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Abstract

In this paper, we propose some decision logic languages for rule representation in rough set-based multicriteria analysis.
The semantic models of these logics are data tables, each of which is comprised of a finite set of objects described by a finite
set of criteria/attributes. The domains of the criteria may have ordinal properties expressing preference scales, while the
domains of the attributes may not. The validity, support, and confidence of a rule are defined via its satisfaction in the
data table.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of knowledge has long been an important topic in many academic disciplines, such as philos-
ophy, psychology, economics, and artificial intelligence, whereas the storage and retrieval of data is the main
concern of information science. In modern experimental science, knowledge is usually acquired from observed
data, which is a valuable resource for researchers and decision-makers. However, when the amount of data is
large, it is difficult to analyze the data and extract knowledge from it. With the aid of computers, the vast
amount of data stored in relational data tables can be transformed into symbolic knowledge automatically.
Thus, intelligent data analysis has received a great deal of attention in recent years.

While data mining research concentrates on the design of efficient algorithms for extracting knowledge
from data, how to bridge the semantic gap between structured data and human-comprehensible concepts
has been a long-lasting challenge for the research community. Kruse et al. (1999) called this the interpretability
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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problem of intelligent data analysis. Since discovered knowledge is only useful for a human user when he can
understand its meaning, the knowledge representation formalism plays an important role in the utilization of
the induced rules. A good representation formalism should have clear semantics so that a rule can be effec-
tively validated with respect to the given data tables. In this regard, logic is one of the best choices. As noted
by Zadeh (1996), humans usually compute with words instead of numbers, so if we can incorporate linguis-
tically meaningful terms into the representation formalism, the induced rules may be more useful to human
decision-makers.

The rough set theory proposed by Pawlak (1982) provides an effective tool for extracting knowledge from
data tables. To represent and reason about the extracted knowledge, a decision logic (DL) was proposed in Paw-
lak (1991). The semantics of the logic is defined in a Tarskian style through the notions of models and satisfac-
tion. While DL can be considered an example of classical logic in the context of data tables, different
generalizations of DL corresponding to some non-classical logics are also desirable from the viewpoint of knowl-
edge representation. For example, to deal with uncertain or incomplete information, some generalized decision
logics have been proposed (Fan et al., 2001; Liau and Liu, 1999, 2001; Yao and Liau, 2002; Yao and Liu, 1999).

When rough set theory is applied to multi-criteria decision analysis (MCDA), it is crucial that preference-
ordered attribute domains and decision classes be dealt with (Greco et al., 1997, 1998, 1999a, 2000, 2001a,
2002, 2004; Slowinski et al., 2002b). The original rough set theory cannot handle inconsistencies arising from
violations of the dominance principle due to its use of the indiscernibility relation. Therefore, in the above-
mentioned works, the indiscernibility relation is replaced by a dominance relation to solve the multi-criteria
sorting problem, and the data table is replaced by a pairwise comparison table to solve multi-criteria choice
and ranking problems. The approach is called the dominance-based rough set approach (DRSA). For MCDA
problems, DRSA can induce a set of decision rules from sample decisions provided by decision-makers. The
induced rules form a comprehensive preference model and can provide recommendations about a new deci-
sion-making environment.

A strong assumption about data tables is that each object takes exactly one value with respect to an attri-
bute. However, in practice, we may only have incomplete information about the values of an object’s attri-
butes. Thus, more general data tables and decision logics are needed to represent and reason about
incomplete information. For example, set-valued and interval set-valued data tables have been introduced
to represent incomplete information (Kryszkiewicz, 1998; Kryszkiewicz and Rybiński, 1996a,b; Lipski,
1981; Yao and Liu, 1999). A generalized decision logic based on interval set-valued data tables is also pro-
posed in Yao and Liu (1999). In these formalisms, the attribute values of an object may be a subset or an inter-
val set in the domain. Since crisp subsets and interval sets are both special cases of fuzzy sets, further
generalization of data tables is desirable to represent uncertain information. In data tables containing such
information, an object can take a fuzzy subset of values for each attribute. To represent knowledge induced
from uncertain data tables, the decision logic also needs to be generalized.

DRSA has also been extended to deal with missing values in MCDA problems (Greco et al., 2001a; Slo-
winski et al., 2002b). A data table with missing values is a special case of uncertain data tables. Therefore,
we propose further extending DRSA to uncertain data tables and fuzzy data tables. In this paper, we present
a logical treatment of DRSA in precise data tables, as well as uncertain and fuzzy data tables. Our approach is
concerned with variants of DL for data tables.

The remainder of the paper is organized as follows. In Section 2, we review the decision logic proposed by
Pawlak. In Sections 3–6, we respectively present generalized DL for preference-ordered data tables, prefer-
ence-ordered uncertain data tables, preference-ordered fuzzy data tables, and pairwise comparison tables.
For each logic, the syntax and semantics are described, and some quantitative measures for the rules of the
logics are defined. Finally, in Section 7, we discuss the main contribution of this paper and indicate the direc-
tion of future research.
2. Classical data tables

In data mining problems, data is usually provided in the form of data tables (DT). A formal definition of a
data table is given in Pawlak (1991).
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Definition 1. A data table1 is a tuple
1 Als
2 No
T ¼ ðU ;A; fV iji 2 Ag; ffiji 2 AgÞ;

where U is a non-empty finite set, called the universe; A is a non-empty finite set of primitive attributes; for
each i 2 A, Vi is the domain of values for i; and for each i 2 A, fi : U! Vi is a total function.

Given a data table T, we denote its universe U and attribute set A by Uni(T) and Att(T), respectively.
In Pawlak (1991), a decision logic (DL) is proposed for the representation of knowledge discovered from

data tables. It is called decision logic because it is particularly useful in a special kind of data table, called a
decision table.2 A decision table is a data table T = (U,C [ D, {Viji 2 A},{fiji 2 A}), where Att(T) can be par-
titioned into two sets, C and D, called condition attributes and decision attributes respectively. Decision rules
relating the condition and the decision attributes can be derived from the table by data analysis. A rule is then
represented as an implication between the formulas of the logic.

The basic alphabet of a DL consists of a finite set of attribute symbols A, and a finite set of value symbols Vi

for i 2 A. The syntax of DL is then defined as follows.

Definition 2

(1) An atomic formula of DL is a descriptor (i,v), where i 2 A and v 2 Vi.
(2) The set of DL well-formed formulas (wff) is the smallest set containing the atomic formulas and closed

under the Boolean connectives :, ^, and _.
(3) If u and w are wffs of DL, then u! w is a rule in DL, where u is called the antecedent of the rule and w

the consequent.

A data table T = (U,A, {Viji 2 A},{fiji 2 A}) relates to a given DL if there is a bijection s : A! A such that,
for every a 2 A, Vs(a) = Va. Thus, by somewhat abusing the notation, we usually denote an atomic formula as
(i,v), where i 2 A and v 2 Vi if the data tables are clear from the context. Intuitively, each element in the uni-
verse of a data table corresponds to a data record, and an atomic formula (which is in fact an attribute-value
pair) describes the value of some attribute in the data record. Thus, the atomic formulas (and therefore the
wffs) can be satisfied or not with respect to each data record. This generates a satisfaction relation between
the universe and the set of wffs.
Definition 3. Given a DL and a data table T = (U,A, {Viji 2 A},{fiji 2 A}) relating to it, the satisfaction
relation �T between U and the wffs of the DL is defined inductively as follows (the subscript T is omitted for
brevity).

(1) x � (i,v) iff fi(x) = v,
(2) x � :u iff x 2 u,
(3) x � u ^ w iff x � u and x � w,
(4) x � u _ w iff x � u or x � w.

If u is a DL wff, the set mT(u) defined by
mT ðuÞ ¼ fx 2 U jx � ug; ð1Þ

is called the meaning set of the formula u in T. If T is understood, we simply write m(u).

A formula u is said to be valid in a data table T (written as �Tu or �u for short when T is clear from the
context) if and only if m(u) = U. That is, u is satisfied by all individuals in the universe.

A DL wff states the properties of individuals in the universe; therefore, it is satisfied by some individuals,
but not by the others. However, the mined knowledge usually relates to the aggregated or statistical informa-
o called knowledge representation systems, information systems, or attribute-value systems.
te that for a general data table, the abbreviation DL can also be used to denote data logic.
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tion of all individuals. Obviously, wffs that are valid in a data table represent a kind of knowledge that
can be induced from the table, since they hold for all individuals. However, not all kinds of useful informa-
tion are in the form of valid wffs. Sometimes, even probabilistic rules are very useful from the viewpoint
of knowledge discovery. To quantify the usefulness of the mined rules, some measures have been pro-
posed (e.g. Yao and Zhong, 1999; Yao and Liau, 2002). The most common measures are support and
confidence.

Definition 4. Let U1 be the set of all DL rules and T = (U,A, {Viji 2 A},{fiji 2 A}) be a data table. Then

(1) the rule u! w is valid in T iff mT(u) � mT(w);
(2) the absolute support function aspT : U1 ! N is
Table
A sum

UnA
1
2
3
4
5
6
7
8
9

10
aspT ðu! wÞ ¼ jmT ðu ^ wÞj;

(3) the relative support function rspT : U1! [0,1] is
rspT ðu! wÞ ¼ jmT ðu ^ wÞj
jU j ; and
(4) the confidence function cfdT : U1! [0, 1] is
cfdT ðu! wÞ ¼ jmT ðu ^ wÞj
jmT ðuÞj

:

Example 5. Let us use an example to illustrate the concept introduced in this section. Assume that Table 1 is a
summary of reviewers’ report for ten papers submitted to a journal. The table details ten papers evaluated by
means of four attributes:

• o: originality,
• p: presentation,
• t: technical soundness, and
• d: overall evaluation (the decision attribute).

By Definition 1, the components of the data table are:

U = {1,2,3,4,5,6,7,8,9,10},
A = {o,p, t,d},
Vo = Vp = Vt = {1 (poor),2 (fair), 3 (good),4 (excellent)},
Vd = {1 (reject),2 (major revision),3 (minor revision), 4 (accept)},
fi(j)(i 2 A, 1 6 j 6 10) denotes the jth element of column i of the table.
1
mary of reviewers’ reports for 10 papers

o p t d

4 4 3 4
3 2 3 3
4 3 2 3
2 2 2 2
2 1 2 1
3 1 2 1
3 2 2 2
4 1 2 2
3 3 2 3
4 3 3 3
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Thus, we have atomic formulas like (o, 4), (p, 1), and (t, 2); and formulas like (o, 4) ^ (p, 3) and
:ðp; 1Þ _ :ðt; 1Þ. The rule r ¼ ðo; 3Þ ^ ððp; 3Þ _ ðt; 3ÞÞ ! ðd; 3Þ is valid, since m((o, 3) ^ ((p, 3) _ (t, 3))) =
{2,9} � m((d, 3)) = {2, 3,9,0}. Furthermore, we have asp(r) = 2, rspðrÞ ¼ 1

5, and cfd(r) = 1.
3. Preference-ordered data tables

For MCDA problems, each object in a data table or decision table can be seen as a sample decision, and
each condition attribute is a criterion for the decision. Since the domain of values of a criterion is usually
ordered according to the decision-maker’s preferences, we define a preference-ordered data table (PODT)
as a tuple
T ¼ ðU ;A; fðV i;�iÞji 2 Ag; ffiji 2 AgÞ;
where T = (U,A, {Viji 2 A}, {fiji 2 A}) is a classical data table; and for each i 2 A, �i � Vi · Vi is a binary rela-
tion over Vi. The relation �i is called a weak preference relation or outranking on Vi, and represents a prefer-
ence over the set of objects with respect to the criterion i (Slowinski et al., 2002b). For x,y 2 U, fi(x) �i fi(y)
means ‘‘x is at least as good as y with respect to criterion i.

To represent the rules induced from a PODT, we introduce preference-ordered decision logic (PODL). The
syntax of PODL is the same as that of DL, except for the form of the atomic formulas. An atomic formula in
PODL is a descriptor in the form of (Pi,v) or (6i,v), where i 2 A and v 2 Vi. The satisfaction relation between
U and the set of PODL wffs is defined in the same way as for DL wffs, except that the satisfaction of an atomic
formula is defined by x � (Pi,v) iff fi(x) � v, and by x � (6i,v) iff v � fi(x). Other semantic notions in DL, such
as validity, support, and confidence, can all be used in the case of PODL without any modifications. The con-
fidence function for PODL rules has also been defined by Greco et al. (2001b).

In Greco et al. (2001a), three types of rules are explicitly identified. We translate these rules into PODL
rules as follows.

(1)
V

i2CðPi; viÞ ! ðPd ; vdÞ, where C � A is a subset of condition attributes, d 2 AnC is a decision attribute,
vi 2 Vi for all i 2 C, and vd 2 Vd.

(2)
V

i2Cð6i; viÞ ! ð6d ; vdÞ, where C � A is a subset of condition attributes, d 2 AnC is a decision attribute,
vi 2 Vi for all i 2 C, and vd 2 Vd.

(3) ð
V

i2C1
ðPi; viÞ ^

V
i2C2
ð6i; viÞÞ ! ððPd ; vdÞ ^ ð6d ; v0dÞÞ, where C1 [ C2 � A is a subset of condition attri-

butes, d 2 An(C1 [ C2) is a decision attribute, vi 2 Vi for all i 2 C1 [ C2, and vd ; v0d 2 V d .
Example 6. Continuing with Example 5, let us assume that each Vi (i = o,p, t,d) is now endowed with a weak
preference relation �i such that 4 �i 3 �i 2 �i 1. Thus, we have atomic formulas like (Po, 4), (Pp, 1), and
(Pt, 2). Let us now consider the following rules:
r1 ¼ ðPo; 3Þ ! ðPd ; 3Þ;

r2 ¼ ð6p; 2Þ ! ð6d ; 2Þ;

r3 ¼ ðPo; 4Þ ^ ð6t; 2Þ ! ðPd ; 2Þ ^ ð6d ; 3Þ:
Then, we have
asp rsp cfd

r1 5 1
2

5
8

r2 5 1
2

5
6

r3 2 1
5

1

Among these rules, only r3 is valid.
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4. Preference-ordered uncertain data tables

PODL is suitable for the representation of rules induced from a PODT. However, the latter inherits the
restriction of classical DT so that uncertain information cannot be represented. An uncertain data table is
a generalization of DT such that the values of some or all attributes are imprecise (Fan et al., 2001; Dembczyn-
ski et al., 2002). An analogous generalization can be applied to PODT to define preference-ordered uncertain
data tables (POUDT). Formally, a POUDT is a tuple
T ¼ ðU ;A; fðV i;�iÞji 2 Ag; ffiji 2 AgÞ;
where U,A,{(Vi,�i)ji 2 A} are defined as above, and for each i 2 A, fi : U ! 2V i � f;g. The intuition about
POUDT is that the value of attribute i of an object x belongs to fi(x), though the value is not known exactly.
When fi(x) is a singleton, we say that the value is precise. If all attribute values of T are precise, then T is said
to be single-valued.

PODL is also generalized to preference-ordered uncertain decision logic (POUDL). The syntax of POUDL
is same as that of PODL, except that its atomic formulas are of the form (i, si), where i 2 A and si � Vi. When
si = {v 2 Vijv �i vi} (resp. si = {v 2 Vijvi �i v}), we abbreviate (i, si) as (Pi,vi) (resp. (6i,vi)). To define the
semantics of POUDL, we must first rewrite each wff into its normal form.

A wff is in a conjunctive normal form (CNF) if it is a conjunction of formulas of the form _i2B(i, si), where
B � A is a subset of mutually distinct attributes. A wff is in a disjunctive normal form (DNF) if it is a disjunc-
tion of formulas of the form ^i2B(i, si), where B � A is a subset of mutually distinct attributes. Given a
POUDL wff u, its CNF and DNF are denoted by uc and ud, respectively. Any POUDL wff can be rewritten
in both CNF and DNF by using Boolean algebra and the following rewriting rules:
:ði; sÞ ¼ ði; V i n sÞ;
ði; s1Þ _ ði; s2Þ ¼ ði; s1 [ s2Þ;
ði; s1Þ ^ ði; s2Þ ¼ ði; s1 \ s2Þ:
For the semantics of POUDL, we define the positive satisfaction relation �+ for CNF formulas and negative
satisfaction relation �� for DNF formulas. The definition is as follows:

(1) x �+ (i, s) iff fi(x) � s,
(2) x �+ u _ w iff x �+ u or x �+ w,
(3) x �+ u ^ w iff x �+ u and x �+ w,
(4) x �� (i, s) iff fi(x) \ s = ;,
(5) x �� u ^ w iff x �� u or x �� w,
(6) x �� u _ w iff x �� u and x �� w.

Then, for any POUDL wff u, we define x �+ u iff x �+ uc, and x �� u iff x �� ud. According to the seman-
tics of POUDL, x �+ (Pivi) if for all v 2 fi(x), v is preferred over vi with respect to the criterion i. Therefore, we
can be sure that, if x �+ (Pivi) holds, then the value of criterion i of x will at least reach the level of vi no
matter what the actual value is. Analogously, if x �� (Pivi) holds, we can be sure that the value of criterion
i of x will not be above the level of vi no matter what the actual value is.

For each POUDL wff u and a given POUDT T, we define two meaning sets:
mþT ðuÞ ¼ fx 2 U jx �þ ug;
m�T ðuÞ ¼ fx 2 U jx �� ug;
mþT ðuÞ is the set of objects that are known to satisfy u, and m�T ðuÞ is the set of objects that are known not to
satisfy u. The indeterminate region of u with respect to T is defined as
m�T ðuÞ ¼ U n ðmþðuÞ [ m�T ðuÞÞ:
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As usual, the subscript T can be omitted if it is clear from the context. Using the notations from rough set
theory, we also define
mðuÞ ¼ mþðuÞ and mðuÞ ¼ U n m�ðuÞ:
Note that the three types of rules mentioned in Section 3 can also be represented in POUDL, though the
semantics is quite different.

The quantitative measures of the rules’ usefulness can be defined by the notion of completion of a POUDT.
Let T = (U,A, {(Vi,�i)ji 2 A}, {fiji 2 A}) be a POUDT. Then, a PODT S ¼ ðU ;A; fðV i;�iÞji 2 Ag; ff 0i ji 2 AgÞ
is a completion of T if f 0i ðxÞ 2 fiðxÞ for all i 2 A and x 2 U. The number of completions of T is equal toQ

i2A;x2U jfiðxÞj. Let CL(T) denote the set of all completions of T. If we identify a singleton set with its element
by slightly abusing the notation, then a completion of a POUDT (i.e., a PODT) can be considered as a special
case of POUDT. This yields the following definition.

Definition 7. Let T = (U,A, {(Vi,�i)ji 2 A},{fiji 2 A}) be a POUDT and u! w be a POUDL rule, then

(1) u! w is strongly valid in T if mðuÞ � mþðwÞ and weakly valid in T if m+(u) � m+(w);
(2) the absolute support interval of u! w is
asiT ðu! wÞ ¼ min
S2CLðT Þ

aspSðu! wÞ; max
S2CLðT Þ

aspSðu! wÞ
� �

;

(3) the relative support interval of u! w is
rsiT ðu! wÞ ¼ min
S2CLðT Þ

rspSðu! wÞ; max
S2CLðT Þ

rspSðu! wÞ
� �

and
(4) the confidence interval of u! w is
cfiT ðu! wÞ ¼ min
S2CLðT Þ

cfdSðu! wÞ; max
S2CLðT Þ

cfdSðu! wÞ
� �

:

The next two propositions show how these measures are calculated.

Proposition 8. Let u be a POUDL wff and T be a POUDT. Then, for all x 2 Uni(T), we have

(1) x �þT u iff x �S u for all S 2 CL(T),

(2) x ��T u iff x 2
S
u for all S 2 CL(T), and

(3) x 2 m�T ðuÞ iff there exist S1,S2 2 CL(T) such that x �S1
u and x 2S2

u.

Proof. We first note that if S is a PODT, then for any POUDL wff u, x �S u iff x �S uc iff x �S ud. Thus,
without loss of generality, we only need to consider wffs in CNF or DNF. Let us now prove the first equiv-
alence. The second equivalence can be proved analogously, and the third follows from the first two.

()): If u is in CNF, then we have x �þT u iff x �þT _i2Bði; siÞ for each conjunct _i2B(i, si) of u. Now,
x �þT _i2Bði; siÞ implies that there exists i 2 B such that fi(x) � si. This, in turn, implies that x �S _i2B(i, si)
for any S 2 CL(T). Thus, x �þT u implies that x �S u for all S 2 CL(T).
((): If u is in CNF and x �S u for all S 2 CL(T), then for any conjunct _i2B(i, si) of u, we have
x �S _i2B(i, si) for any S 2 CL(T). Assume x 2þT _i2Bði; siÞ for some conjunct _i2B(i, si) of u; then
fiðxÞ 6� si holds for all i 2 B. Thus, since the attributes in B are mutually distinct, we can have an
S ¼ ðU ;A; fðV i;�iÞji 2 Ag; ff 0i ji 2 AgÞ 2 CLðT Þ such that f 0i ðxÞ 2 fiðxÞ n si for all i 2 B. Obviously, this
implies that x 2S _i2Bði; siÞ and contradicts the fact that x �S _i2B(i, si) for any S 2 CL(T). Therefore, we
can derive x �þT _i2Bði; siÞ for any conjunct _i2B(i, si) of u, and consequently, x �þT u. h
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Proposition 9. Let u! w be a POUDL rule and T be a POUDT, then we have

(1) jmðu ^ wÞj ¼ min aspSðu! wÞ;

S2CLðT Þ

jmðu ^ wÞj ¼ max
S2CLðT Þ

aspSðu! wÞ;

jmðu ^ wÞj
(2) ¼ min rspSðu! wÞ;
jU j S2CLðT Þ

jmðu ^ wÞj
jU j ¼ max

S2CLðT Þ
rspSðu! wÞ;

jmðu ^ wÞj
(3) ¼ min cfdSðu! wÞ;
jmðuÞ n ðm�ðuÞ \ m�ðu ^ :wÞÞj S2CLðT Þ

jmðu ^ wÞj
jmðuÞ n ðm�ðuÞ \ m�ðu ^ wÞÞj ¼ max

S2CLðT Þ
cfdSðu! wÞ:
Proof. The only non-trivial case to be proved is the third one. We first note that
min
S2CLðT Þ

cfdSðu! wÞ ¼ min
S2CLðT Þ

jmSðu ^ wÞj
jmSðuÞj

:

Let S* be a completion of T such that
S� 2 arg min
S2CLðT Þ

jmSðu ^ wÞj
jmSðuÞj

:

Then, for any object x, we can consider the following cases:

Case 1: If x 2 mðuÞ n ðm�ðuÞ \ m�ðu ^ :wÞÞ and x 62 mS� ðuÞ, then x 62 mðuÞ since m(u) � mS(u) for any
S 2 CL(T). This means x 2 m*(u) and x 62 m�ðu ^ :wÞ, so there exists S 2 CL(T) such that
x 2 mSðu ^ :wÞ by Proposition 8. Since the attribute values of different objects in a completion can be inde-
pendently determined, we can define S 0 2 CL(T) such that for each attribute i, f S0

i ðxÞ ¼ f S
i ðxÞ and

f S0
i ðyÞ ¼ f S�

i ðyÞ for all y 5 x, where f S0
i ; f

S
i , and f S�

i correspond to the attribute functions of S 0, S, and
S*, respectively. Then jmS0 ðuÞj ¼ jmS� ðuÞj þ 1 and jmS0 ðu ^ wÞj ¼ jmS� ðu ^ wÞj. This contradicts the mini-
mality assumption for S*.
Case 2: If x 2 mS� ðuÞ and x 62 mðuÞ n ðm�ðuÞ \ m�ðu ^ :wÞÞ, then x 2 m*(u) and x 2 m�ðu ^ :wÞ, since
mSðuÞ � mðuÞ for any S 2 CL(T). From x 2 mS� ðuÞ and x 2 m�ðu ^ :wÞ, we can derive x 2 mS� ðu ^ wÞ
by Proposition 8. From x 2 m*(u), we can find an S 2 CL(T) such that x 2S u (and, of course,
x 2S u ^ w). Thus, we can also define S 0 2 CL(T) such that for each attribute i, f S0

i ðxÞ ¼ f S
i ðxÞ and

f S0
i ðyÞ ¼ f S�

i ðyÞ for all y 5 x. Then, jmS0 ðuÞj ¼ jmS� ðuÞj � 1 and jmS0 ðu ^ wÞj ¼ jmS� ðu ^ wÞj � 1, which
implies that
jmS0 ðu ^ wÞj
jmS0 ðuÞj

6
jmS� ðu ^ wÞj
jmS� ðuÞj

:

Therefore, without loss of generality, we can assume that mS� ðuÞ ¼ mðuÞ n ðm�ðuÞ \ m�ðu ^ :wÞÞ.
Now, if there exists x 2 mS� ðu ^ wÞ and x 62 mðu ^ wÞ, then x 2 mðuÞ n ðm�ðuÞ \ m�ðu ^ :wÞÞ, so we can

consider two possibilities.

Case 1: x 2 m+(u). Then, from the assumption, we can derive x 2 m*(w).
Case 2: x 2 m*(u) and x 2 m�ðu ^ :wÞ.
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In both cases, we can find an S 2 CL(T) such that x �S u ^ :w. Let S 0 be a completion of T that has the
same attribute values as S for x and the same attribute values as S* for objects that are not x. Then
jmS0 ðuÞj ¼ jmS� ðuÞj and jmS0 ðu ^ wÞj ¼ jmS� ðu ^ wÞj � 1. This contradicts the minimality assumption for S*.
Therefore, mS� ðu ^ wÞ ¼ mðu ^ wÞ, which means that there exists an
S� 2 arg min
S2CLðT Þ

jmSðu ^ wÞj
jmSðuÞj

;

such that
jmðu ^ wÞj
jmðuÞ n ðm�ðuÞ \ m�ðu ^ :wÞÞj ¼ cfdS� ðu! wÞ:
Therefore, the result for the lower bound is proved. The result for the upper bound can be proved in an anal-
ogous way. h

In general, the attribute symbols in the antecedent of a rule and those in the consequent are disjoint. For
this special type of rule, the confidence interval can be simplified slightly.

Corollary 10. Let Au denote the set of attributes appearing in a wff u, and u! w be a POUDL rule such that

Au \ Aw = ;. Then, cfi(u! w) = [low, up], where
low ¼ jmðu ^ wÞj
jmðuÞ n ðm�ðuÞ \ mþðwÞÞj ; and

up ¼ jmðu ^ wÞj
jmðuÞ n ðm�ðuÞ \ m�ðwÞÞj :
Proof. It suffices to show that m�ðuÞ \ m�ðu ^ :wÞ ¼ m�ðuÞ \ mþðwÞ and m*(u) \ m�(u ^ w) =
m*(u) \ m�(w). We only prove the former, as the latter can be proved analogously.

(�): If both x 2 m�ðuÞ \ m�ðu ^ :wÞ and x 62 m�ðuÞ \ mþðwÞ hold, then there exists S1 2 CL(T) such that
x �S1

u (from x 2 m*(u)); and there also exists S2 2 CL(T) such that x �S2
:w (from x 62 mþðwÞ). Since

Au and Aw are disjoint, we can construct an S 2 CL(T) such that
f 0i ðxÞ ¼
f 1

i ðxÞ if i 2 Au;

f 2
i ðxÞ if i 2 Aw;

(

where f 1
i ; f

2
i , and f 0i are attribute functions of S1, S2, and S, respectively. Hence, we have x �S u ^ :w,

which contradicts x 2 m�ðu ^ :wÞ by Proposition 8.
(�): If x 2 m*(u) \ m+(w), then for all S 2 CL(T), x �S w holds, which implies that x 2S u ^ :w. We then
have x 2 m�ðuÞ \ m�ðu ^ :wÞ by Proposition 8. h
Example 11. We use a modified example for route selection from (Warren et al., 2004) to illustrate POUDT
and POUDL. The example is concerned with a route selection problem for solid waste management. In Table
2, six routes are evaluated by means of 2 attributes w (weight capacity) and s (surface condition), and the eval-
uation results are described by the decision attribute d. The domain of values for w is Vw = {l (low), m (med-
ium), h (high)} and the domain of values for s is Vs = {v (very good), g (good), b (bad)}. The evaluation results
are then divided into three levels Vd = {1,2,3}. We assume that each domain is endowed with a preference
relation such that h �w m �w l, v �s g �s b, and 3 �d 2 �d 1, where u �i v means u �i v ^ v †i u for i 2 A

and u,v 2 Vi. Due to the incompleteness of the information, some attribute values appearing in the table
are non-singleton. Note that this POUDT has 64 completions.

Let us now consider a POUDL wff u1 = (Pw m) _ ((6w l) ^ (Ps g)). The CNF of u1 is
uc

1 ¼ ðw; V wÞ ^ ððPw mÞ _ ðPs gÞÞ. We can see that x2 �+ u1, since both x2 �+ (w,Vw) and x2 �+ (Psg) hold.
Indeed, in any completion of T, we have either f 0wðx2Þ ¼ l and f 0s ðx2Þ ¼ g or f 0wðx2Þ ¼ m and f 0s ðx2Þ ¼ g;
therefore, x2 � u1 always holds. Note that x2 �+ u1 cannot be verified if we do not transform u1 into its CNF.
Analogously, let u2 denote the POUDL wff (6w l) ^ ((Pw m) _ (6s b)), then its DNF is ud

2 ¼



Table 2
A POUDT for route selection

UnA w s d

x1 {m,h} {v} 3
x2 {l,m} {g} 2
x3 {m} {g,v} 2
x4 {l,m} {b,g} 2
x5 {l} {b} 1
x6 {h} {g,v} 3
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ðw; ;Þ _ ðð6w lÞ ^ ð6s bÞÞ. It is easy to verify x2 �� u2 by the semantics. Again, this cannot be done if u2 is not
transformed into its CNF.

Let u = (Pw,m), w1 = (Pd, 2), and w2 = (Pd, 3) be three wffs of POUDL, then we consider the rules
u! w1 and u! w2. We have
3 A b
a 2 [0,
mðuÞ ¼ fx1; x3; x6g; mðuÞ ¼ fx1; x2; x3; x4; x6g; m�ðuÞ ¼ fx2; x4g;
mðu ^ w1Þ ¼ fx1; x3; x6g; mðu ^ w1Þ ¼ fx1; x2; x3; x4; x6g; mþðw1Þ ¼ fx1; x2; x3; x4; x6g;
m�ðw1Þ ¼ fx5g; mðu ^ w2Þ ¼ fx1; x6g; mðu ^ w2Þ ¼ fx1; x6g;
mþðw2Þ ¼ fx1; x6g; and m�ðw2Þ ¼ fx2; x3; x4; x5g:
Thus, we obtain the asi, rsi, and cfi of these two rules as follows:
asi rsi cfi

u! w1 ½3; 5	 1
2
; 5

6

� �
½1; 1	

u! w2 ½2; 2	 1
3
; 1

3

� �
2
5
; 2

3

� �

It can be verified that these values indeed satisfy equalities in Proposition 9. Note that the rule u! w1 is

strongly valid, whereas the rule u! w2 is neither weakly valid, nor strongly valid.
5. Preference-ordered fuzzy data tables

The preference-ordered fuzzy data table (POFDT) is a further generalization of POUDT. An approach for
dealing with fuzzy information in PODT has been proposed in Greco et al. (1999b). In this section, we propose
an alternative based on our logical formalism. For any domain V, let NFðV Þ denote the set of all normalized
fuzzy subsets of V. Recall that a fuzzy subset of domain V is normalized if supx2Vl(x) = 1, where l is the
membership function of the fuzzy subset. A POFDT is a tuple
T ¼ ðU ;A; fðV i;�iÞji 2 Ag; ffiji 2 AgÞ;

where U,A, {(Vi,�i)ji 2 A} are defined as above, and for each i 2 A, fi : U ! NFðV iÞ.

For the representation of rules induced from POFDT, we can imagine several generalized decision lan-
guages, such as those introduced in Liau and Liu (1999, 2001) and Fan et al. (2001). However, for simplicity,
we use the syntax of PODL and interpret the wffs of PODL with respect to POFDT. Thus, the language of
preference-ordered fuzzy decision logic (POFDL) is simply the language of PODL.

For the semantics of POFDL, we define the valuation function with respect to a POFDT over the wffs of
POFDL. The function is denoted by ET and defined by

(1) ET ðx; ðPi; vÞÞ ¼ inff1� lx
i ðviÞjvi 2 V i; vi †i vg, where lx

i is the membership function of fi(x);
(2) ET ðx; ð6i; vÞÞ ¼ inff1� lx

i ðviÞjvi 2 V i; vi � i vg, where lx
i is the membership function of fi(x);

(3) ET ðx;:uÞ ¼ 1� ET ðx;uÞ;
(4) ET(x,u ^ w) = ET(x,u) 
 ET(x,w), where 
: [0, 1] · [0,1]! [0,1] is a t-norm3; and
(5) ET(x,u _ w) = ET(x,u) � ET(x,w), where � is the t-conorm defined by a � b = 1 � (1 � a) 
 (1 � b).
inary operation 
 is a t-norm iff it is associative, commutative, and increasing in both places, and 1 
 a = a and 0 
 a = 0 for all
1].
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Note that, if we consider the membership function lx
i as a possibility distribution on the domain Vi,

ET(x, (Pi,v)) corresponds to the necessity measure (Zadeh, 1978) of the subset {vi 2 Vijvi �i v}. The same
remark holds for ET(x, (6i,v)).

The valuation function can be extended to cover the POFDL rules by the following equation:
ET ðx;u! wÞ ¼ ET ðx;uÞ !
 ET ðx;wÞ;
where !
: [0,1] · [0,1]! [0,1] is the residuated implication function for 
, defined as
a!
 b = sup{xjx 
 a 6 b}. As usual, we can omit the subscript T from ET if this does not cause confusion.

The notions of validity, support, and confidence can be modified as follows.

Definition 12. Let U2 be the set of all POFDL rules and T be a POFDT. Then

(1) the validity function valT: U2! [0, 1] is
valT ðu! wÞ ¼ 
x2U ET ðx;u! wÞ;

(2) the absolute support function aspT: U2! [0, jUj] is
aspT ðu! wÞ ¼
X
x2U

ET ðx;u ^ wÞ;
(3) the relative support function rspT: U2! [0, 1] is
rspT ðu! wÞ ¼
P

x2U ET ðx;u ^ wÞ
jU j ; and
(4) the confidence function cfdT: U2! [0, 1] is
cfdT ðu! wÞ ¼
P

x2U ET ðx;u ^ wÞP
x2U ET ðx;uÞ

:

Example 13. We use a project evaluation system to illustrate POFDT and POFDL. Assume some projects are
evaluated with respect to originality, presentation, and technical feasibility. The set of attributes is the same as
in Example 5. The domains of values of these attributes are [0,10] endowed with ordinary ordering of real
numbers. However, due to the difficulty of precise evaluation, the attribute values for these projects are fuzzy
subsets represented by linguistic labels {a (excellent), b (good),c (fair),d (poor)}. The membership functions of
these subsets are given in Fig. 1, and the evaluation results are presented in Table 3.
Fig. 1. The membership functions of fuzzy sets.



Table 3
A data table for project evaluation

UnA o p t d

x1 a a b a

x2 b c b b

x3 a b c b

x4 c c c c

x5 c d c d

x6 b d c d

x7 b c c c

x8 a d c c
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The membership functions are defined by
laðvÞ ¼
v�7

3
if 7 6 v 6 10;

0 elsewhere;

�

lbðvÞ ¼

2v�10
3

if 5 6 v 6 13
2
;

16�2v
3

if 13
2
6 v 6 8;

0 elsewhere;

8><
>:

lcðvÞ ¼

2v�4
3

if 2 6 v 6 7
2
;

10�2v
3

if 7
2
6 v 6 5;

0 elsewhere;

8><
>:

ldðvÞ ¼
3�v

3
if 0 6 v 6 3;

0 elsewhere:

�

Let us now consider three POFDL atomic formulas: u1 = (Po, 8), u2 = (Pt, 4), and w = (Pd, 6). The truth
value of an atomic formula for an object depends on the attribute values of the object as follows:
ET ðx; ðPi; 8ÞÞ ET ðx; ðPi; 4ÞÞ ET ðx; ðPi; 6ÞÞ
fiðxÞ ¼ a 2

3
1 1

fiðxÞ ¼ b 0 1 1
3

fiðxÞ ¼ c 0 0 0

fiðxÞ ¼ d 0 0 0
If we use the Łukasiewicz t-norm and implication (Hájek, 1998) defined by
a
 b ¼ maxðaþ b� 1; 0Þ; and

a!
 b ¼ minð1; 1� aþ bÞ;

we can obtain the truth values of the wffs of the objects as follows:
u1 u2 w u1 ^ u2 u1 ^ u2 ^ w u1 ^ u2 ! w

x1
2
3

1 1 2
3

2
3

1

x2 0 1 1
3

0 0 1

x3
2
3

0 1
3

0 0 1

x4 0 0 0 0 0 1

x5 0 0 0 0 0 1

x6 0 0 0 0 0 1

x7 0 0 0 0 0 1

x8
2
3

0 0 0 0 1
Therefore, if r is the rule u1 ^ u2 ! w, we have valT ðrÞ ¼ 1, aspT ðrÞ ¼ 2
3
, rspT ðrÞ ¼ 1

12
, and cfdT(r) = 1.
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Note that, though POFDT is a generalization of POUDT, the quantitative measures of POFDL are not
calculated through the completions of POFDT as in the case of POUDT. In fact, it is unclear how the notion
of completion can be generalized to POFDT. We can envision at least two possibilities. One way is to consider
a completion of a POFDT as a pair (T,c), where T is a classical DT and c 2 [0,1]; the other way is to define it
as a pair (T,l), where T is a classical DT and l : Uni(T)! [0,1]. Based on these definitions, we can derive the
bounds of quantitative measures of POFDL rules as in Proposition 9. However, the detailed definitions and
derivations of such results will be addressed in our future research.

6. Pairwise comparison decision logic

Greco et al. (1997, 1998, 1999a) proposed the pairwise comparison table (PCT) to handle multicriteria
choice or ranking problems. In a PCT, the strength of preferences between objects, instead of the evaluation
scores of objects, are stored with respect to each criterion. Formally, a PCT is a tuple
4 Wi
T ¼ ðU ;A; fH iji 2 Ag; ffiji 2 AgÞ;

where U and A are defined as above; and for each i 2 A, Hi is a finite set of integers, and fi : U · U! Hi en-
codes the preferential information4. Each Hi denotes a different grade of preference (such as ‘‘very weak pref-
erence’’, ‘‘weak preference’’, ‘‘strong preference’’, etc.) with respect to the criterion i. If fi(x,y) = h > 0, then x

is preferred to y by degree h with respect to the criterion i. If fi(x,y) = h < 0, then x is not preferred to y by
degree h with respect to the criterion i. If fi(x,y) = 0, then x is similar to y with respect to the criterion i. A PCT
is coherent if for each i 2 A and x,y 2 U, fi(x,y) > 0 implies fi(y,x) 6 0 and fi(x,y) < 0 implies fi(y,x) P 0. In
this paper, we only consider a coherent PCT.

To represent rules induced from a PCT, we propose pairwise comparison decision logic (PCDL). An atomic
formula of PCDL is a descriptor of the form (i,Ph) or (i,6h), where i 2 A and h 2 Hi, and the wffs and rules of
PCDL are defined in the same way as those for the other decision logic languages discussed in this paper.
However, unlike other logics, where wffs are evaluated with respect to an object, the wffs of PCDL are eval-
uated with respect to a pair of objects. More precisely, the satisfaction of a wff with respect to a pair of objects
(x,y) is defined as follows:

(1) (x,y) � (i, Ph) iff fi(x,y) P h,
(2) (x,y) � (i, 6h) iff fi(x,y) 6 h,
(3) ðx; yÞ � :u iff ðx; yÞ 2 u,
(4) (x,y) � u ^ w iff (x,y) � u and (x,y) � w,
(5) (x,y) � u _ w iff (x,y) � u or (x,y) � w.

If u is a PCDL wff and T is a PCT, the set mT(u) defined by
mT ðuÞ ¼ fðx; yÞ 2 U � U jðx; yÞ � ug; ð2Þ

is called the meaning set of the formula u in T. If T is understood, we simply write m(u).

Definition 14. Let U3 be the set of all PCDL rules and T = (U,A, {Hiji 2 A}, {fiji 2 A}) be a PCT. Then,

(1) the rule u! w is valid in T iff mT(u) � mT(w);
(2) the absolute support function aspT : U3 ! N is
aspT ðu! wÞ ¼ jmT ðu ^ wÞj;

(3) the relative support function rspT : U3! [0, 1] is
rspT ðu! wÞ ¼ jmT ðu ^ wÞj
jU j2

; and
thout loss of generality, we slightly change the original definition in Greco et al. (1997, 1998, 1999a).
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(4) the confidence function cfdT : U3! [0, 1] is
cfdT ðu! wÞ ¼ jmT ðu ^ wÞj
jmT ðuÞj

:

Note that the confidence function for PCDL rules was previously used to define the variable consistency
model of a PCT (Slowinski et al., 2002a).

Without loss of generality, we can rename the elements of U as natural numbers from 0 to jUj �1. Then,
each fi can be seen as a jUj · jUj matrix Mi over domain Hi. Thus, we can employ matrix algebra to test the
validity of a rule and calculate its support and confidence in an analogous way to that proposed in Liau
(2004a,b).

By using PCDL, the three types of decision rules mentioned in Greco et al. (2001a) can be represented as
follows:

(1) DP-decision rules:
^
i2C

ði;PhiÞ ! ðd;P1Þ;
(2) D6-decision rules:
^
i2C

ði;6hiÞ ! ðd;6�1Þ;
(3) DP6-decision rules:
^
i2C1

ði;PhiÞ ^
^
i2C2

ði;6hiÞ ! ðd;P1Þ _ ðd;6�1Þ;
where C,C1, and C2 � A are sets of criteria, and d 2 A is the decision attribute. We assume that {�1,1} � Hd

so that fd(x,y) = 1 means that x outranks y, and fd(x,y) = �1 means that y outranks x.
Example 15. Let us define a PCT from the PODT introduced in Example 6. The PCT is defined as
ðU ;A; fH iji 2 Ag; ff 0i ji 2 AgÞ;
where U and A are defined as in Example 5, Hi = {�3,�2,�1,0,1,2,3}, and f 0i is defined as
f 0i ðx; yÞ ¼ fiðxÞ � fiðyÞ for all x,y 2 U and i 2 A, where fi is also defined as in Example 5. Let us consider
the following two rules:
r1 ¼ ðo;P2Þ ! ðd;P1Þ;
r2 ¼ ðp;6�2Þ ! ðd;6�1Þ:
Then, we have
asp rsp cfd

r1 7 7% 7
8

r2 15 15% 1
Note that the rule r2 is valid, even though it only has a support value of 0.15. Furthermore, since in this
example, m((d,P1) _ (d, 60)) = U · U holds, the DP6-decision rules are always valid and have a confidence
value equal to 1.
7. Conclusions

In this paper, we present some logics that are useful in the representation of rules induced from preference-
ordered data tables. Such data tables are commonly used in MCDA. The main advantage of using logic is its
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syntax and semantics are precise. As DL is a precise way to represent decision rules induced from classical data
tables, we use PODL and PCDL to reformulate the decision rules induced from PODT and PCDT in DRSA,
respectively. Though this seems a trivial step, it maps the decision rules induced from PODT and PCDT into
precise logical formulas and gives them a formal semantics. The less trivial task is to generalize PODL to
POUDL and POFDL. While the issue of missing values has been addressed in classical DT or PODT, we deal
with uncertain values or fuzzy values. In particular, we derive the closed form for the lower and upper bounds
of the confidence and support values of POUDL rules in each precise completion of the POUDT. We also
present the semantics of POFDL rules based on possibility theory.

While this paper is primarily concerned with the syntax and declarative semantics of the logics, efficient
algorithms for data mining based on the logical representations are also urgently needed. Developing such
algorithms is an important research direction.

In addition to decision logic, information logic is another kind of logic arising from data tables (Demri and
Orlowska, 2002). The semantics of information logic is the same as the Kripke semantics for modal logics. We
believe that it would also be interesting to explore information logics with respect to dominance relations.
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