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Abstract

This report describes the work done so far in the first year of research. The work in-
cludes modeling of subsystems and development of a six degree-of-freedom (6DOF) sim-
ulation program of the engagement. The key subsystems are various coordinate systems
and the transformations between them, the equations of motion of both the interceptor and
target, the spheroid earth and atmospheric model, the formulas for computations of such
quantities as Mach number, flight path angle and angle of attack, the guidance laws and
the control systems, the propulsion model, the actuators, the aerodynamic model and a
model that calculates all the physical properties of the interceptor such as mass , moment
of inertia, etc. The simulation program is implemented using Simulink, a block diagram
based simulation tool. The subsystems that have been developed and implemented will be
described in detail, the rest will only be briefly discussed. Completing the modeling and

simulation development is the topic of subsequent research.

1 Introduction

The goal of this three-year research is the development of a simulation environment that can
be used as a tool for evaluating the performance of interceptors against incoming missiles. The
tool will be equipped with basic subsystem modules such as equation of motions and earth

model and default modules such as guidance laws and control systems. The modules will have



standardized inputs, outputs and parameters. To simulate a particular engagement, the user can
easily replace any module with one of his own development. For example, he may replace the
guidance law module with one of his own design to test its effectiveness.

This report describes the work done so far in the first year of research. The work includes
modeling of subsystems and development of a six degree-of-freedom (6DOF) simulation pro-
gram of the engagement. The key subsystems are various coordinate systems and the transfor-
mations between them, the equations of motion of both the interceptor and target, the spheroid
earth and atmospheric model, the formulas for computations of such quantities as Mach num-
ber, flight path angle and angle of attack, the guidance laws and the control systems, the propul-
sion model, the actuators, the aerodynamic model and a model that calculates all the physical
properties of the interceptor such as mass , moment of inertia, etc. The simulation program
is implemented using Simulink, a block diagram based simulation tool. The subsystems that
have been developed and implemented will be described in detail, the rest will only be briefly
discussed. Completing the modeling and simulation development is the topic of subsequent
research.

The report is organized as follows. Section 2 introduces the coordinate systems used in
the simulation. Section 3 describes the equations of motion of the interceptor, the translational
equation and the rotational equation. It also defines the Euler angle and the quaternion equa-
tion. Section 4 describes the transformation matrices between the various coordinate systems.
Section 5 is the detailed earth gravitation model and the calculation of accelerations in inertial
coordinate. Section 6 describes the computation of various variables such as Mach number,
angle of attack, longitude and latitude, etc. Section 7 is a summary and discussion of future

work.

2 The coordinate systems

The simulation uses several coordinate systems to describe the dynamics of the vehicle (the
interceptor). They include inertial coordinate systems, earth surface fixed rotating coordinate
systems, and vehicle-fixed coordinate systems. The description of these coordinate systems

follows.
(I) Earth-centered Inertial Coordinate S;

e Type: Non-rotating

e Origin: The center of the earth



e The Z;-axis points to the North pole

e The X;-axis points to the Greenwich Meridian at start of simulation (time zero) and

on the equatorial plane

e The Y7-axis completes the right-hand system

(IT) Inertial Launch Coordinate Sy,

Type: Non-rotating

Origin: The vehicle’s center of gravity at the start of simulation

The X -axis points to the local vertical, positive upward

The Z;-axis points to the vehicle’s aiming azimuth

The Y} -axis completes the the right-hand system
(IIT) Earth-centered Rotating Coordinate Sy

e Type: Rotating
e Origin: The center of the earth
e The Zg-axis points to the North pole

e The Xpx-axis coincides with X -axis at start of simulation (time zero) and rotates

with the earth, hence it is always along the Greenwich Meridian

e The Ygr-axis completes the right-hand system
(IV) Geographical Coordinate S¢;

e Type: Rotating

Origin: The vehicle’s current subvehicle point on the earth surface

The X-axis is in the local horizontal plane and points north

The Yg-axis is in the local horizontal plane and points east

The Z-axis completes the right-hand system

The subvehicle point is defined as the point on the reference ellipsoid (spheroid) closest
to the vehicle [8, p.6-56]. This is the so-called north-east-down (NED) coordinate, due
to the spheroid earth model the ‘down’ direction does not necessarily point to the earth

center.



(V) Body Coordinate Sg

e Type: Rotating

Origin: The vehicle’s center of gravity

The X g-axis coincides with the forward longitudinal axis of the vehicle

The Yp-axis points right

The Zp-axis points down

3 Equations of motion

The rigid body equations of motion include the translational equations and the rotational equa-

tions. Together they are called the six degree-of-freedom (6DOF) equations of motion.

3.1 Translational equations

The translational equations describe the evolution of position and velocity of the center of grav-

ity (c.g.) of the vehicle. In the S; coordinate, these equations are simply double integrators:

{}acl = Qgr
@y I = Qg (3 1 )
z.}zl = Az
and
T = Vgt
Ur = Uyl (3.2)
ZI = Uy

where {a,s, ayr, a.r} {vor, vyr, v.r}, and {1, yr, 21} are respectively the acceleration compo-
nents, the velocity components, and the position components of the vehicle in the S; coordinate.

In matrix form we write these equations as

= Ar + Bu (3.3)
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3.2 Initial position

The initial position components can be computed from the (geographic) longitude A(0), the
(geodetic) latitude ¢,4(0), and the altitude /(0) of the launch site (the vehicle at t = 0). We

describe two formulas for the computation: one is exact and the other approximate.

(I) Exact formula [1, p. 98]

Given (A(0), ¢4(0), h(0)) as the longitude, geodetic latitude and altitude of the launch

site, the initial position components in the S; coordinate are

R
1(0) Taeroo T MO) | cosdg(0) cos A0)

yr(0) | = \/%W+h(0) cos ¢,(0)sin A(0) | . (3.4)

Z](O) Re(1—62)

\/m + h(O) sin ¢g(0)

where R, is the equatorial radius of the earth, e = /1 — (R, /R.)? is the eccentricity of
the earth and I?,, is the polar radius of the earth.

(II) Approximate formula [2]

At time ¢ = 0, the inertial longitude \;(0) is the same as the geographic longitude A(0),
that is,
Ar(0) = \(0).

The geocentric latitude ¢.(0) can be computed from the geodetic latitude ¢,(0) by
1
$.(0) = tan™" <E tan gbg(O)) (3.5)

where k = (R./R,)” the ratio of the equatorial radius and the polar radius squared. The

distance, R,(0), from the center of the earth to the subvehicle point on the surface of the
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earth (sea level) is given by

R,

Rs(0) = . (3.6)
©) V14 (k- 1)sin? ¢.(0)
The distance from the center of the earth to the vehicle is (approximately)
r7(0) = Rs(0) + h(0). (3.7)
The initial position components are then given by
x7(0) 1 cos ¢.(0) cos Ar(0) 1 cos ¢.(0) cos A(0)
yr(0) | = | rrcos¢e(0)sin A;(0) | = | rrcosde(0)sin A(0) | . (3.8)
z1(0) rrsin ¢.(0) rrsin ¢.(0)

3.3 Initial velocity

The initial velocity components are

v21(0) 0 -, 0 1(0) —y1(0)
vr(0) [ =19 0 0 yr(0) | = | Qz(0) |,
v,7(0) 0 0 0 21(0) 0

where (2, is the angular rate of the earth. In vector notations, we would write the equation as

57 (0) = Q, x 77(0). (3.9)

3.4 Rotational equations

The rotational equations consists of two sets of first-order equations: the moment equation and
the Euler equation. The moment equation describes the relation between the angular rate and
the external torque applied on the vehicle. The Euler equation describes the relation between the
vehicle’s attitude, specified by the Euler angles, and the angular rate. The attitude of the vehicle
can be equivalently expressed in terms of the Euler parameters, also known as the quaternion
elements [4, p. 148]. The differential equations relating the Euler parameters and the angular
rates are known as the quaternion equation. From a numerical point of view, the quaternion

equation is preferred.



3.5 The Euler angles

We need to define first the Euler angles (¢, v, 0) that specify the orientation of the vehicle
with respect to an inertial coordinate. They are the angles of the three consecutive rotations of
S to make it parallel to Sp. After these rotations, the two coordinate systems are said to be
translatable meaning that they can be made identical through a translation of the origin of one
coordinate. We will denote the axes after the first rotation as X; — Y] — Z; and those after the
second rotation as X| — Y/ — Z7. For ease of visualization, we will assume the coordinates
have the same origin.

The first rotation ¢ is around X, so that the projection of Y/ onto the Yz — Zp plane is
precisely Yp5; the second rotation v is around Z; so that Y/ = Yj; the third rotation 6 is around
Y5 so that the remaining two axes coincide as well.

We note that his roll-yaw-pitch sequence is different from the yaw-pitch-roll sequence com-
monly used in the description of aircraft or missile attitudes. This is primarily to avoid the

so-called ’gimbal-lock’ problem when the pitch angle approaches £90° [5, p. 206], [7].

3.6 Moment equation

The equations relating moments (M, M, M) to the body rate (p, ¢, ) are

p = QT(Iy - Iz)/];r + Mac/];r
¢ = rp(l. — 1)/, + M,/1, (3.10)
7= pq(l, —1,)/ L.+ M./I,

where M, M,,, M, are components of the (total) moment, in S coordinate, acting on the ve-
hicle, I, I,,, I, are moments of inertia of the vehicle, and p, ¢, r are vehicle angular velocity
components in Sz coordinate.

The total moment is the sum of the aerodynamic moment and the moment due to propulsion,

that is,
M, May M,
M, | = | May | + | Mp, (3.11)
M, Ma. Mr,

where M g,, M4y, M 4, and My, Mr,, My, are respectively the acrodynamic moment compo-
nents and propulsion moment components in S g coordinate.

Initially the vehicle rotates with the earth, so its angular rate has a magnitude (2, and is along



the Z;-axis. By coordinate transformation we should have

p(0) 0
q0) | =CBr(0) | 0 |,
T(O) Q

where C'g;(0) is the transformation matrix from S; to Sp at time ¢ = 0 (see Section 4.)

‘We have assumed that the cross moment of inertia

as a result of symmetry of the launch vehicle. The moment equation needs to be modified if

these assumptions do not hold [3, p. 144].

3.7 Euler equation

The Euler equation relating the angular rates with the Euler angles are

P cosycosf 0 —sinf gb
=| —singy 1 0 0 |, (3.12)
r cosysinf 0 cosd ¥
or equivalently,
gz.S secycosf O sinfsecq) D
0 | = | tanwcosd 1 tant)sind q |- (3.13)
¢ —sinf 0 cos r

Initial conditions are ¢(0) = ¥(0) = 6(0) = 0 for vertically launched vehicle. If the longitudi-
nal axis makes an angle 1 with the local vertical, then #(0) = —n and ¢(0) = ¥(0) = 0.
Equation (3.13) contains the functions tan ¢) and sec 1), hence as the yaw angle 1) approaches
+7/2 we run into numerical difficulties. Normally for roll-stabilized vehicles, the yaw angle 1)
(and the roll angle ¢) are usually close to zero, so are the rates p and r, while the pitch angle
f may vary substantially. In this case, solving (3.13) poses no numerical problem. However
for spinning vehicles, the roll rate p induces strong pitch-yaw coupling in (3.10)( close to a
harmonic oscillator) so both i) and 6 can be large. In this case, solving (3.13) for the Euler
angles is not practical and the quaternion equation is a standard way to get around the problem

[7].



3.8 Quaternion equation

The 4 quaternion elements or the Euler parameters e, €1, €5, e3 can be defined as functions of

the Euler angles ¢, ¢, 6 (the roll-yaw-pitch sequence) as follows [4, p.155].

0 0
ey = COSECOS§COS§ + singsinésin— (3.14)
0 0
e1 = cos§cos§Sin§ — Sinasinﬁcosg (3.15)
. . 0 . ¢
€y = COS — Sin — cos — — sin — cos — sin — (3.16)
2 2 2 2 2 2
0 0
ez = singcos—cosg +cos§sin§sin§ (3.17)

We note that if the sequence of rotations of Euler angles is different, then the relation between

Euler angles and the quaternion elements will be different.

The quaternion elements are related to the angular rate components through the quaternion

equation [7]:
€o
€1
€2

és

€0

€1

€o

gl (3.18)

The initial conditions: ey(0), €1(0), e2(0), e3(0) are computed from the initial Euler angles using
(3.14), (3.15), (3.16), and (3.17). For example, if the initial Euler angles are ¢(0) = 1(0) =

6(0) = 0, then

eo(0) = 1,e1(0) = e2(0)

63(0) =0.

The quaternion elements are not independent and are constrained by

eg(t) +e3(t) +e3(t) +e5(t) =1 forall t.

Clearly the solution of (3.18) has a constant norm, since

é(t)le(t) =0

for all p,q,7 € Rand for all ¢ > 0.



4 The transformation matrices

We need to express force and velocity vectors in different coordinates. For example, we need
to express the aerodynamic and thrust accelerations, which come naturally in Sg coordinate, in
the S; coordinate so that they can be used as inputs to the translational equation; we also need
to express vehicle velocity and wind velocity in S coordinate for the computation of the aero-
dynamic angles. The different expressions (of the same vector) are related by transformation
matrices. These matrices are orthogonal as each of them is the result of a sequence of simple

rotations.

4.1 Transformation from Sz to S;,

The transformation matrix from Sy, to Sy is

c(0)e() c(0)s(¥)c(d) + 5(0)s(9) c(0)s()s(¢) — s(0)c(o)
Cpr=1| —s(¥) c(P)c(o) c(¥)s(¢) (4.1)
s(@)c() s(0)s()c(9) — c(0)s(¢) s(0)s(v)s(d) + c(0)c(9)

where ¢, 1, 0 are the Euler angles and we use ¢(z) for cos(x) and s(z) for sin(z). In flight, the
Euler angles changes with time so the matrix C'gy, is a function of time.
The matrix is the result of a sequence of three simple rotations described in Section 3.5 and

can be computed as

cosf 0 —sinf cos® sing 0 1 0 0
Cpr = 0 1 0 —siny cosy 0 0 cos¢ sing
sinf 0 cosf 0 0 1 0 —sing coso

The transformation matrix from Sg to Sy, is
Crp=Cp; =CE;. (4.2)

The transformation matrix C'gy, can also be expressed in terms of the quaternion elements:

e2+el—el—el  2ereg+ eges) 2(ere3 — eges)
Cpr = 2(e1e9 —ege3) et —el+ei—e2  2(eger + ege3) . 4.3)
2(ere3 + epes) 2(ege3 — ege1)  €f — et —ed+ €2

It is easy, although tedious, to verify that the two matrices defined in (4.1) and (4.3) are indeed

identical.
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4.2 Transformation from S; to S;

The transformation matrix from S; to Sy, is C'; and is given by

C(>\0)¢(¢5co) C(¢c0)5(/\0) S(¢c0)
Crr=| s(AL)s(¢w)c(Ao) — c(AL)s(Xo)  s(AL)s(de)s(Xo) + c(AL)c(Ao)  —s(AL)c(deo)

—c(AL)s(deo)c(Xo) — s(AL)s(Xo) —c(AL)s(de)s(No) +5(AL)c(Ao)  c(AL)c(deo)
4.4)

where g and ¢ are the longitude and geocentric latitude of the launch site, and Ay, is the angle
from the aiming azimuth to local north on the local horizontal plane, positive counterclockwise.
For example, if the aiming azimuth is local east then Ap = 7/2.

We note that C'; is a constant matrix and does not change with time. The matrix represents

the result of three consecutive rotations of S; to make it parallel to Sy :
(i) First rotation of \g around Z;-axis

(ii) Second rotation of ¢ around —Y7-axis

(iii) Third rotation of A, around —X7-axis = X -axis

Hence (' is the product of three simple rotation matrices:

1 0 0 cos g 0 singy cos g  sin g
Crr=10 cosA;, —sinAp 0 1 0 —sin )y cos A
0 sinA; cosAp —sing,y 0 cos o 0 0

Again the transformation matrix from Sy, to S; is

Cr=Cp =Cf.

4.3 Transformation from Sz to S;

The transformation matrix from S; to Sg, denoted C'g;, can be computed as
Cpr = CprCLyr.
The transformation matrix from Sy to S; is

11



4.4 Transformation from S; to Sy

The transformation matrix from S; to Sy is given by

cos(2,t)  sin(wyt) 0
Crr = | —sin(wyt) cos(t) 0
0 0 1

This is a simple rotation around the Z;-axis.

4.5 Transformation from S; to S

The transformation matrix from S; to S¢ is
_S(ch)C(AI) _S(ch)‘s(/\[) C<¢c)
OG] = —S()\]) C(/\[) 0
_C(QSC)C(AI) _c(¢c)$()‘1) _8(¢c)
where \; and ¢, are respectively the inertial longitude and geocentric latitude of the vehicle.

The matrix Cg; is the result of two consecutive rotations: first rotation A; around Z;-axis and

the second rotation ¢, + 90° around —Y7-axis. More precisely,
I p y

(e +7/2) 0 s(pe+ 7/2) c(Ar) s(Ar) O
CGI == 0 1 0 —S()q) C(/\[) 0
—5(¢e +7/2) 0 c(¢e+7/2) 0 0 1

The transformation matrix

Cic = CL,.

S Computing the acceleration a,7,a,;, a.r

The three forces acting on the vehicle are: the propulsion force, the aerodynamic force, and
the gravitation force. The first two forces are naturally expressed in Sp coordinate and the
gravitation force can be conveniently expressed in S; coordinate.

Let Frrog, Frrys, Fr.p and Fa,p, Fayp, Fa.p are respectively the propulsion force compo-
nents and aerodynamic force components in the Sp coordinate. Then the (total) acceleration

components in S; coordinate can be computed as

Qg ] 1 Frop 4+ Fagp ol
ayr | = (E) Cip FTyB+FAyB + | Gyr (5.1
(09 Fr.p+ Fa.p g1
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where m is the mass of the vehicle and g,1, gyr, .1 are the components of the gravitational
acceleration in S; coordinate.

The gravitational acceleration of the vehicle depends on the position (x;, y;, z7), and would
be in the radial direction for spherical earth model. The expressions for the components are
more complicated if an oblate earth model is adopted. Based on the 1960 Fisher Earth Model,

the gravitational acceleration components in the S; coordinate are given by [2]

- - 2 2 T
x 3 Re Z
. —u% |1+ 34 (T) 1—5<ﬁ>
x o ) 9 2N\ T
gyI = —Iu?’:—é 1 + %JQ <%) 1 — 5 (f‘_j) (52)
gZI z [ 3 Re 2 2 2 1
() (50

where J5 is the second gravitational harmonic, p is the gravitational constant, and

rr=\/2? +y7 + 27 (5.3)

1s radial distance from the earth center to the vehicle.

6 Auxiliary variables

Many variables of interest can be computed from data obtained from the 6DOF simulation.
They include: longitude, latitude, altitude, Mach number, speed, dynamic pressure, aerody-

namic angles, Euler angles, flight-path and azimuth angles.

6.1 Longitude, latitude and altitude

Integrating the translational equations, we obtain the inertial position (zr, ys, z;) of the vehicle.
From this we need to determine the geocentric longitude ), the geodetic latitude ¢, and the
altitude h. We describe two methods for the computation: one approximate and the other exact.
(I) Approximate method [2]

The inertial longitude is computed as

Ar = tan~! <£> . 6.1)

Xy

The geocentric longitude is then given by
A=A = Qpt. (6.2)

13



The geocentric latitude is computed as

/ -1 7
= —_— ] . 6.3
¢, = tan ( o y%) (6.3)

The geodetic latitude is then given by
-1
y = tan" (ktan ¢,) (6.4)

where k = (R./R,)?. The altitude is computed as

R,

(t) = r —
O = = e a2 g

(6.5)

where 7; is defined in (5.3).

(IT) Exact method

The intersection of the reference spheroid and the Meridian plane containing the vehicle
is a two-dimensional ellipsoid, the subvehicle point is the point on the ellipsoid that is
closest to the vehicle. The subvehicle point must be solved by an iterative method since
an analytical expression does not exist [5, p.227]. We propose here to formulate the

problem as a minimization problem.

Let r, = /x? 4+ y?. The position components of the vehicle on the Meridian plane is

(r, zr). A generic point on the ellipsoid can be expressed as
(R cosy, R,sin)
for some angle ~y. Define the distance squared
D(v) = (r, — Rocosy)* + (21 — R,sinny)”. (6.6)

The problem is then to find ~y so that D is minimized. Let D* and +* be respectively the

minimum value of D and the corresponding angle. Then the altitude

D*, 1. > Recos™;
b= vVD*, r,> R.cosvy ©6.7)
—vVD* r, < R.cosvy".
and the geodetic latitude is given by [1, p.97]
¢, = tan! (\/Etanv*) . (6.8)

Finally the geocentric longitude can be computed using (6.1) and (6.2).
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6.2 Range

The range of the vehicle, R(t), at time ¢ is defined as the distance between the launch site and
the subvehicle point at time ¢. The distance is measured along the earth surface. This distance
can be computed if we know the angle between two radial vectors: one from the earth center
to the launch site and one from the earth center to the vehicle. If we denote the angle by 0x(t),
then

R(t) = Ra(t)0r(1)

where R,(t) is the average radius of the earth. The angle can be computed from the S; coor-
dinates of the vehicle and the launch site. Let z;5(t), y;5(t), z15(t) be the S; coordinates of the

launch site at time ¢, then

Op(t) = cos™! 15(t)x (t) s () yr(t) + 215(t) 2 (t) |
Vs(0)2 4 ys(0)2 + z21s(8)2 /21 (6)2 + yr(8)2 + 21(2)

The average radius to the surface of the oblate spheroid computed defined as

R4(0) + Ry (1)

Rq(t) = 5 (6.9)
where A
Ry(t) = -
®) 1+ (k—1)sin® ¢ (t)
and ¢/, is defined in (6.3).
6.3 Velocity, speed, dynamic pressure and Mach number
The velocity of the vehicle relative to earth is computed as
V=V, -0, x 77,
In component form this becomes
URxl Vg 0 —-Q, 0 x(t)
Vpyr | = | vy | | 2 0 0 yr(t) | - (6.10)
VURzI Ver 0 0 0 Zr (t)
The atmospheric relative velocity in S; coordinate is
VAxl VRl VWl
VAyr = VURyr — | Uwyl | > (6.11)
VAxT VRz1 VW 21
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where

VWel Ywaza
Uwyr | — Cra VwyG
Vw21 Vw2G

is the wind velocity components in S; coordinate. The wind velocity is an environmental param-

eter whose components (vy ¢, Uwya, Uw.c) in S coordinate are specified (usually as tables

of values which depend on the altitude.)

The atmospheric relative velocity in Sz coordinate is compute as

VAzB VAxI
VAyB = Cpr VAyr
VAzB VAzI

The atmospheric relative speed V4 is computed as

— 2 2 2 _ 2 2 2
VA - \/UA:EB + vAyB + Va:B (_ \/vAxI + UAyI + UAZI')

By definition the dynamic pressure is
1
4a = 5PV,

where p is the air density. The Mach number is

1%
M="2
Cs

where c; is the speed of sound. We note that c; is a function of altitude.

6.4 Angle of attack and sideslip angle

The angle of attack o is defined (and computed) as

_ VAzB
a:tanl( Z).
VAzB

The sideslip angle (3 is defined as

- VAyB
B=sin"t| ).
Va
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6.5 The Euler angles

It follows from (4.1) that

_ -1 (jBL(273)
¢ =—sin"' (Cpr(2,1)) (6.19)
o _1 CBL(3a 1)

where C'gy (i, j) is the ijth entry of Cz.. In terms of the Euler parameters, the equations become

_ 2(6061 + 6263)
= tan ' 6.21
¢ = tan (eg—e%—l—e%—e% (621)
Y = —sin"" (2(eres — eges)) (6.22)
2
0 = tan™" < 2(eres + eocy) 2) (6.23)
ep el —e —e3

Remark: If we had solved the Euler equation (3.13), we would have the angles directly from

the solution.

6.6 Flight-path and Azimuth angles

The flight-path angle ~y of the vehicle is defined as the angle between the velocity vector (relative
to earth) and the local horizontal plane. The angle is positive if the velocity vector points above’
the horizontal plane, thus the vehicle is gaining altitude. The azimuth angle A, of the vehicle
is the angle from the projection of the velocity vector on the local horizontal plane and the local
north, positive counterclockwise.

To compute v and Az we first compute the earth relative velocity components in the Sg

coordinate:
VRzG URxI
vrye | = Car | vpyr (6.24)
VRzG URzI
Then the flight-path angle is
~ = —sin~! UG (6.25)
\/U]2%:cG + ,Ulz%yG + UIQQZG
and the azimuth angle is
Ay = tan~ <URyG) . (6.26)
VRz@
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Finally we list the constants used in the simulation. Constants such as equatorial radius,
polar radius listed in standard textbooks are often different although the differences are not
significant. The constants listed here, adopted from the 1960 Fisher Earth Model [2], are used

in the simulation.

Symbol value unit description
R, 6.378165857 x 108 m equatorial radius
R, 6.356783832 x 10° m polar radius
Q, 7.29211 x 107° rad/s earth angular rate
e 0.0818139 eccentricity of earth
U 3.9860319541 x 10 | m3/s? gravitational constant
Jo 0.0010823 2nd gravitational harmonic
k 1.0067386 (Re/Ry)?

7 Summary and discussion

We have described in some detail the subsystem models that have been developed and imple-
mented in Simulink. The modules implemented so far have been tested numerically. Subsystem

modules currently under development are

e Guidance law: Both mid-course guidance law and terminal guidance law are needed.
Mid-course law uses radar measurements for the determination of time-to-go ¢,, and the
predicted interception point (PIP) which are needed for the generation of guidance com-
mand. A recursive algorithm for compute ¢4, and PIP was proposed in [11] and used in [?]
to generate a three-dimensional mid-course guidance law for ballistic target interception.
We studied and numerically tested the laws proposed in the papers. We proposed modifi-
cations to the algorithm and is currently implementing it. The terminal guidance laws we
considered are the conventional true proportional navigation (TPN) law [9], which is also

currently being implemented.

e Control systems: Control systems are needed during the mid-course and homing phases.
The actuators used in these two phases are different. Thrust vectors are used in the mid-
course phase for both attitude and directional control, which in the terminal phase on-off
thrusters are used. Control system design is the topic of next year’s research. We will

initially consider simple linear control with rate and angle feedback and move on to more
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advanced design as needed.

e Aerodynamic model: The aerodynamic forces and moments are computed using the aero-
dynamic coefficients. We will use tables of coefficients that are available to use and hope-

fully be able to refine it as the work progresses on.
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