 24 27 25 27 25.3 1.7 

Average duration of an alpha brain microstate (in ms) 
MD 63.9 88.7 64.5 70.0 77.5 70.2 58.0 79.3 71.5 9.9 

Relax 73.8 75.8 63.7 63.4 69.3 69.6 51.5 79.8 68.4 8.8 
Number of alpha brain microstates per second 

MD 7 7 7 7 5 6 9 6 6.6 1.0 
Relax 6 6 7 8 6 7 7 5 6.3 0.8 

Maximum duration of an alpha brain microstate (in ms) 
MD 187 182 202 245 278 187 167 163 201 40 

Relax 241 161 188 234 202 247 171 197 205 32 
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Figure 14  Average duration of brain microstate segments(mediation and relaxation) 

 

 

Figure 15  Dipolar vector model for alpha brain microstate with the filed minimum and maximum represented 

by circle and black dot, respectively. 

 

III.2.3 Results in different length of EEG  

    Since the research of microstates[18] used four seconds EEG for analysis, and the 

average duration of microstate are about 60~100 ms. So we interest that the analysis time can 
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be reduced or not. Table 11 shows the results of microstate analysis in different length of EEG 

signal (2, 2.5, 3, 3.5, and 4 seconds) in frontal alpha and occipital alpha of experimental group. 

The result shows the same thing that the average duration of microstate in frontal alpha is 

longer than in occipital alpha. 

 

Table 11  The microstate analysis results of 4-seconds EEG with the experiment subjects of frontal alpha (FA) 

and occipital alpha (OA) 

Average duration of alpha brain microstate 
Subject 1 2 3 4 5 6 7 8 Mean S.D.
2 seconds EEG 

FA 62.6 86 67 80.1 90.7 92.8 77.3 70.5 78.4 11.1
OA 57.7 104.5 60.1 67.5 77.5 84.8 73.4 70.8 74.6 15.0

2.5 seconds EEG 
FA 73.2 89.3 75.7 89.3 115.8 89.2 68.7 118.9 90.0 18.7
OA 41.2 77.6 51.2 66.8 63.3 69.8 66 72.1 63.5 11.8

3 seconds EEG 
FA 68.9 107.5 84.8 70.6 90.3 85.2 74.7 113.5 86.9 16.4
OA 63.5 64.1 64.0 65.2 73.2 57.4 79.3 95 70.2 12.1

3.5 seconds EEG 
FA 67.0 83.6 83.6 69.4 72.7 79.1 67.6 88.7 76.5 8.4
OA 72.8 75.2 58.0 64.5 65.0 70 83.9 84.6 71.8 9.4

4 seconds EEG 
FA 77.0 82.2 83.1 67.4 99.3 88.2 80.2 92.8 83.8 9.8
OA 63.9 88.7 64.5 70.0 77.5 70.2 58.0 79.3 71.5 9.9

 

 

III.2.4 Results in frontal alpha and occipital alpha of experimental group (only adopts 

maximum power location of maps) 

    In 3.2.1~3.2.3, most of results of Average duration of an alpha brain microstate are less 
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than 100 m-seconds, which is considered as a shorter duration of state. So we shown the 

dipoles( in maxima GFPs) in one minute (Figure 16). And we found that the location of 

minimum power changed frequently, the minimum power location is usually in the edge; but 

the values of power in the edge locations are very close, so we think the frequently changed 

location of minimum power cause the results of duration of alpha brain microstate shorter. 

Hence following shows the microstate results which the segment only adopts the maximum 

power location. 

 

 

Figure 16  Dipoles appear in one minute follow by the time 

 

Table 12 lists the results of experimental subjects of FA and OA, the average duration of 

an alpha brain microstate of FA is 208 m-sec that is longer than OA’s, and the maximum 

microstate duration is 517 m-sec also longer than OA’s. Table 13 shows the results between 

experimental subjects and control subjects (occipital alpha); the difference of results is not 
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obviously. Figures 17 and 18 plot the maximum poles locations, and it generally matches with 

the brain mappings. 

 

Table 12  The microstate analysis results of 4-seconds EEG with the experiment subjects of frontal alpha (FA) 

and occipital alpha (OA) with only maximum power adopted 

Subject 1 2 3 4 5 6 7 8 Mean S.D. 
Number of maximum GFPs per second 

FA 25 27 23 25 24 25 27 22 25 1.7 
OA 25 26 25 24 23 26 28 23 25 1.7 

Average duration of an alpha brain microstate (in ms) 
FA 206 148 234 328 219 172 145 195 208 59 
OA 168 115 197 226 167 199 142 193 175 35 

Number of alpha brain microstates per second 
FA 4 5 3 3 3 6 3 4 4 1.1 
OA 4 6 4 4 5 4 5 4 5 0.8 

Maximum duration of an alpha brain microstate (in ms) 
FA 474 393 524 767 736 397 350 492 517 156 
OA 451 318 597 576 348 550 394 580 477 113 

 

 

 

Figure 17  Maximal polarities for the experimental subjects of frontal alpha (FA) and occipital alpha (OA). 
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Table 13 The microstate analysis results of 4-seconds EEG with the experiment subjects of mediation (MD) and 

control subjects of relaxation (Relax) with only maximum power adopted 

Subject 1 2 3 4 5 6 7 8 Mean S.D. 
Number of maximum GFPs per second 

MD 25 26 25 24 23 26 28 23 25 1.7 
Relax 26 26 24 25 25 27 26 27 26 1.1 

Average duration of an alpha brain microstate (in ms) 
MD 168 115 197 226 167 199 142 193 175 35 

Relax 193 126 165 234 152 215 129 138 169 41 
Number of alpha brain microstates per second 

MD 4 6 4 4 5 4 5 4 5 0.8 
Relax 5 5 5 4 4 4 5 6 5 0.7 

Maximum duration of an alpha brain microstate (in ms) 
MD 451 318 597 576 348 550 394 580 477 113 

Relax 497 249 388 455 502 475 511 379 432 89 

 

 

 

Figure 18  Maximal polarities for experimental subjects in mediation (MD) and control subjects in relaxation. 

 

IV.  CONCLUSION AND DISCUSSION 

In this study, we mainly proposed a novel approach for analyzing the spatial-temporal 
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characteristics of various alpha rhythms down to the micro-second portrait, instead of the 

long-time property. In our findings, experimental subjects apparently exhibited more frontal 

alpha than control subjects. Preliminary results are summarized as follows. Firstly, average 

duration of the alpha-microstate segment is longer in frontal alpha than in occipital alpha. 

Second, the number of segments (the occipital alpha state shows more segments than does 

frontal alpha). And third, the minimum poles of dipole vectors make the average duration 

shorter. In the case, we need to discard those small poles in order to derive a reasonable 

estimate of the microstates duration. 

   We proposed a clustering method for the alpha brain maps classification which has been 

demonstrated to perform effectively. The classification results tend to be classified into frontal, 

central and occipital maps for the alpha microstate analysis. The results of microstate analysis 

reveal significant difference between the frontal-alpha and occipital-alpha groups in 

mediation. Longer duration of alpha microstate occurs in the frontal-alpha group. In fact, 

researches have shown that, in mediation, the region of frontal cortex is related to the 

hormone modulated [29]. In addition, more stable alpha brain was reported for such kind of 

reaction. 

Brain microstate analysis can be extended to the exploration of other EEG features. 

Although current study was focused on alpha dipolar-vector model, it is an important and 

appealing issue on the variations of alpha rhythmic compositions based on multi-resolution 

spectral analysis. The phenomenon might be correlated with brain oscillatory model of alpha 
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rhythms. Then, the further step may be taken to investigate the spatio-spectral microstate of 

alpha brain either during Chan meditation or at normal relaxation. 
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Report for the academic trip to Beijing and Baoding from July 8 to 

July 15, 2009 

 

 

In this trip, I have accomplished two important tasks: 

1. participation in the International Conference of Machine Learning and Cybernetics 

(ICMLC 2009) held in Baoding, Hebei (July 12‐15), and 

2. successful establishment of Cross‐Strait Cultural/Educational relationships between 

National Chiao Tung University in Hsinchu and most well‐known, top‐ranked universities 

in Beijing (北交大、北大、北清華、北理工、北航、北郵). 

 

In the conference ICMLC 2009, my paper “Microstate analysis of alpha‐event brain 

topography during chan meditation” was recommended to compete for the Best paper 

award. I accordingly reported my paper in two sessions, ICMLC and ICWAPR Best Paper 

Award Session and Fuzzy Set Theories and Methods (II) Session in which I played the role of 

session moderator. 
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Abstract: 
This paper reports our preliminary result of microstate 

analysis for the spatiotemporal characteristics of 
Chan-meditation brain wave (electroencephalograph, EEG) 
based on time-varying dipolar-vector model of the α-map. 
Microstate behavior reveals subtle transience of focalized 
event. Multi-channel α-event epochs were identified by 
Wavelet decomposition and feature extraction. Global field 
power was adopted as the criterion to choose α-map 
candidates (normalized α-power vectors), that were further 
classified by Mahalanobis Fuzzy C-means into different 
region-focalization states. Transition between various α-event 
focalization states was ready to be explored via microstate 
analysis. Our findings reveal that Chan-meditation 
practitioners exhibit longer duration of frontal α-event 
microstate, reflecting sustained stability of the brain 
generators. 

Keywords: 
Microstate analysis; electroencephalograph (EEG); Chan 

meditation; wavelet decomposition; Mahalanobis Fuzzy 
C-means (M-FCM); brain mapping; frontal alpha. 

1. Introduction 

For decades, scientific exploration on meditation 
benefits has corroborated the effectiveness of meditation 
practice on the health promotion, hypertension treatment, 
anti-aging, hormone-level regulation, stress manipulation, 
anxiety reduction, etc. [1], [2]. In the course of Chan 
meditation, practitioners experience various states of 
consciousness, according to their subjective narration, that 
transcends the physiological (the fifth), mental (the sixth), 
subconscious (the seventh), and Alaya (the eighth) 
conscious state, and eventually reaches the spiritual realm. 
EEG measuring thus has been intensively studied to explore 
the underlying brain physiological changes correlating to 
various states of consciousness during meditation. 
Numerous studies have been conducted since 1960s [3]–[7]. 
Although the neuro-electrophysiological correlation of 

meditation-elicited consciousness state is still an open 
question, the predominant EEG findings in most meditation 
techniques have implicated the increase in theta- and 
alpha-band power and the decrease at least in alpha 
frequency [2], [5], [7]. 

In the field of EEG study, the spatial or topographical 
features provide an access to the detection of focal EEG 
phenomena that have a relationship to focal pathology or 
brain dynamic origin [8]-[10]. The spatial distribution of 
EEG features over the scalp surface, often called the EEG 
mapping or the brain mapping, offers a quickly pictorial 
assessment of possible event focalization. Such graphical 
display provides an easy and straightforward aid to visual 
inspection of focal activities in clinical diagnosis, yet, 
cannot resolve stable-to-transient behaviors of the focal 
source. 

According to our study on Chan-meditation EEG 
during the past decade, a number of EEG characteristics 
have been found to be evidently linked to the 
Chan-meditation practice [11]-[13]. We have reported our 
findings on frontal alpha activity and beta-dominated 
phenomena, mainly from the temporal and spectral aspects. 
This work was particularly focused on subtle behaviors of 
spatiotemporal shifting of EEG α-event focalization during 
Chan meditation, based on the concept of spatial microstate 
analysis. 

2. Theory and Method 

The EEG content is generally interpreted according to 
the frequency ranges that include δ-wave (0~4Hz), θ-wave 
(4~8Hz), α-wave (8~13Hz), β-wave (13~30Hz), and γ 
(30~70Hz). Researches during the past several decades 
have disclosed the phenomenon that particular EEG 
patterns correlated closely with some physiological, mental, 
or emotional states. For instance, occipital α-wave becomes 
dominant during the eye-closed relaxation; while frontal 
α-wave characterizes a certain stage of inward-attention 



 

 

mindfulness during Chan meditation. 

2.1. Experimental setup and protocol 

This study utilized the 30-channel recording montage 
shown in Figure 1. 
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Figure 1. The 30-channel EEG recording montage 
 

Reference electrode was the linked mastoid MS1-MS2. 
EEG signals were pre-filtered by a band-pass filter with 
pass band 0.5 – 50 Hz (sampling rate 200Hz). We compared 
the α-wave microstates of two groups of subjects, 8 
Chan-meditation practitioners (experimental group) and 8 
normal, healthy subjects without any meditation experience 
(control group) 

The scheme of α-wave microstate analysis can be 
briefly described by the procedure below: 
EEG  Pre-process by bandpass filtering (0.5-50Hz)  
Estimate α-power by Wavelet analysis  M-FCM 
clustering  Derive landscape and corresponding dipole 
vector  Microstates analysis. Experimental Protocol 
involves three sessions (Figure 2), pre-, mid-, and 
post-meditation (relaxation) session for experimental 
(control) subjects. 

 

 
Figure 2. Experimental protocol 

 

2.2. Wavelet analysis for α-power estimation 

According to our previous studies [11]-[13], EEG 
epoch of 2 seconds is appropriate for identifying a typical 

EEG rhythm based on wavelet analysis. Frontal alpha was 
highly correlated with a specific meditation state. We thus 
began with the analysis of frontal-alpha brain microstates. 
To identify the emergence of frontal-alpha activities, we 
applied wavelet transform to extracting the wavelet 
coefficients of α, β, γ, δ, and θ waves and then calculating 
their powers after reconstructing each particular EEG 
rhythm [12]. Next, the α-dominated epochs can be 
extracted by the criterion ρ≥50%, where ρ is the percentage 
of α power to the total power: 

100%p
p p p p p

α

α β γ δ θ

ρ = ×
+ + + +

 (1) 

In this study, an α-dominated epoch only requires at least 
one channel satisfying the ρ-criterion. 

 

2.3. Mahalanobis fuzzy C-means (M-FCM) 

After temporal searching for α-dominated EEG epochs 
(denoted by map xi), we developed the pattern recognition 
scheme, based on fuzzy c-means, to cluster the alpha 
activities into frontal-, parietal-, and occipital-alpha 
segments. And we analyzed the frontal and occipital 
α-wave microstates in Chan-meditation as well as the 
occipital and parietal α-wave microstates in relaxation. 

Fuzzy c-means (FCM) is a fuzzy classifier based on 
the cluster means. Instead of reaching a crispy decision like 
“0/1” or “true/false”, fuzzy allows the degree of truth of a 
statement to range between 0 and 1. It is more suitable and 
feasible for classifying and analyzing the biomedical data. 
In this study, we employed MD (Mahalanobis Distance) 
measurement, instead of Euclidean distance (ED), in the 
FCM membership function reconstruction [14]. In feature 
clustering based on FCM, MD is superior to ED in the 
aspect that MD takes into account the correlations of the 
data set and is scale-invariant. 

Consider xi = (μi1, μi2, …μi30) as the ith sample of 
totally N 30-channel α-dominated brain mappings (briefly, 
α-map) extracted by ρ-criterion. MD distance is computed 
by 

( ) ( )Tixii XxCXxMD −−= −1  (2) 
where X  is the average map of the N α-map samples, Cx 
is the variance-covariance matrix calculated by 

( ) ( )c
T

cx XX
N

C
)1(

1
−

=  (3) 

The centralized data matrix is Xc=(X− X ) where X is an 
N×30 matrix composed of N α-maps extracted from 



 

 

20-minute EEG. 
FCM clustering requires the determination of cluster 

number (c) in advance. Starting from a large value of c, we 
computed the correlation coefficients of the cluster centers. 
Two clusters are identified to be similar and merged 
together when the correlation coefficient is larger than a 
given threshold θ. Empirical value of θ=0.3 provides 
satisfactory result of clustering. 

2.4. Alpha-map spatial microstates 

To investigate the spatial behaviors of event (α-map) 
localization of Chan-meditation brain dynamics, we 
examined the temporal steadiness-versus-transience of focal 
source on a 4-second basis. The concept of microstate 
analysis provides a medium of exploring subtle evolution of 
focal event that might reveal microscopic mechanisms of 
brain dynamics accounting for transcendental state of Chan 
meditation. 

Distribution of brain potentials is modeled by a 
4-dimensional function of time (t) and space (x, y, z). 
Construction of focal source highly depends on selection of 
time instant. According to Lehmann [15], consistent neural 
activities would result in higher global field power (GFP). 
The GFP is defined as the sum of the powers of all EEG 
recoding sites at a specific time. A large GFP often infers 
significant dipolar focalization and, evidently, promises 
better signal-to-noise ratio (SNR) performance. The 
appearance of temporally local maximal GFP is thus an 
appropriate reference for choosing representative brain 
mappings (landscapes) for the spatial microstate analysis. 
The sites of extremes (maximum and minimum) of a 
particular brain mapping compose a current dipole model 
generating the brain potential distribution recorded on the 
scalp. Let Ak denote the EEG potential at channel-k and nch 
be the number of channel. GFP evaluated at time instant i 
is: 

∑
=

=
chn

k
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iA
n

iGFP
1

2 )(1)(  (4) 

Brain microstate is defined as the constant landscape 
(brain-potential topographical mapping) that lasts for a 
momentarily continuous time segment. In our study, the 
landscape was obtained by a 131msec moving window that 
approximately enclosed the longest α-wave epoch. To 
characterize the particular microstate, the current-dipole 
vector, pointing from the minimal to the maximal potential, 
was derived from the landscape. To avoid the effect of noise 
contamination, electrodes of extremes were determined as 
follows. First, distance Dn was computed by averaging all 
the inter-distances between Cz and each of the rest 29 

electrode sites. We then computed the local average 
potential (LAP) of EEG potentials within the radius-Dn 
circular region centered on each channel. The extremes 
were finally determined from the set of 30 LAP values. The 
centered electrodes of maximal and minimal LAP form the 
dipole vector of the brain microstate. 

To quantify the transient against stationary behaviors 
of α-microstates, we define the segment of a microstate as 
the time duration of a particular focalized event 
(current-dipole vector) that produces consistent 
brain-potential mappings. The segment continues if the 
extreme LAP sites are in the pre-defined range and ends if 
the sites are out of range. Note that each segment may 
belong to a particular class defined by the extreme LAP 
sites. Within the same group, four parameters were derived: 
a) number of maximum GFP peaks, b) average duration of 
the segment, c) number of segments per second, and d) 
maximum duration of the segments. 

3. Results 

Based on wavelet decomposition and M-FCM, EEG 
spatial features were analyzed and the extracted α-maps 
were classified into three clusters. Figure 3 displays three 
clusters derived from the α-maps of one experimental 
subject, including occipital, parietal, and frontal α-maps 
(denoted by αO, αP, and αF). 

 
Figure 3. Classification result of one experimental subject 

(in main session) and 10-min temporal evolution 
of different α-map clusters. 



 

 

 
In the beginning 3-min meditation, occipital and 

parietal α maps interweaved. After a particular α-blank 
mindful attention in the mid 3-min, α-event was found to 
propagate toward frontal region at the end of the 10-min 
course. 

Note that, in control group, three α-map clusters 
contain mainly the occipital and centro-parietal α-maps 
(denoted by αO and αCP), as shown in Figure 4, with frontal 
α-maps (αF) diminishing. 

 

 
Figure 4. Classification result of one control subject (in 

main session) and 5-min temporal evolution of 
different α-map clusters. 

 
Microstate analysis for α-event demonstrates that, in 

the experimental group, frontal α-event persists longer than 
occipital α-event (average segment length is 89.8ms for αF 
and 71.5ms for αO, while maximum segment length is 
221ms for αF and 201ms for αO). 

Figure 5 displays the 1-min temporal evolution of 
α-event dipole vector, pointing from minimum (०) to 
maximum (•). Apparently, αF and αO dipoles might 
originate in the regions other than frontal (occipital) area. 
Subtle transience of αF and αO microstates was clearly 
explored in this scheme. 
 

4. Conclusions 

This paper presents a novel approach for exploring the 
spatial-temporal characteristics of various α-maps down to 
the milli-second portrait, instead of long-time trend. 
Wavelet analysis and M-FCM successfully extracted and 
classified various α-maps. Experimental subjects 

apparently exhibited more frontal alpha αF than control 
subjects. In Chan-meditation EEG results, average duration 
of the α-map microstate segment is longer in frontal alpha 
than in occipital alpha. 

 

 
Figure 5. Dipolar vector evolution for α-event 

 
Results of microstate analysis revealed the difference 

of αF group and αO group in mediation. Longer duration of 
microstate occurs in αF, instead of αO. This might be an 
evidence correlating to the neuro-physiological state of 
meditation that involves the region of frontal cortex relating 
to the hormone modulated. Furthermore, sustained stability 
of α-event with this reaction may infer the state of less 
information processing. Consistent increase of frontal alpha 
can be recognized as the major distinction between 
meditation and relaxation. At this stage of meditation, 
according to meditators’ narration, they calmed down their 
mind and shut off their sensors to the outside stimuli by 
concentrating their attention on a specific spot. Such inward 
attention conduct may result in the increase of frontal alpha 
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