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Background Removal of Multiview Images
by Learning Shape Priors

Yu-Pao Tsai, Cheng-Hung Ko, Yi-Ping Hung, and Zen-Chung Shih

Abstract—Image-based rendering has been successfully used to
display 3-D objects for many applications. A well-known example
is the object movie, which is an image-based 3-D object composed
of a collection of 2-D images taken from many different viewpoints
of a 3-D object. In order to integrate image-based 3-D objects into
a chosen scene (e.g., a panorama), one has to meet a hard chal-
lenge—to efficiently and effectively remove the background from
the foreground object. This problem is referred to as multiview
images (MVIs) segmentation. Another task requires MVI segmen-
tation is image-based 3-D reconstruction using multiview images.
In this paper, we propose a new method for segmenting MVI,
which integrates some useful algorithms, including the well-known
graph-cut image segmentation and volumetric graph-cut. The
main idea is to incorporate the shape prior into the image seg-
mentation process. The shape prior introduced into every image
of the MVI is extracted from the 3-D model reconstructed by
using the volumetric graph cuts algorithm. Here, the constraint
obtained from the discrete medial axis is adopted to improve
the reconstruction algorithm. The proposed MVI segmentation
process requires only a small amount of user intervention, which is
to select a subset of acceptable segmentations of the MVI after the
initial segmentation process. According to our experiments, the
proposed method can provide not only good MVI segmentation,
but also provide acceptable 3-D reconstructed models for certain
less-demanding applications.

Index Terms—Graph cut, image segmentation, Markov random
field (MRF), medial axis, multiview images (MVIs), object movie,
3-D modeling, volumetric graph cuts.

I. INTRODUCTION

CONSTRUCTING a realistic environment is an important
research topic in the domain of computer graphics. Virtual

reality systems involve two major classes of technique, namely
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geometry-based and image-based rendering. In geometry-based
methods, a complete 3-D model of the environment, including
all the objects within the virtual world, is constructed and ren-
dered to simulate the virtual world. Conversely, image-based
methods, collections of images taken from different viewpoints
of the environment is used to generate novel views of the
virtual world. Both approaches have their own advantages and
weaknesses. However, image-based methods have become
increasingly popular because of the ease of construction of
the high quality and photorealistic environment. Additionally,
in the image-based methods, the computational expense of
rendering the virtual world is independent of the complexity of
the objects and scenes.

Apple, Inc. [1] proposed a popular image-based method,
called object movies, to capture and display 3-D objects. An
object movie is composed of a collection of 2-D images taken
from many different viewpoints of a 3-D object. This technique
has been applied to provide many applications in the virtual
reality, digital archives, digital museum, marketing, and en-
tertainment. In this paper, we refer multiview images (MVIs)
to the image set of an object movie. An MVI can be acquired
in less than one hour by using automatic shooting equipment
[2], [3]. This work used the AutoQTVR system developed by
Texnai Inc. to capture the MVI.

MVI segmentation removing the background from the inter-
esting object is necessary to integrate an MVI into the virtual
world and to obtain satisfied rendering results. However, MVI
segmentation is known to be a tedious and expensive task com-
pared to the acquisitin of the MVI as mentioned above. In our
experience, segmenting the images manually would take more
than 30 man hours because an MVI generally contains hundreds
of images. Additionally, the MVI segmentation task can become
very time-consuming and burdensome for stereo object movies
[4].

Yielding two distinct foreground and background color dis-
tributions can obviously mitigate the difficulty of MVI segmen-
tation. Blue-screen and green-screen matting have been widely
adopted in movie production to achieve this purpose. However,
a black screen is preferable to capture the MVI to prevent the
object from reflecting the blue or green light, particularly in the
domain of digital archives and digital museums. A black screen
frequently results in ambiguously shadowed regions that can
significantly increase the difficulty.

Therefore, even a patient expert will become tired of the seg-
mentation task if the usability of the designed MVI segmen-
tation method should be examined in terms of computational
expense, accuracy of the segmentation result and amount of
user intervention. This work devises a new image segmentation

1057-7149/$25.00 © 2007 IEEE



2608 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

Fig. 1. Part of an equi-tilt set before applying the MVI segmentation method. Except for the leftmost image in the figure, the remainder of the images in this paper
are cropped in order to show more examples. (a) I ; (b) I ; (c) I ; (d) I ; (e) I .

method that satisfies all the requirements to help the user obtain
a quality MVI segmentation result in less than one man hour.

The notation of the MVI (which is a collection of images)
used throughout the paper is defined as follows. Let denote
the image taken at pan angle and tilt angle . An equi-tilt set

is defined as a subset of the images in an MVI captured at
the same tilt angle , i.e.,

(1)

Finally, an MVI is defined as

(2)

(3)

Fig. 1 shows a portion of an equi-tilt set that are contained in the
MVI of the pottery owl.

The remainder of this paper is organized as follows. Section II
discusses related work. Section III presents the overview of the
proposed method. The proposed method consists of two main
parts, 1) the automatic initial segmentation and 2) the rectifi-
cation of the segmentation errors with the learned shape prior.
The first part is introduced in Section IV, while the second part
is presented in Section V. The experimental results are pre-
sented in Section VI, together with the discussion of the pro-
posed method. Finally, conclusions are drawn in Section VII.

II. RELATED WORKS

To our knowledge, MVI segmentation is currently performed
entirely by the artists. These experts mainly manipulate some in-
dustrial interactive tools (e.g., magic wand and intelligent scis-
sors from Adobe Photoshop [5]) to remove the background of
each image individually. The work flow does not utilize any
information between images captured in neighboring viewing
directions, and consequently is very expensive. Unfortunately,
background removal in the MVI has not been widely investi-
gated, so MVI segmentation is an obstacle to the spreading of
image-based objects. This section describes the state of the art
in interactive background removal tools. Video object segmen-
tation methods related to MVI segmentation are then surveyed
and discussed.

Interactive background removal tools have been developed
for many years because of their practical importance. Such tools
include magic wand [5], intelligent scissors [5]–[8], Bayesian
matting [9], graph cut based image segmentation [10]–[13], and

interactive matting based on belief propagation [14]. The color
information (e.g., foreground and background color model) and
contrast information (e.g., gradient and edge strength) are usu-
ally exploited to achieve the goal. The most popular research di-
rection among the above mentioned methods is probably graph
cut based image segmentation. After a user manually gives some
foreground and background hard constraints on the image, the
remaining of the image are automatically classified as the fore-
ground or background immediately. These approaches are often
quite successful for the single image segmentation, but hard to
apply to the MVI segmentation due to the endless drudgery of
manually specifying hard constraints on all images of the MVI
individually.

Video object segmentation involves extracting objects from
an image sequence. Both automatic [15]–[17] and semi-auto-
matic [18]–[20] methods have been proposed. Since automatic
video object segmentation might be problematic, semi-auto-
matic approach, which allows the user to guide the segmentation
algorithm, can be applied to obtain robust and accurate results.
The motion field between the neighboring images can be esti-
mated and utilized to simplify the video object segmentation.
Because of the MVI is a specific type of video sources, MVI
segmentation can also benefit from the video object segmen-
tation technique. To alleviate the difficulty of individually
cutting the object out of the background, perhaps the most
intuitive approach is to utilize the motion field to propagating
the segmentation results from some representative images to
their neighboring images. If user intervention is allowed, then
it can also be propagated. The information propagation scheme
has been frequently used to solve many video manipulation
problems to achieve different applications [10], [21], [22]. All
the video object segmentation methods, based on the infor-
mation propagation scheme, can provide satisfactory results
in some cases, but lack elegance, because their performance
mostly depends on the accuracy and robustness of the motion
estimator. For constant intensity regions, these methods would
fail due to the failure of the motion estimator.

Goldlücke and Magnor have addressed the issue of the prob-
lems of the 3-D reconstruction and background separation [23].
However, instead of reconstructing the volumetric representa-
tion of the object that is independent on any image plane, their
approach computes the depth map with respect to an image
plane. Additionally, for each image where the foreground layer
needs to be determined, their approach also requires a back-
ground image taken at the same viewpoint. Since the foreground
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Fig. 2. Process flowchart of the proposed method.

objects should be taken away before these required background
images can be captured, the practicability of their approach is
significantly reduced.

III. OVERVIEW OF OUR APPROACH

The proposed approach aims to let every single image seg-
mentation, rather than only those in neighboring viewing direc-
tions, benefit from the segmentation results of the images cap-
tured in all possible viewing directions. Besides the problem of
computing a reliable motion field, one more shortcoming of the
information propagation scheme is that the information can only
be propagated from neighboring images, because of the error ac-
cumulation problem which is hard to avoid when computing the
motion field. The proposed approach overcomes this limitation
with the help of the reconstructed 3-D model, and some prelimi-
nary results have been shown in [24]. A quality motion field can
also be computed between any pair of the neighboring images
after the 3-D object is reconstructed.

Fig. 2 illustrates the process flowchart of the proposed ap-
proach. Given an MVI with the intrinsic and extrinsic param-
eters of the camera calibrated for all views [25], the proposed
method starts with the automatic initial segmentation, which
aims to provide some tentative segmentation results based en-
tirely on the color and contrast information. To take the shape
prior into account, the user is required to selectd a subset of ac-
ceptably segmented images. The 3-D shape is then generated
from these selected images. The reconstructed 3-D model can
be used to infer the shape of the object in any given 3-D config-
uration of a view. For each image of the MVI, a quality segmen-
tation result can be computed by incorporating the inference of
shape of the object into the segmentation algorithm, along with
the original color and contrast information. The main advantage
of the approach is that each time the user gives some interven-
tion to a part of the MVI, the influence can be propagated to
the whole MVI segmentation problem. Thus, if the user is still
not satisfied with the MVI segmentation result, then interactive
background removal tools can be utilized to refine some prob-
lematic images. This procedure can be repeated in order to refine
the MVI segmentation result further.

Notably, to apply our method, camera parameters are indeed
required for 3-D reconstruction. The reconstructed 3-D model
may be inaccurate due to calibration error, which may then in-
troduce errors when the shape priors are extracted from the inac-
curate 3-D model. However, the final 2-D image segmentation
results are not very sensitive to small errors in the shape priors,

as long as the errors are within a few pixels. In our experiments,
we used the method described in [25] to estimate the camera
parameters, and the calibration errors are less than 3 pixels, in
general.

Since the shape prior of the object is expressed by using a
volumetric representation in this approach, a reliable 3-D re-
construction method is desired. The volumetric graph cuts pro-
posed by Vogiatzis et al. [26] are adopted in this case. Moreover,
a discrete medial axis constraint is introduced to alleviate the
protrusion flattening problem in the original volumetric graph
cuts algorithm.

IV. AUTOMATIC INITIAL SEGMENTATION

The automatic initial segmentation presented is inspired
by the graph cut image segmentation [10]. Because the fully
automatic image segmentation could be very challenging,
this work is not interested in successfully segmenting all the
images here; instead, the aim is simply to obtain a collection
of acceptably segmented images. These acceptably segmented
images are then mimed for the knowledge that can be used to
tackle the problem of automatically segmenting all the other
difficult images in the next run. In practice, the user can specify
this set of acceptably segmented images.

A. Graph Cut Image Segmentation

The background removal tool proposed by Boykov and Jolly
[10]on whichour MVIsegmentation method isbuilt, is described
here. Graph cut image segmentation requires the user to interac-
tively mark some pixels as being inside the foreground objects,
and others as a part of the background scene. The two disjoint sets
of marked pixels serve as the foreground and background hard
constraints, respectively. All the other pixels are considered to
be unknown, and then they can be classified into the foreground
or background by Markov random field (MRF) optimization.

Each candidate segmentation is associated with an energy that
considers the following properties. For each foreground pixel
of the candidate segmentation, a penalty is given to reflect on
whether its color fits into the foregroundmodel.The model canbe
learned from the foreground pixels marked by the user. A penalty
is similarly given to each background pixel based on the simi-
larity of its color to the background model. Next, the algorithm
penalizes every pair of the adjacent pixels where one is inside
the foreground and the other is outside according to how likely
a boundary is probable to appear between the adjacent pixels. A
small penalty is generally given for the adjacent pixels that have
a large difference in their colors. The algorithm determines the
optimal segmentation by finding the global minimum among all
segmentations that meet the specified hard constraints.

B. Trimap Labeling

Therefore, a trimap consisting of labels drawn from
1 is required to activate the graph cut image seg-

mentation. The pixels with labels and correspond to the
foreground and background hard constraints, respectively.
Intuitively, automatic segmentation can be achieved if the
trimap can be generated automatically. To obtain the tentative

1Abbreviations of foreground, background, and unknown, respectively.
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segmentation results here, a labeling method is presented to
generate automatically the trimap for each image of the MVI.

From our observation, MVI has three basic characteristics
which can help the method generate the trimap.

1) When an equi-tilt set of the MVI is captured, a large pro-
portion of the background scene is static.

2) Only one interesting object is presented in every image of
the MVI.

3) The foreground and background color distributions are dis-
tinct in most cases.

The trimap labeling method comprises -labeling and -la-
beling. Each equi-tilt set of the MVI is processed individually by
the trimap labeling method. Given an equi-tilt set , the trimap
of each image in is initialized to . During the -labeling,
pixels are examined to be labeled as based on the color dif-
ference. During the -labeling, all pixels that are still labeled as

are examined to be labeled based on the background model.
1) -Labeling: By the first characteristic, if the color of a

pixel varies barely throughout the equi-tilt set , then the pixel
should be the background and labeled . Since an equi-tilt set

can be treated as a short video sequence, a pixel is la-
beled by examining its color difference compared with the cor-
responding pixels in both directions of the video sequence. The
pixels with a small color variation are labeled .To relieve the
camera noises and consider the color changes caused by the
lighting, the zero-mean normalized cross correlation (ZNCC)
is adopted to measure the color difference.

Most of the pixels are exactly within the background as
shown in Fig. 3, but there are exceptions, such as the pixels of a
uniform colored patch of the object. The concept of label consis-
tency is then introduced. If the pixels at the same image position
do not have the same label throughout the whole sequence, then
they are relabeled as . Finally, by the second characteristic of
the MVI, mathematical morphology is applied to filter out the
remained noises such that only one region exists, surrounded
by the region. Notably, all the images in until now had the
same trimap consisting only the and labels. Fig. 4 shows
an example of such a global background mask.

2) -Labeling: By the third characteristic of the MVI, each
pixel whose color differs widely from the background model
can be labeled . To learn the background model of a given
image, the pixels that are reasonably close to the boundary
between the and regions are collected and clustered by
using K-means. Let denote the mean color of the th cluster
for image . Each pixel with the label in the image
is examined and labeled if

(4)

where is a strict threshold to ensure that only the pixels that
differ widely from the background model are labeled .

Fig. 3 shows the result of the trimap labeling. The trimap of
each image is used to activate the graph cut image segmentation.

V. SEGMENTATION WITH SHAPE PRIORS

The shape prior of the object used in our method is expressed
by a volumetric 3-D model. The problem of reconstructing a

Fig. 3. Top row shows a portion of the input image sequence taken from an
equi-tilt set of the pottery owl MVI. For all the images in the middle and bottom
rows, the black pixels correspond to the classified background regions. The fore-
ground regions are colored white, and the unknown regions are colored gray.
The middle row shows the corresponding result during the -labeling for each
image. Notably, to filter out the incorrectly classified pixels and obtain the global
background mask used during -labeling, label consistency and mathematical
morphology are used as shown in Fig. 4. Finally, the bottom rows shows the
generated trimap for each image that is used to activate the graph cut image
segmentation.

Fig. 4. (a) Result including the label consistency concept is included; (b) global
background mask obtained by applying the mathematical morphology in (a).

volumetric 3-D model from multiple calibrated images has been
widely investigated in the last decade [26]–[29]. Besides the
camera calibration, these algorithms also require the silhouettes
of the object in all the images. However, obtaining these silhou-
ettes is exactly what we want to solve. The proposed method
avoids this contradiction based on the observation that a subset
of the MVI is sufficient for the 3-D reconstruction. Sufficient
number of images that have satisfactory segmentations after the
automatic initial segmentation. The user is then required to se-
lect a subset of acceptably segmented images to accomplish the
3-D reconstruction. Vogiatzis et al. recently proposed a graph
cut-based method, called volumetric graph cuts [26], to solve
the reconstruction problem. This work adopts Vogiatzis et al.’s
algorithm to learn the shape prior.
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A. Volumetric Graph Cuts

The volumetric 3-D reconstruction problem can be expressed
as a labeling problem, which involves deciding whether a given
voxel within the volume is inside or outside the surface of the
object. The idea of the volumetric graph cuts is as follows. The
true surface is assumed to be between a given base surface and
a parallel inner surface. The base surface is an approximation of
the true surface, encloses the true surface. In practice, the base
surface can be obtained from the visual hull [27]. Each candidate
surface under this assumption is then scored mainly according
to whether the points on the surface are photo-consistent. The
algorithm finds the optimal surface by solving the minimum cut
of a corresponding weighted graph. Specifically, for each voxel

, let be the photo-consistency score of , where
a lower value represents a better photo-consistency. For a can-
didate surface , let be the volume between and the
base surface. Each candidate surface is associated with the en-
ergy function consisting of the integral of the photo-consistency
score on the surface and the size of the volume . The
true surface is determined by finding the global minimum of
the energy function among all candidate surfaces

(5)

where

(6)

In (6), the first integral tends toward a photo-consistent surface,
while the second, called the ballooning term, prefers a fatter re-
constructed model. The reason for preferring a fatter model is
that finding the global minimum can result in a trend to remove
the protrusive parts of the object. The goal of the ballooning
term is to counterbalance the protrusion flattening problem. Vo-
giatzis et al. [26] describes the detailed formulation and graph
construction.

B. Discrete Medial Axis Constraint

One problem with the volumetric graph cuts is that the pa-
rameter in (6) has to be chosen through trial and error in
order to obtain a satisfactory result. Furthermore, the ballooning
term could lead to a tug-of-war between the original protrusion
flattening problem and the following concavity filling problem,
where the concavities presented in the object are filled. For some
objects, a befitting ballooning term still can not be found out
to obtain a correctly reconstructed object even after an exhaus-
tive search of the parameter . The phenomenon is also demon-
strated in one of our experiments. The discrete medial axis con-
straint can be utilized to alleviate these difficulties is one of our
contributions.

1) Energy Function Analysis: As is well known, solving the
two terminals min-cut problem is equivalent to finding the max-
imum a posteriori (MAP) estimation of a MRF with two labels.
The graph cut energy minimization, such as that used in the
volumetric graph cuts, is widely adopted in many computer vi-
sion applications. Similar to most of the energy functions that
can be minimized by the graph cut, (6) also includes the data
and boundary properties. Let be the set of voxels within the

base surface. Let be a neighborhood system defined for ,
which containing the set of all pairs of neighboring voxels. Let

be a family of random variables defined on
the set , in which each variable takes a label from .2

Given a candidate surface , a corresponding random field is
uniquely defined such that for any voxel in

if is within the surface
otherwise.

(7)

In the discrete case, it can be easily proven that the energy func-
tion in (6) associated with a candidate surface can be
rewritten as which corresponds to the joint of data and
boundary properties of a random field

(8)

where

(9)

(10)

and

if
otherwise.

(11)

Here, is the penalty according to how well the voxel
fits into the given label , while indicates whether the
surface is likely to pass through the edge between and . Ad-
ditionally, can maintain the smoothness prior such that
the physical property in the neighborhood of the space offers
some coherence and does not change abruptly [30].

The choice of presents no serious difficulties unlike
the choice of . To counterbalance the protrusion flattening
problem, a simple constant penalty in (9) is chosen to penalize
all voxels that are not inside the surface. But to achieve better
performance, the definition of should consider the likeli-
hood that the voxel is inside or outside the surface with respect
to the available observations. Unfortunately, until now, it is still
not clear on how to compute a good estimate of the likelihood
based on the available observations. Here, we present a new def-
inition of based on the medial axis of the object, which has
been proven to work well as shown in the experiments.

2) Imposing the DMA Constraint: The medial axis of the 3-D
object is defined as the centers of all maximal spheres in the ob-
ject that touch the shell of the object at two or more points. In
practice, the medial axis is represented by a set of discrete voxels
interior to the 3-D object, called discrete medial axis (DMA).
The DMA of a volumetric model can be obtained by analyzing
the 3-D distance field, which is computed by the distance trans-
formation method. A good overview of these methods has been
provided by Cuisenaire [31]. The local maxima in the 3-D dis-
tance field are examined to serve as the DMA. Because unde-
sired branches might exist, which is considered to be meaning-
less, only the large enough connected components of the voxels
in the DMA are retained.

2Abbreviations of being inside and outside the surface, respectively.
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Fig. 5. Visualization and comparison of the 3-D reconstruction algorithm. Both
(b) and (c) are taken from a cross-section of the visual hull for the toy house,
which is shown in (a). The golden voxels correspond to the base surface in all
three images. The cyan voxels denote the inner surface, which is parallel to
the base surface. Additionally, the voxels in V are also colored cyan in (c).
The photo-consistency scores between the base and inner surfaces are shown,
where the darker region indicates a better photo-consistency. Additionally, the
line within the base and inner surfaces represents the reconstructed surface of the
object. In (b), without the DMA constraint, although the reconstructed surface
passes through the worse photo-consistency regions, the integral of the energy
on the entire surface is lower. Consequently, the protrusive part (i.e., the tower
of the house) is flattened incorrectly. The image in (c) shows the correctly re-
constructed surface for the same portion of the object with the DMA constraint.

Compared to the original volumetric graph cuts, we first com-
pute the DMA of the base surface, which is assumed to be an
adequate approximation of the DMA of the true surface. The
DMA itself is imposed as the hard constraint of the object such
that the voxels in the DMA are enforced to be inside the object,
while the voxels in the neighborhood of the DMA act as the soft
constraint that are very probable to be inside the object.

Specifically, let be the set of voxels in the DMA. Let
be the minimum distance from the voxel to its nearest voxel in

. Computing the minimum distances for all voxels can be ac-
celerated by using the distance transformation method to obtain
an approximate solution. For each voxel within the base surface,
the possibility of being inside the true surface is considered to
be inversely proportional to the minimum distance. Thus, we
define the new data property , into which the DMA con-
straint has been embedded

(12)

otherwise

(13)

Here, (12) guarantees that the voxels in are always labeled
as being inside the surface. Additionally, (13) encourages the
voxels in the neighborhood of the DMA to be labeled as being
inside the surface. Notably, the parameter adjusts the strength
of the soft constraint, while controls the influenced range.
The energy function with the new data property is glob-
ally minimized by using the graph cut technique similar to [26].
Fig. 5 illustrates the benefit of the DMA constraint. The visual-
ization of the photo-consistency scores is also provided.

C. Segmentation Refinement

Besides the color and contrast information, a good inference
of the shape available for any possible view of the object can
provide the favorable information on solving the MVI segmen-
tation problem. Because the camera is calibrated for all images
in the MVI, a good shape prior of the object can be obtained

Fig. 6. C , C , and C denote the views adopted to built the visual hull. No-
tably, the true surface of the object is assumed to be between the base and inner
surfaces. Although the segmentation results of C and C are poor, they can
be improved by incorporating the projection of the reconstructed model into the
graph cut image segmentation algorithm.

to rectify the segmentation errors in some problematic views
by projecting the reconstructed 3-D model. Fig. 6 illustrates the
idea of the segmentation refinement. For each image with the
discontented segmentation result, the projection of the recon-
structed 3-D model under the same viewpoint is integrated to
serve as the foreground hard constraints, together with the pre-
viously generated trimap. The graph cut image segmentation is
then applied again to obtain the satisfied segmentation result.

Significantly, the photo-consistent reconstruction is manda-
tory to obtain a good shape. The visual hull can only represent
an approximate geometry of the object, and tends to be fatter
than the real object, regardless of whether the object is convex
or concave. This characteristic of the visual hull could be more
obvious when the number of images available to be used is lim-
ited. Consequently, the projection of the visual hull might intro-
duce unreliable foreground hard constraints in the segmentation
refinement. Fig. 6 also illustrates the problem when photo-con-
sistent reconstruction is not used. Here, directly using the pro-
jection of the base surface on and imposes incorrect fore-
ground hard constraints, and lead to failed segmentation results.

VI. EXPERIMENTS

In our experiments, Each MVI consists of 360 images from
ten equi-tilt sets . Each equi-
tilt sets had 36 images captured equally from pan angle 0 to
pan angle with the image size 3000 2000 pixels. In all
the experiments, because the lens distortion occurred in an area
far from the center of the image, and the object was mostly lo-
cated in the center of the image, each image is cropped to about
1000 1000 pixels before evaluating our MVI segmentation
method. The experiments were performed on a 2.4-GHz Pen-
tium 4 desktop with 1-GB memory.

The remainder of the experiments section is arranged as
follows. First, the results of the automatic initial segmentation
are shown. The reconstructed 3-D models, from which the
shape prior can be extracted, are then shown. Following this,
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Fig. 7. Results of the automatic initial segmentation corresponding to the
image sequence shown in Fig. 3. The two images on the left show the segmen-
tation results that should be selected for the 3-D reconstruction, while the other
shows the segmentation result that should be excluded and refined in the next
run. The red circles denote the noticeable segmentation errors in the image.

we demonstrate how to rectify the segmentation errors existing
in some problematic images using the obtained shape prior.

A. Initial Segmentation Results

To reduce the response time to the user, the automatic initial
segmentation can be carried out on the downsized MVI. After
obtaining the initial segmentation results, the set of segmented
images chosen by the user was then resized to the original image
size to generate the base surface used in the 3-D reconstruc-
tion. When finding the optimal surface within the base surface,
besides the selected images, all the other images in the MVI
can also be considered when computing the photo-consistency
scores. Additionally, the automatic initial segmentation does not
need to be applied on all the equi-tilt sets of the MVI. Experi-
mental results shows that about 3 or 4 equi-tilt sets captured in
the relatively small tilt angles can yield enough satisfactory seg-
mentation results for the 3-D reconstruction job.

First, the automatic initial segmentation was applied to the
pottery owl MVI. Fig. 7 shows the results of the automatic ini-
tial segmentation for the pottery owl with respect to the image
sequence as shown in Fig. 3. Because of the low contrast bound-
aries of the pottery owl, the black screen and the shadows caused
by the lighting, automatic foreground extraction of the whole
MVI could be a demanding challenge when applying methods
based on color and contrast information alone. However, since
different geometries, textures, and lightings are presented in dif-
ferent viewing directions of the pottery owl, the foreground can
be automatically separated from the background in some im-
ages. For the other problematic images, the segmentation er-
rors can be rectified in the next run by incorporating the learned
shape prior into the segmentation process. To learn the shape
prior, 36 segmented images were selected for the 3-D recon-
struction of the pottery owl.

Fig. 8 shows the results of the automatic initial segmentation
for a portion of the equi-tilt set in the toy house MVI. Since the
tower of the house had mixed together with the black screen in
some viewing directions in the photo studio arranged for cap-
turing the MVI, the tower was difficult to separate from the
background without the shape knowledge learnt from the other
successfully segmented views. To rectify the segmentation er-
rors, 48 segmented images were selected for the 3-D reconstruc-
tion of the toy house.

B. Learning Shape Prior

In the course of learning the shape prior for the object, 3-D
reconstruction from a selected subset of the segmented images
is carried out. The volume was discretized into 200 200 200

Fig. 8. Top row shows a portion of an equi-tilt set for the toy house MVI. The
middle row shows the trimap labeling result for each image. Finally, the bottom
row shows the results of the automatic initial segmentation. The red circles in-
dicate the noticeable segmentation errors in each image, to be rectified in the
next run.

voxels. In our implementation, the 3-D reconstruction task can
generally be completed within 3 min, depending on the number
of acceptably segmented images chosen by the user. The param-
eter in (6) is quite stable after including the DMA constraint,
and, hence, remained constant in our experiments.

The first experiment involved the toy house, which was also
adopted to demonstrate the advantage of using the DMA con-
straint. The toy house was chosen deliberately because it repre-
sents a difficult 3-D reconstruction problem, due to noticeable
protrusions and concavities in the object. Fig. 9 demonstrates
the difficulty of reconstructing the toy house, indicated by the
tug-of-war between the protrusion flattening problem and the
concavity filling problem. Without the DMA constraint, even
if the concavities all around the house are going to be filled,
the ballooning term still cannot correctly deal with the tower
even after it has been exhaustively searched. Fig. 10 shows the
successfully reconstructed model of the toy house by imposing
the DMA constraint to alleviate this difficulty. Notably, the al-
gorithm can properly reconstruct both the protrusive parts, i.e.,
the tower and chimney of the toy house, and the concavities all
around the house.

The second experiment adopted the pottery owl. Fig. 11
shows the reconstructed model. Although the ears of the pot-
tery owl are thin and sharp, they were correctly reconstructed
with the DMA constraint. Additionally, the concavities around
the eyes and feet were handled properly.

C. Rectification of Segmentation Errors

This section describes the refinement of the segmentation re-
sults with the learned shape prior. Fig. 12 shows the rectification
of the segmentation errors for each problematic image in Figs. 7
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Fig. 9. Reconstructed model of the toy house by using the volumetric graph
cuts algorithm without imposing the DMA constraint. The ballooning term is
increased gradually from left to right. The figure indicate that reconstructing
the toy house is a difficult task without the DMA constraint

.

Fig. 10. Image (a) shows the visual hull generated from the available silhou-
ettes of the toy house to act as the base surface in the algorithm; (b) the DMA of
the visual hull that is considered to be an approximate DMA of the toy house.
Images (c) and (d) show the reconstructed model from three different viewpoints
of the toy house, together with the image captured at similar viewpoint.

Fig. 11. (a) Visual hull of the pottery owl. (b) DMA of the visual hull.
(c) Example image of the pottery owl MVI. (d) Reconstructed model of the
pottery owl by using our method.

and 8, which are denoted by the red circles. Since the projection
of the reconstructed model can provide a good inference of the
shape for the object in each calibrated view, a robust segmenta-
tion result can be achieved even when the boundary of the object
goes through the low-contrast and shadowed regions where the
foreground and background color distributions can not be effec-
tively separated. On each trimap that includes the projection of
the reconstructed model, the learned shape prior provides much
information about the segmentation problem that the original
foreground hard constraints do not reveal.

Fig. 13 indicates that the background removal of the pottery
cat MVI increases the benefit of using shape priors. Because
the foreground and background color distributions are entirely
mixed with each other in some difficult regions, the images are
quite difficult to segment by using only the color and contrast
information. Moreover, for such a troublesome MVI, segmen-
tation errors generally appear in several consecutive images at
the same time. Consequently, propagating successful segmenta-
tion results by using the motion field becomes quite unstable due
to the error accumulation problem when estimating the motion
field. For such a difficult object, the automatic initial segmenta-
tion might not provide enough successful segmentation results

Fig. 12. Rectification of the segmentation errors for the pottery owl in Fig. 7
and the toy house in Fig. 8. Trimaps (top row): tProjection of the reconstructed
model is colored white, and serves as the foreground hard constraints together
with the previously generated trimap. Refinement (bottom row): Refinement of
the segmentation result is shown for each image.

for the 3-D reconstruction. Here, an equi-tilt set was manually
segmented by using the interactive background removal tool.
Both the automatic and manual segmentation results were used
to accomplish the 3-D reconstruction job. The problematic seg-
mentation results was then refined be refined using shape priors
obtained from the reconstructed 3-D model.

To measure the segmentation improvement, the proposed
method was applied to the synthetic data composed of the
rendering results of the 3-D model and random background
noises, as depicted in Fig. 14. Since the silhouette is known in
the synthetic data set, the error between the segmentation result
produced by our method and the silhouette can be calculated.
The Hausdroff distance was adopted to measure the segmenta-
tion errors. In our experiment, four levels of background noises
were composed to the synthetic data, and 10 and 20 ground
truth images were randomly selected to learn the shape prior.
The results of Fig. 15 indicate that shape information is indeed
critical to alleviate eliminate segmentation errors, and ensures
that the segmentation method is robust to background noises.
Fig. 14 shows the comparison between ground truth and the
segmentation results produced by the proposed method with
shape prior 2.

VII. CONCLUSION

Themajoradvantageoftheproposedmethodis itcanpropagate
the successful segmentation results from some selected images
to the whole MVI. With the new MVI segmentation method,
2-D shape is extracted from the reconstructed 3-D model and
used to remove the background from the foreground object.
Our work has demonstrated that significant improvement
for MVI segmentation can be obtained with the proposed
method.

The proposed MVI segmentation process requires only a
small amount of user intervention, which is to select a subset
of acceptable segmentations of the MVI after the initial seg-
mentation process. Notice that human is much more efficient
in selecting a good segmentation result than in manually de-
lineating a precise object contour. For some very difficult
objects, the automatic initial segmentation might not meet
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Fig. 13. First row shows three consecutive images in an equi-tilt set of the pot-
tery cat MVI. The second row shows the result of trimap labeling. The third row
shows the result of the automatic initial segmentation. In the fourth row, the pro-
jection of the reconstructed 3-D model provides the information on regions that
is quite difficult to obtain by the methods based on color and contrast alone. The
last row shows the refinement of the segmentation result by using shape priors.

the user’s requirement. In the situation, the user can always
select a subset of images and delineate the object contours for
those images using some interactive image segmentation tools,
e.g., the GrabCut [11], Lazy Snapping [12]. The segmenta-
tion results can then be propagated to refine the segmentation
results of the remaining images using the method proposed
in this paper.

While thispaperonlypresentsbinary segmentationresults, it is
straightforward to apply other existing methods for alpha matting
[9], [21] in order to obtain smoother boundary transition. A major
limitation of the proposed method is that it cannot effectively deal
with specular objects because the zero-mean normalized cross
correlation (ZNCC), adopted to measure the photo consistency
score, is not robust to specular reflection. Our plan is to apply
to the MVI some diffuse-specular separation techniques before
3-D reconstruction. Another plan is to further reduce the user
intervention by analyzing the energy of the minimum cut, after

Fig. 14. First row shows three consecutive images in an equi-tilt set of the Ar-
madillo MVI. Second row shows the result of trimap labeling. The third row
shows the result of the automatic initial segmentation. In the fourth row, the pro-
jection of the reconstructed 3-D model provides the information on regions that
is quite difficult to obtain by the methods based on color and contrast alone. Last
row shows the refinement of the segmentation result by using shape priors, the
comparison between the segmentation results produced by the proposed method
and the ground truth. Red solid lines denote the contours of the ground truth,
and the green dot lines denote the segmentation results produced by the pro-
posed method.

Fig. 15. Mean segmentation errors on the synthetic data. Image size is
800� 600. In the experiments, the 3-D shape was reconstructed by randomly
selecting ground truth images. The sShape prior 1 was learnt by using ten
images, and the shape prior 2 was learnt by 20 images.

the initial segmentation, and then automatically identifying
a subset of acceptable segmented images.
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