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中文摘要

    本研究題出一個一致性共旋轉全拉格
蘭日有限元素法及數值程序，以分析雙對
稱薄壁開口梁的非線性挫屈及挫屈後的行
為，並以數值例題說明本方法的正確性及
有效性。
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Abstract

A consistent co-rotational total
Lagrangian finite element formulation and
numerical procedure for the geometric
nonlinear buckling and postbuckling analysis
of doubly symmetrical thin-walled beams
with open section is presented.
Numerical examples are presented to
demonstrate the accuracy and efficiency of
the proposed method.
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1 Introduction

    The buckling and postbuckling analysis
of thin-walled beams with open section have
been the subject of considerable research [1-

5].  The object of this paper is to present a
co-rotational total Lagrangian finite element
formulation for the geometric nonlinear
buckling and postbuckling analysis of doubly
symmetrical thin-walled beams with open
section.
The formulation of beam element proposed
in [6~8] is modified and employed here.
Here, the third order terms of twist rate of
the beam axis is also considered.
An incremental-iterative method based on the
Newton-Raphson method combined with
constant arc length of incremental
displacement vector is employed for the
solution of nonlinear equilibrium equations.
Numerical examples are presented to
demonstrate the accuracy and efficiency of
the proposed method

2 Finite element formulation
2.1 Basic assumptions

(1) The beam is prismatic and slender, and
   the Euler-Bernoulli hypothesis is valid.
(2) The cross section of the beam is doubly
   symmetric.
(3) The unit extension of the centroid axis of
   the beam element is uniform.

2.2 Coordinate systems

    In this paper, a co-rotational total
Lagrangian formulation is adopted.  In order
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to describe the system, we define four sets of
right handed rectangular Cartesian coordinate
systems:
(1) A fixed global set of coordinates, Xi

G

(i = 1, 2, 3) (see Fig. 1).
(2) Element cross section coordinates, xi

S

(i = 1, 2, 3) (see Fig. 1).
(3) Element coordinates; xi  (i = 1, 2, 3)

(see Fig. 1).
(4) Load base coordinates, Xi

P  (i = 1, 2, 3).

   Fig. 1. Coordinate systems.

2.3 Kinematics of beam element
      
    Let Q (Fig. 1) be an arbitrary point in
the beam element, and P be the point
corresponding to Q on the shear center axis.
The position vector of point Q in the
undeformed and deformed configurations
may be expressed as

r e e e0 1 2 3= + +x y z   (1)
and
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where x xc ( ) , v x( ) ,and w x( )  are the x1,
x2  and x3  coordinates of point P,
respectively, in the deformed configuration,
ω ω= ( , )y z  is the Saint Venant warping
function for a prismatic beam of the same

cross section, and ei  and ei
S  (i = 1, 2, 3)

denote the unit vectors associated with the
xi  and xi

S  axes, respectively.  Note that

ei  and ei
S are coincident in the undeformed

state.
The relation between the vectors ei  and ei

S

(i = 1, 2, 3) in the element coordinate system
may be obtained as [6]

e Rei
S

i= (3)
Here, the lateral deflections of the shear
center axis, v x( )  and w x( ) , and the rotation
about the shear center axis, θ1( )x , are
assumed to be the Hermitian polynomials of
x.

2.4  Element nodal force vector

    The element nodal force corresponding
to the implicit nodal parameters is obtained
from the virtual work principle in the current
element coordinates.

2.5  Element tangent stiffness matr ices

    The element tangent stiffness matrix
corresponding to the explicit nodal
parameters (referred to as explicit tangent
stiffness matrix) may be obtained by
differentiating the element nodal force vector
with respect to explicit nodal parameters.

2.6 Load stiffness matr ix

    Here, the conservative moments
generated by conservative force or forces
(with fixed directions) are considered, and
the ways for generating conservative moment
and the corresponding load stiffness matrix
proposed in [7] are employed and not
repeated here.

2.7 Equilibr ium equations
     
    The nonlinear equilibrium equations
may be expressed by

Ψ = − =F P 0λ (4)
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where Ψ  is the unbalanced force between
the internal nodal force F  and the external
nodal force λP , where λ  is the loading
parameter, and P is a reference loading.

2.8 Criter ion of the buckling state

    Here, the zero value of the tangent
stiffness matrix determinant is used as the
criterion of the buckling state.  The tangent
stiffness matrix of the structure is assembled
from the element stiffness matrix and load
stiffness matrix.

3 Numerical studies

    An incremental-iterative method based
on the Newton-Raphson method combined
with constant arc length of incremental
displacement vector [6] is employed for the
solution of nonlinear equilibrium equations.
The bisection method of the arc length is
proposed in [8] is used here to find the
buckling load.  In order to initiate the
secondary path, at the bifurcation point a
perturbation displacement proportional to the
first buckling mode is added [9].

Fig. 2. Cantilever beam subjected
to end force.

The example considered here is a I-shaped
cantilever beam with a vertical force P
applied at the centroid of the end cross
section as shown in Fig. 2.  The clamped
end of the beam is fully restrained against
warping, and the free end is warping free.
The geometrical and material properties are :
L m= 10 , b m= 019. , t mf = 0 013. ,

d m= 0 613. , t mw = 0 025. , Young's

modulus E N m= ×206 109 2/ , and
Poisson’s ratioν = 03.  (Izzuddin and Smith
[5]).  The present results are obtained using
40 elements.  The present buckling loads
are PNB =  47.333 kN.  The linear buckling
load [2] are 46.359 kN.  The ratios of the
minor axis (out-of-plane) flexural stiffness to
the major axis (in-plane) flexural stiffness are
0.018.  The load-deflection curves of the
present study together with the results given
in the literature are shown in Fig. 3.  In Fig.
3, the results of [5] are obtained by
considering a small twist imperfection, which
varies linearly from zero value at the support
to value of 10 3−  radian at the tip.

Fig. 3. Load-tip displacements for cantilever
     beam subjected to end force .

4 Conclusions

    This paper has proposed a consistent co-
rotational total Lagrangian finite element
formulation and numerical procedure for the
geometric nonlinear buckling and
postbuckling analysis of doubly symmetrical
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thin-walled beams with open section.  The
third order term of twist rate in the element
nodal forces is also considered.  An
incremental-iterative method based on the
Newton-Raphson method combined with
constant arc length of incremental
displacement vector is employed for the
solution of nonlinear equilibrium equations.
The zero value of the tangent stiffness matrix
determinant of the structure is used as the
criterion of the buckling state.  From the
numerical examples studied, it is found that
the agreement between the prebuckling
displacements and buckling loads of the
present study and those given in the literature
is very good.
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