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1.2 Abstract

The first research year of this project aims to propose an accident appraisal expert system that
can not only accurately predict the liability degrees of involved parties but also demonstrate
comprehensive appraisal rules for further investigation, post-adjustment, and training of junior
accident appraisal committee members. Three genetic rule mining (GRM) models, based on two
schemes of the Michigan approach (GRM1 and GRM2) and on the Pittsburgh approach (GRM3)
are respectively proposed by discovering knowledge from historical appraisal cases. A total of 537
Taiwanese two-car crash accident cases (1,074 parties) are randomly and equally divided into three
subsets to train and validate the proposed models. The GRM1 model performs the best in both
training and validation with correctness rates of 78.85% and 70.21%, respectively. We further
compare the proposed GRM1 model with artificial neural network models (ANN) and
discrimination analysis (DA) model proposed by Chiou (2006). The GRM1 model can achieve the
same accuracy as the ANN models and provide more information than the ANN models by
delivering a comprehensive combination of rules. It can be used to enhance the quality and
efficiency of accident appraisal.

In addition, the proposed GRM models have also been applied to freeway accident analysis to
discover the key rules that determine the most contributing factors to crash severity. To avoid
over-mining caused by unevenly distributed data across different types of accidents, identical
numbers of Al-type, A2-type, and A3-type crash cases drawn from 2003-2007 Taiwan freeway
accident investigation reports are used for the analysis. A total of 19 rules have been mined which
can achieve overall correct rates of 78.50% in training and of 74.16% in validation, respectively,
much higher than those yield by the decision tree model. Obstacle and surface condition have been
found as the two most contributory factors to crash severity in this study.

Keywords: Accident appraisal; Rule mining; Genetic algorithms; Crash severity.
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2.1.1 Background

Almost all countries have official institutes or ad hoc committees responsible for investigating
the road traffic accident liabilities. In Taiwan, two sorts of such ad hoc committees have long been
in operation: the local appraisal committee (LAC) and the re-appraisal committee (RAC). The LAC
is responsible for investigating the liability of disputable cases of road accidents taking place within
a jurisdiction area; whereas the RAC is authorized to re-investigate the cases that the LAC’s
judgments are not agreeable to any of the involved parties within a region covering one or several
LAC territories. Nowadays, there are 14 LACs and 5 RACs are in operation in Taiwan but several
defects have been identified (Chiou, 2006). The most serious problem is the insufficient number of
experienced experts because carrying out the accident appraisals requires professional knowledge.
There has been lack of mechanism to pass the cumulated experiences of senior members over to the
new members when the terms for senior members are expired or when the committees are
reshuffled periodically. As a consequence, it is not unusual that the appraisal or re-appraisal
outcomes for very similar cases judged by different LACs or RACs can be quite diverse or even
contradictory. It is imperatively important but challenging to develop effective expert systems that
can help enhance the consistency of the accident appraisals.

Chiou (2006) developed an artificial neural network (ANN)-based accident appraisal expert
system wherein two models (party-based and case-based) are proposed and compared. It is found
that the party-based model has reached correctness rates of 82.43% (training) and 68.75%
(validation), while the case-based model has achieved 85.72% (training) and 77.91% (validation).
With such satisfactory correctness rates, the models are in effect of practical helpfulness. However,
after implementing the proposed ANN models to some RAC members, two major concerns have
been pointed out. First, the committee members express their hesitations to use the black-box
characterized ANN models because they fail to clearly get insights into the ANN inference
mechanism. Second, they question the capability of ANN models in training the junior members
because the models only predict the liability with lack of explanations. It would be of great
usefulness if one could develop an expert system that can not only achieve higher correctness rates
but also convey the knowledge extracted from historical cases to any committee members, i.e.,
mining for knowledge from available historical databases and toward decision support of accident
appraisals.

Rule mining, also known as rule generation, rule recovery, or classification/association rule
mining, is one of data mining techniques intended to mine for knowledge from available databases
and toward decision support. Rule mining is naturally modeled as multi-objective problems with
three criteria: (1) predictive accuracy, (2) comprehensibility, and (3) interestingness (Freitas, 1999;
Ghosh and Nath, 2004). Rule mining problems can be roughly divided into two categories: crisp
rule mining and fuzzy rule mining, depending upon the fuzziness of the variables in rules. To
automatically search for the optimal combination of rules from a considerable number of potential
rules, genetic algorithms (GAs) are perhaps the most commonly used method. In combining with
GAs, two categories of rule mining algorithms can be found in literature: genetic mining rule (GMR)
(e.g. Freitas, 1999; Ghosh and Nath, 2004; Dehuri and Mall, 2006) and genetic fuzzy logic
controller (GFLC) (e.g. Herrera, et al., 1995, 1998; Lekova, 1998; Chiou and Lan, 2005). The
performances of these rule mining algorithms have been proven and applied in many fields. Since
the data in the accident appraisal cases are crisp and categorical in nature, GMR is more suitable for
accident appraisal purposes than GFLC. Thus, this paper will develop GMR models that can
determine the optimal combination of appraisal rules to achieve the following goals: (1) to
accurately predict the liability degree of the involved parties (as an expert system); (2) to train the
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junior LAC or RAC committee members (as a training tool); and (3) to provide the possibility of
post-adjustment (fine-tune) of the rules mined. Previous relevant studies have seldom considered
the problems of conflicts and redundancy among the mined rules, our proposed GMR models will
account for conflicts and redundancy in addition to conventional objectives: coverage ratio and
predictive accuracy.

2.1.2 Data

In Taiwan, the ad hoc committee members at the LAC or RAC levels assess accidents based on
the investigation reports prepared by the police at accident sites. These reports are finalized with
some tables, figures, photos, and scripts. The information of the reports are digitized and divided
into five categories with 39 variables, as shown in Table 1. It includes (1) the background of the
accident (e.g., date, time, location, type of road, daylight or darkness, weather condition, speed
limit); (2) demographics of the drivers and characteristics of the vehicles (gender, age, education,
type of vehicle, length of vehicle); (3) violations (licensing, speeding, invasion, alcohol use); (4)
behaviors of drivers (e.g., direction, movement, foresight of the accident); (5) evidence (braking
line of left and/or right wheel, crash spot, self-reported speed, driver injury, passenger injury, driver
death, passenger death). In each accident case, the committee members summarized their appraisal
report based on the police investigation report. If a consensus had been reached in the committee,
the appraisal report was finalized with a clear statement of the accident liabilities for all parties
involved, with a full explanation of the reasons. The liabilities (y) of all parties are categorized into
five degrees: full responsibility (y=5), i.e., the one who had to take complete responsibility for
causing the accident, major responsibility (y=4), equal responsibility (y=3), minor responsibility
(v=2), and no responsibility (y=1).

In order to generate appraisal rules, the same dataset of historical accident appraisal cases
studied by Chiou (2006) is adopted, which is composed of 537 cases, involving 1,074 parties, of
two-car crash cases with sufficient information indicated in Table 1 and with consistent appraisal
results between the LAC and the RAC. These cases are selected from an original dataset of 5,641
historical appraisal cases during the period 2000-2002 from the Taiwan Provincial RAC. For
training and validation purposes, these 537 cases are randomly and equally divided into three
subsets, each of which consists of 179 cases (358 parties).

Table 1
Accident digitalized data summarized from police investigation report
Category Information Variable Coding Descriptions
Background Date X Character  month/date/year
Time X2 Character  hour/minutes
Type of road X3 Categorical 1, national freeway; 2, provincial highway; 3, county
highway; 4, rural highway; 5, street
Location X4 Categorical 1, straight road; 2, curved road; 3, signalized intersection; 4,
flashlight intersection; 5, not signalized intersection
Major or minor street X5 Categorical 1, major street; 2, minor street; 3, not clear
Lane located X6 Categorical 1, inner lane; 2, outer lane; 3, middle lane; 4, slow lane; 5,
one way street
Day or night X7 Categorical 1, day; 2, night with illumination; 3, night without
illumination
Weather condition Xs Categorical 0, clear; 1, rainy or cloudy,
Flash signal X9 Categorical 1, flash red; 2, flash yellow; 3, no flash signal
Speed limits X0 Continuous km/hr
Demographics Gender of driver X11 Categorical 1, male; 2, female
Age of driver X2 Integer years
Education X3 Categorical 1, university; 2, college; 3, high school; 4, high vocational
school; 5, junior high school; 6, elementary school; 7:
kindergarten
Type of vehicle X4 Categorical 1, passenger car; 2, business car; 3, light truck; 4, truck; 5, bus
Length of vehicle X5 Continuous Meter
Violations Licensing X6 Categorical 1, yes; 2, no (above licensing age); 3, no (below licensing
age)
Speeding X7 Categorical 1, seriously speeding (over 20km/hr); 2, speeding; 3, no
Invasion X8 Categorical 1, invasion to opposing direction; 2, moving backward; 3, no
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violation; 4, not clear; 5, not follow the signal or markings

Alcoholic use X9 Categorical 1, yes (>0.55mg/l); 2, yes (0.25mg/I~ 0.55mg/l); 3, yes (<

0.25mg/l); 4, no
Behaviors Movement X20 Categorical 1, forward; 2, right turn; 3, left turn; 4, u turn; 6, stop; 7,

backward

Direction X2 Categorical 1, east to west; 2, west to east; 3, south to north; 4, north to
south

Lane change X22 Categorical 0, no; 1, yes; 2, overtaking

Foresight of the accident  x.; Categorical 0, no; 1, yes; 2, not clear

Foresight distance X24 Continuous meter

Reactions X25 Categorical 0, no; 1, flash; 2, flash right; 3, flash left; 4, lane change; 5,

reverse; 6, detour; 7, horn; 8, flash light; 9, decelerate; 10,
stop; 11, pass; 12, not clear; 13, escape

Braking X26 Categorical 0, no; 1, brake before crash; 2, brake after crash
Evidences Braking line of left wheel  x,; Continuous meter

Braking line of right wheel x Continuous meter

Related direction X29 Categorical 1, opposing direction; 2, same direction; 3, left adjacent
direction; 4, right adjacent direction

Crash spot X30 Categorical 0, no damage; 1, right front; 2, right-hand side; 3,left rear; 4,
rear; 5, left rear; 6, left-hand side; 7, left front; 8, front

Self-reported speed X3 Continuous km/hr

Relative position X32 Categorical 1, in the front; 2, in the rear; 3, in the left; 4, in the right; 5,
start from roadside; 6, opposing direction

_Crossmg_ the middle ofx;; Categorical 1, 10; 2, yes; 3, not at an intersection

intersection

Number of lanes after turn  x;, Categorical 1, one; 2, two: 3, more than two

Lane after turn X35 Categorical 1, inner lane; 2, outer lane; 3, middle lane; 4, slow lane; 5,
one-way street

Driver injury X36 Categorical 0, no; 1, yes

Passenger injury X37 Integer Persons

Driver death X38 Categorical 0, no; 1, yes

Passenger death X39 Integer Persons

Source: Chiou (2006)

The cases appealed to Taiwan Provincial RAC for reappraisal have been previously assessed by
one of the 12 LACs, which consist of completely different committee members. To examine the
discrepancy of appraisal results concluded by different LACs, a variable (x,), with values of 1-12
representing the different LACs, is added. Furthermore, right-of-way, the priority in using the road,
is a critical factor in assessing the liability of involved parties. However, such a judgment is too
professional for the police officers at site to be concluded in the investigation report. Thus, Chiou
(2006) propose a total of 38 decision trees to determine the right-of-way of involved party
according to 12 out of the 39 variables in Table 1, including direction, movement, lane located, lane
after turn, number of lanes after turn, relative positions, crossing the middle of the intersection, and
violations, etc. The right-of-way is a dummy variable (x,;) with values of 1 and 2. x,; = 1 indicates
that party is assessed to own the right-of-way; x,; = 2 otherwise.

In addition, to simultaneously describe the situation of the two drivers (vehicles) involved in an
accident, a superscript is further added to each variable for each of driver in developing case-based
models. That is, x;” and x; represent the " variable corresponding to driver 1 (vehicle 1) and driver
2 (vehicle 2), respectively. Likewise, y' and y” represent the appraisal results (responsibility degrees)
of driver 1 (vehicle 1) and driver 2 (vehicle 2), respectively.

These 41 variables are not all closely related to liability assessment. The correlated relationships
between exploratory variables and assessed liability should be first examined to remove unrelated
variables and reduce the number of potential rules. Since most of the explanatory variables and
appraisal results are categorical, the table of contingency technique is adopted to investigate the
significant relationships among them. The results are presented in Table 2, in which 12 variables are
selected at the 0.05 significance level. To facilitate the rule mining process, all categorical variables
are re-coded with values started from 1, instead of 0 and all continuous variables (only one in this
case) are categorized into several classes.



Table 2
Variables selected by table of contingency
Original  New

Variable . . Value
notation  notation
1, national freeway; 2, provincial highway; 3, county
Type of road 3 “ highway; 4, rural highway:; 5, street.
Location . Z 1, straight road; 2, curved road; 3, signalized intersection;
! 2 4, flashlight intersection; 5, unsignalized intersection.
. 1, passenger car; 2, business car; 3, light truck; 4, truck; 5,
Type of vehicle X4 z3 bUs
Speeding X7 Zy 1, seriously speeding (over 20 km/hr); 2, speeding; 3, no.
. 1, yes (>0.55mg/l); 2, yes (0.25mg/l~ 0.55mg/l); 3, yes (<
Alcoholic use X190 Zs 0.25mg/l); 4, no.
Direction o) 2 1, east to west; 2, west to east; 3, south to north; 4, north to
south.
Foresight of the accident x; z7 1, none; 2, yes; 3, not clear.
Crash spot 1, no damage; 2, right front; 3, right-hand side; 4,left rear;
P 30 s 5, rear; 6, left rear; 7, left-hand side; 8, left front; 9, front.
Self-renorted speed . Z 1, < 31 km/hr; 2, 31-40 km/hr; 3, 41-50 km/hr; 4, 51-60
P P 3 ? km/hr; 5, 61-70km/hr; 6, > 70km/hr; 7, not clear.
Driver death X38 Z0 1, no; 2, yes.
Area of LAC Xa0 Zy 1-12 corresponding areas of LAC.
Right-of-way X4; Z15 1, yes; 2, no.

Note: The variable, self-reported speed, which is originally coded as continuous values are then categorized into seven
classes. Three variables, foresight of the accident, crash spot, driver death, which are originally coded with values
starting from 0, are re-coded as values starting from 1.

2.1.3 Methodologies

The Pittsburgh approach and the Michigan approach are the two main approaches to encoding
rules. The former is a natural way to represent an entire rule set as a chromosome, maintain a
population of candidate rule sets. Historically, this was the approach taken by DeJong and his
students while at the University of Pittsburgh, which gave rise to the phrase “the Pittsburgh
approach” (Smith, 1983; DelJong, 1988). The fitness value of a chromosome in such an approach
can be directly represented as the performance index of the entire rule set, but the number of rules
mined and the length of a rule of this approach are strictly restrained by the length of chromosome.
In contrast, the latter is a model of cognition in which the members of the population are individual
rules and a rule set is represented by the entire survived population. This approach was originally
taken by Holland and his students while at the University of Michigan, therefore, the approach is
named as the Michigan approach (Holland and Remitman, 1978; Booker et al., 1989). Compared
with the Pittsburgh approach, the Michigan approach can accommodate larger number of rules and
literally lengthy rules, but the fitness value of a chromosome, i.e. a rule, is much more difficult to
define. Because an expert system constituted of top-performing rules in a survived population may
not necessarily perform well on the whole, if these rules are conflicting or redundant to each other,
thus it is challenging to design an appropriate fitness function to measure the performance of a
chromosome (a rule) such that the entire mined (survived) rules can perform most excellent on the
whole. The proposed encoding methods and fitness functions of these two approaches are
respectively described below.

2.1.3.1 Encoding methods



(1) Michigan approach

In the Michigan approach, each chromosome represents a candidate If-then rule. The conditions
associated in the “if part” are termed as antecedent and those in the “then part” are named
consequent. Besides, the antecedent part consists of at least one to at most twelve variables selected
from Table 2 and the consequent part is composed by, of course, only one variable: liability degree
of involved party. In general a rule is a knowledge representation of the form If 4 then C, where 4
is a set of parties satisfying the conjunction of predicting attribute values and C is a set of parties
with the same predicted class. Thus, a typical rule i can be of the form:

Rule i: If z;=a;; and z;=a;, ...and zj=a;; ... and z;,=a,;> Then y=g;
or of a shorter form:

Rule i: If 4; Then C,.
where, a; is the categorical value of j” attribute variable in rule i. g; is the value of classification
variable in rule i, which ranges from 1 to 5 to represent five degrees of liability. 4; and C;, again, are
the sets of parties satisfying the antecedent part and consequent part of rule 7, respectively.

By encoding a rule as a chromosome, each gene is used to represent a corresponding variable.
The length of a chromosome is set as 13 to represent twelve state variables in the antecedent part
and one control variable in the consequent part. Each gene takes one of the categorical values of the
corresponding variable. It is worthy of noting that the ranges of gene value may differ from each
other since the range of corresponding variable is different. In addition, a gene in a rule antecedent
is allowed to take a value of O to represent that its corresponding variable is not considered by the
rule. If all genes in the antecedent part simultaneously take a value of O or the gene in the
consequent part takes 0, then the whole rule is not included in the rule set.

Based on such an encoding method, a rule of “If speeding="no” and alcoholic use="no” and
right-of- way="yes”, then liability="no responsibility” can be encoded as 0003400000011 as
depicted in Fig. 1. The total number of potential rules equals to
BXB6X6X4XE5XE5X4AX10X8X3IX13X3X5 =4,043,520,000, making the number of potential rule
combinations reaches 24%43°29% opyijously, it is barely possible to compare all rule combinations
by a total enumeration manner.

Antecedent Consequent
| !
Chromosome: 0|00 3|4[0]0]O0]0]O0]|0O0 1 1
Comesponding + 4 4 44 bbb bbb
variables:  z; z z zy z5 zs z7 zs z9 zip Zi Zi2 Y
Rule: Ifz,=3 and z5=4 and z;,=1 Then y=1
Interpretation: If speeding="no” and alcoholic use=“no” and right-of-

way="yes” Then liability="no responsibility”.

Fig. 1. Encoding methods of party-based Michigan model (GRM1)

In the context of two-car crash accidents, it is interesting to compare the performance of the
models which simultaneously consider the state variables of both parties involved or only consider
that of one party alone. Therefore, two GRM models, namely GRM1 and GRM2, are proposed. The
GRML is a party-based Michigan approach model which considers the state variables of one party
alone to conclude the liability degree for the party as shown in Fig.1, while GRM2 is a case-based
Michigan approach model which considers both parties involved simultaneously to conclude the
liability degree of one party. Since the sum of liability degrees of two parties, party 1 and party 2,
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involved in an accident are always equal to a constant, i.e. 6. For instance, of party 1 is judged as no
responsibility for the accident, then party 2 must have to take full responsibility. The chromosome
length of the GRM2 is 25 as depicted in Fig. 2.

Antecedent Consequent
| )
v v
Party 1 Party 2 Party 1
L \
¢¢¢¢¢¢v#################i‘
Chromosome: ojo|{0|3|4|0]0|0]O0]O]|O 110100 1,001 )0|0]0]O0]2 l:
Corresponding i i i i i i l l l l l l i
variables: 211 231 251 271 Z;J] 2111 z,2 23‘7 252 27‘7 292 2”2 J’I
2 241 Zol 281 Zml Z12 Zz2 242 262 232 2102 2122

Rule: 1fz41=3 andz_;’=4 and2121=1 AND 24221 andz72=] andz,22=2 Then y’=1 (y2=5)

of party 2="seriously speeding” and foresight of the accident of party 2="yes” and right-of-way of party 1="no”
Then liability of party 1="no responsibility” (implying that liability of party 2="major responsibility”)

Fig. 2. Encoding methods of case-based Michigan model (GRM2)

(2) Pittsburgh approach

In contrast to the Michigan approach, the Pittsburgh approach simultaneously encodes all mined
rules, a rule set, as a chromosome by simply extending the length of a chromosome to a multiple
length of the Michigan approach’s chromosome of the number of rules. Therefore, the quality of the
chromosome, i.e. fitness function, can straightforwardly represent the correctness rate of the rule set.
Taking a preset number of rules (K)=20 for instance, the party-based encoding method (hereinafter,
named as GRM3) can be depicted as Fig. 3. The length of chromosome equals to 13x 20 = 260.
Obviously, the case-based Pittsburgh approach model will result in a very lengthy chromosome,
thus it is not considered in this paper. Since the situations that all antecedent genes or the
consequent gene in a rule take a value of O, then it indicates that the rule will not be selected. In
other words, the number of mined rules must be less than or equal to the preset number of rules (X).

R1: R20

Antecedent Consequent R2: Antecedent Consequent * Antecedent Consedquent

MO |l

0[O0 |1 {2]0(0|0|O0]|O0O[O0OfO0O|2]T1]0|2]|3[2[0|1|0]|2]|0]0|3]|2]4 T{2(2|2(0(3|0f2|1]0]3|3]3

LTI T ]I]] T

bR ERREE L

Z2 Zy Zs Zg Z1o Z12 Z2 Z4 Zs Zzg Z10 Z12 z Zy Zg zs Zi Zp2

Fig. 3. Encoding methods of party-based Pittsburgh model (GRM3)

N
S

2.1.3.2 Performance indices

For the Michigan approach, the role of the fitness function is to evaluate the quality of the rule
numerically. In doing so, three common factors to be taken into account are the coverage, the
completeness and the confidence factor of the rule, respectively defined as follows. The coverage of

the rule, i.e. the cases satisfied by the rule antecedent, is given by |4|, the cardinality of set A (the
number of elements in set 4). The completeness of the rule, i.e. the proportion of cases of the target
8



class covered by the rule, is given by |4NC|/|C|. The confidence of the rule, i.e. the predictive

accuracy, is given by [4NCl|/|4| (Freitas, 1999). Based upon these three factors, this paper uses

the performance indices including predictive accuracy, comprehensibility and interestingness
narrated as follows.

(1) Predictive accuracy

Two ways to measure the predictive accuracy, also called confidence, are found in literature
(Ghosh and Nath, 2004, Dehuri and Mall, 2006, Dehuri et al., 2008):

P(R) =|ANC]|/|4)) 1)
PR) = l[ANC|x |~ AN~ C]| 2
(4Ncl+|aN~Chx(4NCl+]- 4NC)
where P(%R) is the predictive accuracy of rule R. 4 is a set of cases or parties satisfying the rule
antecedent. C is a set of cases or parties satisfying the rule consequent. () is the intersection
operator. ~4 and ~C are complement sets of 4 and C, respectively. |A| is the cardinality of set A.

(2) Comprehensibility

Comprehensibility is used to measure the family size of the rule. The smaller the rule, the more
comprehensible (specific) it is. There are several ways to measure comprehensibility (Fedelis, 2000,
Ghosh and Nath, 2004, Dehuri and Mall, 2006, Dehuri et al., 2008) for example:

CR)=1-N,(R)/M, 3
C(R)=M, - N, (R) (4)
C(R)=N-|4 (5)
C(R) =log(L+k)/log(L+ m + k) (6)

where C(R)is the comprehensibility of rule ®. N_(*R) is the number of conditions in the rule
R. M, isthe number of at most conditions a rule can have. N is the number of total cases. m and
k are the number of attributes involved in the antecedent part and consequent part, respectively.

(3) Interestingness
The third criterion of the rules, called interestingness, is used to measure how surprising, useful

or novel the rule is. Two simpler expressions of interestingness can be found in literature
(Piatetsky-Shapiro, 1991, Ghosh and Nath, 2004) as follows:

I(R)=|aNnc|-|4|c|/N (7)
l[ANC| |4Nc| 4N C|

1(R) = X -~ ) (8)
4 I N

where I(R) is the interestingness of rule R. N is the total number of cases or parties.

2.1.3.3 Proposed fitness functions
(1) GRM1 and GRM2

Many studies consider rule mining as a multi-objective problem and employ evolutionary
algorithms to mine the Pareto-optimal rules with respect to abovementioned three indices. However,
in mining classification rules instead of association rules, a combination of Pareto-optimal rules
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might not necessarily perform best on the whole. Besides, the conflict and redundancy among
mined rules are seldom considered in the literature. High redundancy and conflict among rules will
cause too many similar or conflicting rules being mined.

Based on this, this paper designs a two-stage process to select chromosomes (rules). In the first
stage, a fitness function, a performance index with a combination of coverage ratio, predictive
accuracy, and predictive error, is defined and used to rank the chromosomes, which can be
expressed as:

|A,.| |Ai ﬂC,.| |Azﬂ~ Ci|
Ji==x( - ) (10)
VUl
where, f; is the performance index of the i chromosome. The first term of right hand side is
coverage ratio. The second term is the predictive accuracy rate. The third term is predictive error
rate. The equation can be then simplified as:
- _lanc]_lan-c|
l N N
In the second stage, to avoid selecting similar or conflicting rules, two indices, redundancy
index and conflicting index, are respectively defined and then both used to filter high redundant and
conflicting chromosomes (rules). The redundancy index of rule i is defined as

i1 |ANA
[ = max{‘

(11)

1 j‘

— 12
M A (12)
where J; is the redundancy index of the i/ chromosome which has already been ranked in a
descending order. The conflicting index of rule i is defined as

i1 [ANA ifg #g.

ti:'nax{\, Jifg g
~ 4 U4

where 4 is the redundancy index of the i chromosome which has been ranked in a descending
order. ‘A,. N4,if g, # gj‘ is the number of cases or parties satisfying both antecedent of rules i and

j which have different predicted classes.
To facilitate the filtering process according to /; and ¢, two thresholds, L and 7, for redundancy
and conflict have to be given. Thus, if a chromosome reaches either /., > L or ¢ >T, then it will

be replaced by another randomly re-generated chromosome (newly re-born chromosome). These
two given thresholds will then determine how many chromosomes will survive in each of
generation. The higher the values of the thresholds are, the more chromosomes will be replaced. Of
course, if too many chromosomes are replaced by randomly generated chromosomes, the
competitive genetics can not be successfully preserved and a randomly searching mechanism will
be resulted. Thus, the values of these two thresholds should be carefully examined. It is worthy of
noting that the redundancy and conflicting indices are computed through a mutual comparison
matter by only comparing with the chromosomes ranked in front.

The evolutional process of GRM1 and GRM2 can be depicted in Fig. 4. As shown from the
figure, after selection, crossover, and mutation, the survived chromosomes are first ranked
according to their fitness value, and then filtered by their redundancy and conflicting indices. In the
process all highly redundant and conflicting chromosomes will be replaced by randomly generated
ones until the stopping condition (a given number of generations in this paper) reaches. However, in
the final generation, all highly redundant and conflicting chromosomes will be deleted without
replacement. The finally survived chromosomes are the optimal combination of rules.

(13)
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Generation n Generation n+/

Ranked population Filtered population

Note: X indicates the chromosomes with /,>L or ¢, >T

Fig. 4. Evolutional process of the GRM1 and GRM2 models

Even if the chromosomes have been filtered by redundancy and conflicting indices, it can not be
avoided that two or more rules with different predicted classes might still be simultaneously fired
by a sample. To synthesize the predicted class of more then one rules fired, we take an average
value of predicted classes of all fired rules and round it to a nearest integer, which can be expressed
as:

1
sg = Int(—Zgj) (14)
|F JjeF
where, G is the predicted class of the algorithm. [Inf(-) is a rounding operator, which rounds value

in parenthesis to a nearest integer. F' is a set of sequence numbers of fired rules. As such, the
correctness rate of the model can be then computed as the number of correctly predicted cases or
parties (that is, the predicted class equal to the target class) divided by total number of cases or
parties.

(2) GRM3

Since a chromosome of the GRM3 model (the party-based Pittsburgh approach) represents a
combination of rules, the fitness function of a chromosome can be directly expressed as correctness
rate. Correctness rate is defined as the number of correctly predicted parties divided by the total
number of parties in training or validation. In the case of more than one rule fired, Eq.(14) is also
used to synthesize the predicted classes of all fired rules. The reasons for not taking redundancy and
conflicting indices into account are that the GRM3 aims to maximize the correctness rate under a
preset number of rules (K), at optimality, the redundancy and conflicts among rules should be
largely avoided.

2.1.3.4 Genetic operators

Because the genes in our GRM models are not encoded binary, simple genetic algorithms
(Goldberg, 1989) cannot be used. Instead, we employ the max-min-arithmetical crossover proposed
by Herrera et a/.(1998) and the non-uniform mutation proposed by Michalewicz (1992). A brief
description is given below.

(1) Max-min-arithmetical crossover

Let G, ={ g/ ... @i+, 2ok Y and G ={ g/ ..., g ,.... g }be two
chromosomes selected for crossover, the following four offsprings will be generated:

G/ =aG, + (I-a)G, (15)
G, =aG, + (1-a)G,) (16)
G5 with g5 =min{g.i, g’} (17)
G/ with gy =max{g., 2} (18)

where a is a parameter (0 < a < 1) and ¢ is the number of generations.
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(2) Non-uniform mutation
Let G,={g/,.... g ..., g } be a chromosome and the gene g be selected for mutation (the
t+1

domain of g/’ is [g¢, i]), the value of g;"*/ after mutation can be computed as follows:
g o g +At g —g,') if b=0
Yo laS -Atg —g) i b=l (19)
where b randomly takes a binary value of 0 or 1. The function A(s,z) returns a value in the range
of [0, z] such that the probability of A(z,z) approaches to 0 as ¢ increases:

A(t,2) = z(1=r*"") (20)
where r is a random number in the interval [0, 7], T is the maximum number of generations and 7 is
a given constant. In Eq.(20), the value returned by A(z,z) will gradually decrease as the evolution
progresses.

2.1.4 Results
2.1.4.1 Parameter settings

The parameters of GAs are set as follows. Population size=100, crossover rate=0.9, a=0.3,
h=0.5, 7=200. Redundancy index threshold (L) and conflicting index threshold (7) are set as 0.75
and 0.5, respectively. The number of generations is set as 200.

2.1.4.2 Comparisons

A k-fold (=3 in this paper) cross-validation method is adopted for algorithm comparisons. A
total of 537 accident cases (1,074 parties) are randomly and equally divided into three subsets, each
of which contains 179 cases (358 parties). Each model is trained and validated three times
separately. The average training and validation results of various algorithms are reported in Table 3.
As noted from Table 3, GRM1 performs the best, both in training and validation, with correctness
rates of 78.85% and 70.21%, respectively, followed by GRM2 with training and validation
correctness rates of 74.34% and 69.33%, respectively. GRM3 performs the worst with training and
validation correctness rates ranging from 69.20%~71.21% and 65.84%~67.55% under various
preset numbers of rules, respectively. It is worthy of noting that the correctness rate of GRM3 does
not increase monotonically as anticipated as the preset number of rules gets larger. It might be
partly due to the searching space being exponentially increased as the preset number of rules gets
larger, making the optimal combination of rules rather difficult to be mined. In terms of the number
of rules mined, the GRM1 model selects the largest number of rules (34 rules), followed by 30 rules
mined by GRM3 with K=35. Even under the limitation of at most 10 rules mined (GRM3 with
K=10), the correctness rates can still reach 69.20% in training and 66.46% in validation.

Table 3
The training and validation results of various GRM models
Maximum number Number of rules Correctness rate (%)

Models of rules allowed mined Training Validation
GRM1 100 34 78.85 70.21
GRM2 100 28 74.34 69.33
10 10 69.20 66.46
15 15 69.60 66.15
20 20 70.00 67.08
GRMS 25 24 69.47 65.84
30 28 69.23 66.87
35 30 71.21 67.55
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To get an in-depth investigation to the rules mined by the best performing model, GRML1, the
fitness value, coverage ratio, predicted accuracy, redundancy index and conflicting index of a total
of 34 mined rules are shown in Table 4. These rules are ranked according to fitness value f; in
Eq.(11). Note that in terms of coverage ratio, R17 can cover the largest number of parties (46% of
1,074 parties, i.e. 494 parties), followed by R1 (43% of 1,074 parties, i.e. 462 parties). In contrast,
R33 and R34 are customized to rather few parties with a low coverage ratio of 1%. In general, the
more explanatory variables introduced into the antecedent of a rule, the lower the coverage ratio of
the rule will be.

In terms of predicted accuracy, R19 and R21 perform the best with predicted accuracy of 91%,
followed by R4 and R20 with predicted accuracy of 85%. R33 and R34 have the lowest predicted
accuracy of 50%. In terms of redundancy index, R7 has the highest value of 72%, which is found to
be highly overlapping with R2, followed by R4 of 65% overlapping with R2. Actually, both R7 and
R4 are belonging to the family rules of R2. There are still many rules having no redundancy to their
previous rules. In terms of conflicting, R23 performs the worst with conflicting index as high as
42%, which highly conflicts with R3, followed by R12 with conflicting value of 21% which
conflicts with R8.

Also note that a total of 17 rules (the largest number) are mined of the predicted class of “no
responsibility,” followed by six rules with the predicted class of “full responsibility.” Only two rules
with the predicted class of “equal responsibility” are mined.
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Table 4
Combination of rules mined by the GRM1 model

Rules  Antecedent Consequent Fitness Coverage  Predicted Redundancy Conflicting
g value ratio accuracy index index

Rule 1 If location="straight road” and right-of-way="yes” Then liability="no” 0.28 0.43 0.83 0.00 0.00

Rule2 If algohollc usei““no”"and relative direction="opposing direction” Then liability="no” 0.22 0.33 083 021 0.00
and right-of-way="yes

Rule 3 If relative direction="same direction” and right-of-way="no” Then liability="full”  0.20 0.34 0.79 0.00 0.00

Rule4 If type of vehicle="passenger car” and alcoholic use="no” and . iapility=no” 0.6 0.22 0.85 0.65 0.00
relative direction="opposing direction” and right-of-way ="yes

Rule5 If Iocz.atloD: s’t,ralght_road and t_yf)e of vehicle="passenger car” and Then liability="no” 0.15 0.23 081 055 0.00
speeding="no” and right-of-way="yes

Rule 6 If_Iocatlon: _s‘t‘ralght roa_ld and forefl‘:qht ,?f the accident="no” and Then liability="no” 014 0.22 0.82 0.48 0.00
driver death =*“no” and right-of-way ="yes

Rule 7 h_c speedlng:_‘r)o ”and relative direction="opposing direction” and Then liability="no” 0.11 0.37 0.65 0.72 0.00
right-of-way="yes

Rule 8 h_‘ relatlve_“ d|1r1ect|on ="right adjacent direction and Then liability="minor” 0.11 027 071 017 0.00
right-of-way="yes

Rule 9 If relative direction="left adjacent direction” and right-of-way="no” Then liability="major” 0.10 0.28 0.69 0.00 0.00

Rule 10 If relative direction="opposing direction” and right-of-way="no” Then liability="full” 0.09 0.35 0.63 0.00 0.00

Rule 11 If location="unsignalized intersection” and right-of-way="yes” Then liability="minor” 0.09 0.34 0.63 0.25 0.00

Rule 12 If Ioca_t‘l‘oni S|gna_1llzed mterse_cflon" and speeding="no” and driver Then liability="no” 0.09 0.19 073 032 0.21
death =*no” and right-of-way ="yes

Rule 13 If ty[?,e of ve_hlcle: passgqgef’car and foresight of the accident="not Then liability="full” 0.08 0.28 0.65 012 0.08
clear” and right-of-way =“no

Rule 14 If speeding=“no” and alcoholic use=“no” and relative
direction="opposing direction” and driver death =“no” and Then liability="no” 0.08 0.27 0.66 0.52 0.00
right-of-way ="yes”

Rule 15 If speeding="seriously” and relative direction="opposing direction Then liability="full” 0.07 0.21 067 045 0.00

and right-of-way =“no”
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Rule 16

Rule 17

Rule 18

Rule 19

Rule 20

Rule 21

Rule 22

Rule 23

Rule 24

Rule 25

Rule 26

Rule 27

Rule 28

Rule 29

Rule 30

Rule 31

Rule 32

If location="unsignalized intersection” and right-of-way="no” Then liability="major”

If speeding="no” and foresight of the accident="yes” and
right-of-way="yes”

If alcoholic use="no” and foresight of the accident="not clear” and
right-of-way ="yes”

If foresight of the accident="no” and relative direction="same
direction” and right-of-way ="yes”

If location="straight road” and type of vehicle =“truck” and driver
death="no” and right-of-way ="“yes”

If location="straight road” and type of vehicle =“light truck” and
right-of-way =“no”

If foresight of the accident="not clear” and driver death="no” and
right-of-way="yes”

If speeding =“no” and foresight of the accident="no” and driver
death="no” and right-of-way =“no”

If Igcatlon— f_IashI_lght _mte_rfectlon _ and_ tyge of v_ehlcle = pas_s‘e‘nge’[ Then liability="minor”
car” and relative direction="same direction” and right-of-way ="yes

If type of vehicle="light truck” and relative direction="same
direction” and driver death =“no” and right-of-way ="yes”

If type of wvehicle="passenger car” and foresight of the
accident="no” and right-of-way="yes”

If foresight of the accident="no” and relative direction="Ieft adjacent
direction” and right-of-way ="yes”

If location="straight road” and type of vehicle="light truck” and
speeding="no” and right-of-way =*no”

If type of vehicle="truck” and alcoholic use="no” and relative
direction="opposing direction” and right-of-way =“no”

If speeding =“seriously” and foresight of the accident="yes” and
right-of-way ="“yes”

If type of vehicle ="passenger car” and foresight of the
accident="no” and relative direction="opposing direction” and Then liability="no”
right-of-way ="“yes”

If type of vehicle="light truck” and foresight of the accident="yes”
and right-of-way =“no”

Then liability="no”
Then liability="no”
Then liability="no”
Then liability="no”
Then liability="full”
Then liability="no”

Then liability="major”

Then liability="no”
Then liability="no”

Then liability="minor
Then liability="minor”
Then liability="full”

Then liability="equal”

Then liability="major”

0.07

0.06

0.06

0.06

0.06

0.05

0.04

0.03

0.03

0.03

0.02

0.02

0.02

0.01

0.01

0.01

0.00

0.36

0.46

0.29

0.07

0.08

0.07

0.27

0.33

0.06

0.06

0.41

0.05

0.16

0.03

0.04

0.05

0.06

0.59

0.57

0.60

0.91

0.85

0.91

0.57

0.55

0.78

0.74

0.53

0.69

0.56

0.70

0.61

0.56

0.53

0.00

0.32

0.25

0.00

0.21

0.00

0.69

0.57

0.17

0.39

0.55

0.05

0.00

0.21

0.07

0.11

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.42

0.08

0.00

0.00

0.03

0.00

0.00

0.05

0.00

0.00
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Rule 33 I1_‘ relative dl_rfctlcln=“same direction” and driver death="yes” and Then liability="no” 0.00 0.01 050 0.01 0.00
right-of-way="yes

Rule 34 If Iog:atli)‘rj= s’:[ralght_ road an(i“ typz:a of vehicle="truck” and Then liability="equal” 0.00 0.01 0.50 0.00 0.00
speeding="yes” and right-of-way ="yes
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Table 5 further compares the results from our proposed GRM1 model and from the ANN and
DA models developed by Chiou (2006). In terms of correctness rate, ANN2 model (case-based)
with 10 hidden neurons performs the best both in training and validation, followed by ANN1 model
(party-based) with 10 hidden neurons, ANN1 (12-10-1), in training and the proposed GRM1 model
in validation. The DA model still performs the worst. In consideration of model’s accuracy and
complexity, Chiou (2006) finally selected ANN1 (12-5-1) as the best performed model according to
SBC. However, it is hard to identify the number of parameters of genetic algorithms, thus SBC of
the proposed GRM1 model is not computed. Nonetheless, it is worth noting that the correctness
rates of training and validation of GRM1 model are both higher than ANN1 (12-5-1).

Table 5
Comparisons with ANN and DA models developed by Chiou (2006)
Models o Training Validation
Correctness rate (%)  SBC  Correctness rate (%) SBC
GRM1 - 78.85 - 70.21 -
5 78.17 -0.82* 66.10 0.13*
ANN1 10 82.43 -0.35 68.75 1.04
15 80.72 0.38 55.27 2.39
5 78.92 0.55 64.14 2.70
ANN2 10 85.72* 2.56 77.91* 5.73
15 70.59 4.70 65.25 9.84
DA - 59.05 -0.82* 54.09 0.13*

Note: SBC stands for Schwarz’s Bayesian Criterion. SBC=In(MSE)+PIn(N)/N, where, MSE is
mean squared error, P is the number of parameters. * indicates the best performing model in terms
of corresponding criterion. A is the number of hidden neurons.

To gain in-depth investigation on the validation results of different models, the number of
parties with degrees of liabilities predicted by DA, ANN1 (12-5-1), and GRM 1 are reported in
Tables 6~8, respectively. Note that the DA model has the highest correctness rate of 66.90% for the
category of real y = 5 and the lowest correctness rate of 5.00% for the category of real y = 3,
suggesting that DA model performs rather poorly in the cases of equal liability. In contrast, ANN1
(12-5-1) model can achieve over 60% of correctness rate almost for all categories, except for the
category of real y = 4. Besides, the degrees of liabilities even incorrectly predicted by ANN do not
deviate over one degree from their real ones; except for a total of 19 (1.77%) parties which are
deviated two degrees. The proposed GRM1 model can accurately predict the liability for the
categories of y = 1 or 5 with correctness rates of 92.25% and 91.90%. Even for the categories of y =
2 or 4, the proposed model can still reach about 60% of correctness rate. However, the proposed
model is unable to predict the liability for the category of y = 3. The correctness rate of that
category is only 8.33%. Nonetheless, the degrees of liabilities, even incorrectly predicted by GRM,
do not deviate over one degree from their real ones; except for a total of 3 parties which are
deviated two degrees. Besides, the proposed GRM1 model tends to produce much more predicted
classes at both extremes: y=1 or y=>5 than at the middle, i.e. y=3.
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Table 6
The number of parties with degrees of liabilities predicted by the DA model

Predicted y
Real y Total

1 2 3 4 5
1 157 (55.28) 98 (34.51) 20 (7.04) 9 (3.17) 0(0.00) 284 (100.00)
2 86 (38.57) 125 (56.05) 0 (0.00) 11 (4.93) 1(0.45) 223 (100.00)
3 18 (30.00) 12 (20.00) 3 (5.00) 12 (20.00) 15 (25.00) 60 (100.00)
4 2(0.90) 36 (16.14) 0(0.00) 106 (47.53) 79 (35.43) 223 (100.00)
5 0 (0.00) 3 (1.06) 30 (10.56) 61 (21.48) 190 (66.90) 284 (100.00)
Total 263 274 53 199 285 1074

Note: The percentages are given in the parentheses.

Table 7
The number of parties with degrees of liabilities predicted by the ANN1 model
Predicted y
Real y Total
1 2 3 4 5
1 202 (71.13) 69 (24.30) 13 (4.58) 0 (0.00) 0(0.00) 284 (100.00)
2 54 (24.22) 139 (62.33) 30 (13.45) 0 (0.00) 0(0.00) 223 (100.00)
3 0(0.00)  11(18.33) 41 (68.33) 8 (13.33) 0 (0.00) 60 (100.00)
4 0 (0.00) 4(1.79)  44(19.73) 107 (47.98) 68 (30.49) 223 (100.00)
5 0 (0.00) 0 (0.00) 2(0.70)  61(21.48) 221(77.82) 284 (100.00)
Total 256 223 130 176 289 1074

Note: The percentages are given in the parentheses.

Table 8
The number of parties with degrees of liabilities predicted by the GRM1 model
Predicted y
Real y Total
1 2 3 4 5
1 262 (92.25) 20 (7.04) 2(0.71) 0 (0.00) 0(0.00) 284 (100.00)
2 88 (39.46) 133 (59.64) 2 (0.90) 0 (0.00) 0(0.00) 223 (100.00)
3 0(0.00) 24 (40.00) 5(8.33)  31(51.67) 0(0.00) 60 (100.00)
4 0 (0.00) 3(1.35) 0(0.00) 137(61.43)  83(37.22)  223(100.00)
5 0 (0.00) 0 (0.00) 0 (0.00) 23(8.10) 261(91.90) 284 (100.00)
Total 350 180 9 191 344 1074

Note: The percentages are given in the parentheses.

2.1.4.3 Discussions

The proposed GRM1 models may not exhibit remarkably higher correctness rate than all of
ANN models developed by Chiou (2006); however, the proposed models can generate meaningful
rules for further examination and demonstration, making the GRM-based expert system much more
understandable than the black-box ANN approach. Consequently, decision makers might feel more
confident in using this GRM-based expert system. Besides, with rules mined, the accident appraisal
knowledge can be clearly displayed and used to train junior members. And, it also offers a
post-optimization mechanism which can further fine-tune the mining rules by interviewing the
accident appraisal experts.

To further investigate the rules mined in Table 4, only eight out of twelve explanatory variables
appeared in at least one rule, including location, type of vehicle, speeding, alcoholic use, foresight
of the accident, relative direction, driver death, and right-of-way. Particularly, all of the rules
introduce the variable of right-of-way, explaining its importance in accident appraisal. Furthermore,
most of the rules with right-of-way="yes” will also lead to the consequents of liability="no
responsibility” or “minor responsibility.” In contrast, the rules with right-of-way="no”, then the
liabilities are most likely to be “major responsibility” or “full responsibility.” As such, one may
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argue that the accident appraisal can be conducted solely depending upon right-of-way. However, in
doing so, the correctness rate is only 48.65%, which is even lower than that of the DA model.

Unlike the right-of-way being a decisive factor, some variables appearing in the rules are more
likely to act like an environmental factor, such as location and relative direction, to determine
whether the accident situation is clear or ambiguous. In a relatively clearer situation, such as
location="straight road,” or relative direction="same direction” or “opposing direction”, the
liability degree tends to be overwhelmingly assessed as either “no responsibility” or “full
responsibility” solely depending on right-of-way, such as the rules of R1, R2, R3, R5, and R6 etc.
In contrast, in a relatively more ambiguous situation, such as location="unsignalized intersection”
or “flashlight intersection” or relative direction="left adjacent direction” or “right adjacent
direction,” then the liability degree are more conservatively assessed as “minor responsibility” and
“major responsibility,” such as the rules of R8, R9, R11, and R16 etc.

On the other hand, some variables operate like an incremental factor to further raise or alleviate
the liability degree accompanying with the ownership of right-of-way. These variables are violation
variables, including speeding and alcoholic use. Taking R30 for instance, the liability degree is
suggested as “equal responsibility,” when the party was seriously speeding even with the ownership
of right-of-way.

High redundancy relationship can still be found among rules mined. Taking R4 for instance, it
belongs to the family rules of R2. It is said that R4 is more specific than R2 by further specifying
the type of vehicle. Due to the high redundancy between these two rules, deleting any one of them
may not seriously deteriorate the correctness rate, if the number of rules is strictly limited.

In comparing the degree of liability predicted with different models, the proposed GRM model
performs worse in predicting the category of liability="equal responsibility,” because very few
related rules (with consequent part of liability="equal”) have been mined. Two reasons could be
identified. First, the number of parties with liability="equal responsibility” in the dataset is only
approximately one fourth of other degrees, thus it is difficult to learn representative rules from
limited parties. Second, since the right-of-way is very decisive to liability assessment, all predicted
results are clearly divided into two distinct categories: no (minor) and full (major) degrees, leaving
no much room for middle degree.

Four explanatory variables: type of road, direction, crash spot, and LAC, are not included in any
rule of a total of 34 rules. It can be explained that they are not key factors to the accident appraisal.
However, it might also be possible that these variables are categorized into too many classes, e.g.
crash spot (8 classes) and LAC (12 classes). In general, GRM tends not to choose a variable with
too many classes, because the number of cases or parties belonging to each class will be small and
lower the coverage ratio. Thus, it would be very helpful to collect more cases with equal
responsibility for training or to approximately merge some classes into fewer categories.

2.1.5 Concluding remarks

This paper employs genetic rule mining (RGM) to develop accident appraisal expert systems by
discovering knowledge from historical appraisal cases, which can not only accurately predict the
liability degrees of involved parties but also demonstrate comprehensive appraisal rules and further
provide the flexibility of post-adjustment of mined rules. Three GRM models based on the
Michigan approach (GRM1 and GRM2) and the Pittsburgh approach (GRM3) have been developed
in this study. To effectively mine rules based on the Michigan approach, a novel two-stage rule
selection procedure is proposed. The first stage is to rank the chromosomes survived from selection,
crossover, and mutation operations according to a fitness function composed by coverage ratio,
predicted accuracy and predicted error. The second stage is then to filter the ranked chromosomes
depending on whether their redundancy and conflicting indices are larger than the preset thresholds.

For training and validating the proposed three models, a total of 537 two-car crash accident
cases (1074 parties) are randomly and equally divided into three subsets, each of which contains
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179 cases (358 parties). Each model is trained and validated three times separately. The results
show that the GRM1 model, party-based Michigan approach, performs the best with training and
validation correctness rates of 78.85% and 70.21%, respectively. Comparisons with the ANN1,
ANN2, and DA models proposed by Chiou (2006) also show that the proposed GRM1 model can
achieve the accuracy level of ANN models, but more importantly, the GRM1 model can generate a
comprehensive combination of rules. Through an in-depth investigation on a total of 34 rules mined
by GRM1 model, some underlying accident appraisal knowledge can be extracted. First,
right-of-way is found to be a decisive factor which not only shows in every rule mined but also
determines most of the liability degree as two distinct categories: no (or minor) responsibility vs.
full (or major) responsibility depending upon which party owns the right-of-way. Second, some
environmental variables, such as location and relative direction, appear in rules to determine how
clear the accident situation was, which then lead the liability degree to be either an overwhelming
result: no responsibility vs. full responsibility or to be a conservative result: minor responsibility vs.
major responsibility. Third, some violation variables, such as speeding or alcohol use, are then used
to add or relieve liability degree which has been assessed based on other facts.

Several directions can be identified for future studies. First, the encoding method for the
Pittsburgh approach proposed in this paper is rather lengthy, as a result that the case-based
Pittsburgh model can not be considered. A more compact and efficient encoding method for
Pittsburgh approach deserves further studies. Besides, the proposed two-stage chromosome ranking
and filtering procedure of the Michigan approach is somewhat inefficient because of ranking
process involved. A more efficient procedure deserves further explorations. Although the proposed
GRM1 model can accurately predict the liability degrees of y = 1 or 5 with correctness rate over
90%, and can still predict at a satisfactory correctness rate for the liability degrees of y = 2 or 4
(about 60%), it performs rather poorly in predicting the liability degree of y = 3. Since the number
of training samples with such a liability degree is only one-fourth of samples with other degrees, we
believe that it can further enhance the predictive capability of proposed models by collecting more
such accident appraisal cases. It is also essential to fine-tune the rules mined by interviewing senior
accident appraisal experts through an interactive manner. Last but not least, the fact that some
variables do not appear in any rule might partly contribute to their values being classified into too
many categories, leading to a rather small share of cases or parties covered in each category. To
properly merge their categories without losing too much meaningful knowledge is also worthy of
exploration.

22 F A
2.2.1 Introduction

Crash data analysis can be carried out by two main approaches: collective approach and individual
approach (Abdel-Aty and Pande, 2007). The collective approach is characterized by crash
frequency modeling. Frequency of crashes is aggregated over specific time periods (months or years)
and locations (segments or intersections). Most of these studies attempt to explore the relationship
between crash counts and explanatory variables, such as roadway geometry, traffic control facilities,
traffic conditions, and so on by using Poisson or Negative Binomial regression models (e.g. Poch
and Mannering, 1996; Milton and Mannering, 1998; Ivan et al., 1999, Abdel-Aty and Radwan,
2000, Greibe, 2003, Abdel-Aty and Pande, 2007, Wong et al., 2007). For the collective approach,
however, individual contributing factors to the crash (e.g., driver demographics, driver behaviors,
vehicle types) are not considered and factors affecting the crash severity cannot be identified either.
Therefore, some studies employed individual approach to crash data analysis. The individual
approach is characterized by each individual crash case. The main focus of these studies was to
associate the crash severity with driver, vehicle and roadway factors by using ordered probit/logit
model or logistic regression (e.g., Shanker, et al., 1996; Shanker and Mannering, 1996; Dissanayake
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et al., 2002, Al-Ghamdi, 2002; Delen, et al., 2002; Tay and Rifaat, 2007; Sze and Wong, 2007).

Although statistic models are the most commonly used methods in the context of crash data analysis
either collectively or individually, most of them have their own assumptions and complexity in
model estimation and interpretation. Once the assumptions were violated, the model could lead to
erroneous estimation results. Especially for the individual approach, most of the variables
explaining the individual crashes are categorical, such as driver gender, road type, lighting
condition, violation, weather condition, and severity degree, etc. It is difficult to develop parametric
statistical models based upon such categorical data. Therefore, a number of distribution-free
methods, particularly for dealing with classification and prediction problems such as decision tree
(Chang and Chen, 2005; Chang and Wang, 2006) and artificial neural network (Chiou, 2006; Delen
et al., 2006), were adopted. However, two gaps still remain. First, the interpretations of
classification results with such methods are weak. The knowledge lying in the crash data cannot be
fully discovered, because artificial neural network is a black-box characterized method and the
prediction error of decision tree is usually high. Second, most of statistical methods only provide
calibrated parameters with significance tests, which are then used to examine the effects of the
corresponding variables on crash counts or crash severity. The interrelationship among explanatory
factors cannot be examined in details. According to “error chain theory,” a crash is often caused by
a series of errors, not solely by a single factor. As such, mining the explanatory rules is deemed
necessary for crash data analysis.

Rule mining, also known as rule generation, rule recovery, or classification/association rule mining,
Is one of data mining techniques intended to mine for knowledge from available databases and
toward decision support. Rule mining is naturally modeled as multi-objective problems with three
criteria: (1) predictive accuracy, (2) comprehensibility, and (3) interestingness (Freitas, 1999; Ghosh
and Nath, 2004). To automatically search for the optimal combination of rules from a considerable
number of potential rules, genetic algorithms (GAs) are perhaps the most commonly used method.
By employing GAs to learn of rules is named as genetic mining rule (GMR) (e.g. Freitas, 1999;
Shin and Lee, 2002; Ghosh and Nath, 2004; Dehuri and Mall, 2006; Chen and Hsu, 2006). The
performances of rule mining algorithms have been proven and applied in many fields. Thus, this
paper aims to develop GMR model that can determine the optimal combination of appraisal rules to
achieve the following goals: (1) to discover the key rules that determine the combination of
contributing factors’ level to crash severity; (2) to provide the possibility of post-adjustment
(fine-tune) of the rules mined; (3) to accurately predict the crash severity. Previous relevant studies
have seldom considered the problems of conflicts and redundancy among the rules mined, our
proposed GMR model will account for the conflicts and redundancy, in addition to conventional
objectives: coverage ratio and predictive accuracy.

2.2.2 Data

The crash data was collected from 2003-2007 National Traffic Accident Investigation Reports
compiled by National Police Agency, Taiwan. Each accident investigation report has been digitized
and maintained in the database from which detailed individual crash data of freeway accidents are
obtained. Each individual crash data include detailed information regarding injury severity of each
involved individual, time of accident, driver demographics (age, gender, driver sobriety), involved
vehicle types, roadway geometry, traffic control condition, weather condition (clear, rain, fog),
pavement conditions (wet, dry), lighting condition, vehicle actions (moving straight, right-turn,
left-turn, lane-change), and collision types.

There are 52,117 crash cases occurring on Taiwan freeways from 2003 to 2007. The injury severity
of crashes is determined according to the injury degree of the worst-injured victims in the accident.
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After screening out incomplete police investigation report, a total of 45,744 crashes are used for this
study. Table 1 presents the definition and description of potential explanatory variables to crash
severity.

Table 1 Crash data summarized from police accident investigation reports

Information Variable Type Description
Surface condition X; Categorical 1, dry; 2, wet or slippery
Signal control X, Categorical 1, none; 2, yes
Driver gender X3 Categorical 1, male; 2, female
Weather x;  Categorical 1,sunny; 2, cloudy; 3, rain, storm, fog, etc.
Obstacle x5  Categorical 1, none; 2, work zone; 3, others
Lighting condition Xg Categorical 1, daytime; 2, dawn or dusk; 3, nighttime with illumination; 4, nighttime without
illumination
Speed limit X7 Categorical 1,110 KPH; 2, 100KPH; 3, 90-70KPH; 4, 60-40KPH
(discretized)
Road status Xs Categorical 1, straight road; 2, grade and curved road; 3, tunnel, bridge, culvert, overpass; 4,
others
Marking Xo Categorical 1, lane line with marker; 2, lane line without marker; 3, no lane-changing line; 4,
no lane line
Use of safety belt X0 Categorical 1, safety belt fastened; 2, safety belt not fastened; 3, unknown; 4, others
Use of cell phone X1 Categorical 1, use; 2, not in use; 3, unknown; 4, not driver
License X1 Categorical 1, with license; 2, without license; 3, unknown
Driver occupation x;3  Categorical 1, injob; 2, student; 3, jobless; 4, unknown
Driver age X4 Categorical 1, under 30 years old; 2, 30-40 years old; 3, 40-50 years old; 4, 50-65 years old; 5,
(discretized) above 65 years old
Travel period X/s Categorical 1, 07:01-09:00 morning peak; 2, 09:01-16:00 day off-peak; 3, 16:01-19:00
(discretized) afternoon peak; 4, 19:01-23:00 night-peak; 5, 23:01-07:00 midnight to morning
Location X6 Categorical 1, fast lane, general lane; 2, shoulder, edge; 3, median; 4, accelerating or
decelerating lane, ramp; 5, toll plaza and others
Vehicle type X7 Categorical 1, passenger car; 2, truck; 3, bus; 4, heavy truck, trailer truck, tractor; 5, others
Action X8 Categorical 1, forward; 2, left lane-change; 3, right lane-change; 4, urgent deceleration or stop;
5, others
Alcoholic use X9 Categorical 1, no; 2, under 0.25 mg/l (or 0.05%); 3, over 0.25 mg/I (or 0.05%); 4, cannot be
tested; 5, unknown
Journey purpose X209 Categorical 1, work trip or school trip; 2, business trip; 3, transportation activity; 4, visiting,
shopping; 5, others or unknown
Major cause X2 Categorical 1, improper lane-change; 2, speeding; 3, fail to keep a safe distance; 4, alcoholic
use; 5, fail to pay attention to the front; 6, other driver’s liability; 7, factors not
attributed to drivers
Collision type X7 Categorical 1, head-on or rear-end; 2, sideswipe (common direction); 3, angle or other crash; 4,
single-car collision with fixed object; 5, other single-car crash; 6, collision with
pedestrian
Severity y Categorical 1, fatality; 2, injury; 3, no-injury

In Taiwan, crash severity in police investigation report is classified into three degrees: Al (fatal
crash), A2 (injury crash), and A3 (non-injury crash). The numbers of cases for these three degrees
of crash severity are 494, 4,073, and 41,177, respectively—an uneven distribution commonly seen
in the context of crash analysis. To avoid misleading results caused by sample disproportionate
problem, A2 and A3 crash cases are randomly re-selected to the same number of Al crash cases
(494), thus making a total of 1,482 crash cases for our analysis. Furthermore, 70% of these 1,482
crash cases are randomly chosen for training (i.e., 1,037 cases) and the remaining 445 cases are
used for model validation. »*-test is performed and the result shows that severity distributions
between training and validation datasets do not significantly differ.

2.2.3 Genetic rule mining
Genetic rule mining (GMR), which can automatically learn of comprehensive rules from available
dataset and toward decision support, has been shown as a useful tool in accident analysis (Clarke et

al., 1998). The encoding method, fitness function, genetic operators, and rule selection of the
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proposed GMR model are narrated below.
2.2.3.1 Encoding Method

To represent the relationship between explanatory variables and crash severity, each chromosome is
used to represent a potential if-then rule. The conditions associated in the “if part” are termed as
antecedence part and those in the “then part” are named as consequent part. Besides, the antecedent
part consists of at least one variable, but at most 22 variables, selected from Table 2. And the
consequent part is composed by, of course, only one variable: severity degree. In general, arule is a
knowledge representation of the form “If 4 Then C,” where A4 is a set of cases satisfying the
conjunction of predicting attribute values and C is a set of cases with the same predicted degree.
Thus, a typical rule i can be of the form: Rule i: If x;,=a;; and x,=a; ...and x;=a;; ... and x,,=a;»>
Then y=g; Or, in a shorter form: Rule i: If 4; Then C; where, a; is the categorical value of j*
attribute variable in rule i. g; is the value of classification variable in rule i, which ranges from 1 to 3
representing three degrees of crash severity. 4; and C; are the sets of parties satisfying the
antecedent part and consequent part of rule 7, respectively.

Antecedent Consequent
|
[ e s s e
Chromosome: |0 |0 Lyt :
Corresponding l l 1
variables:  x; x; Xz ¥

Figure 1 Encoding method of the proposed GRM model

By encoding a rule as a chromosome, each gene is used to represent a corresponding variable. Since
the number of potential variables of antecedent and consequent is respectively 22 and one, the
length of a chromosome equals to 23. Each gene will then take one of the categorical values of the
corresponding variable. Since the ranges of all variables are different, the ranges of gene values also
vary. Moreover, if a gene in a rule antecedent takes a value of O, it represents the corresponding
variable not considered by the rule. If all genes representing the rule antecedent simultaneously take
a value of O or if the gene representing the rule consequent is O, then the rule is not included.

Based on this, a rule of “If surface condition=dry and occupation=in job and actions=left
lane-change and Then degree of severity=injury” can be encoded as 10000000000010000200002.
This rule also contains a family of 2.939x 10" offspring rules in total, which can be represented by
“If x;=1 and x,={0, 1, 2} and x;={0, 1, 2} and x,={0, 1,..., 3} and x5={0, 1,..., 3} and x,={0, 1,...,
4} and x,={0, 1,..., 4} and xs={0, 1,..., 4} and x¢={0, 1,..., 4} and x,,={0, 1,..., 4} and x;,={0,
1,..., 4%} and x,,=1 x¢={0, 1,..., 4} and x;3=1 and x,;,={0, 1,..., 5} and x;5={0, 1,..., 5} and x,s={0,
1,..., 5} and )C17:{0, 1,..., 5} and X]8:2 and X]9:{0, 1,..., 5} and X20:{0, 1,..., 5} and XZIZ{O, 1,...,
7} x2,={0, 1,..., 6} and Then y=2.” That is, any case satisfies any one of the offspring rules will
certainly also satisfy their parent rule. Generally, the more variable present in the antecedent part
(taking none zero values), the more specific of a rule is (less number of parties will satisfy the rule).

The proposed algorithm aims to select a set of rules which can most accurately predict the liability
degree based upon these twelve explanatory variables. The total number of potential rules equals to
3X3XAXAXAX5X5X5X5X5XE5XE5XEXE6X6XE6X6X6X6X6X8X7X4=1.058%10,
Obviously, it is barely possible to compare all rule combinations through a total enumeration
approach.

2.2.3.2 Fitness Function
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An individual chromosome, a rule, with a higher fitness function value has a higher probability to
be selected to reproduce offspring. Obviously, the role of the fitness function is to evaluate the
quality of the rule numerically. In doing so, three common factors to be taken into account are
coverage, completeness and confidence of the rule. The coverage ratio of rule i (i.e., the cases

satisfied by the rule antecedent) is denoted by |A| : the cardinality of set A (the number of elements
in set A). The completeness of the rule (i.e., the proportion of cases of the target class covered by
the rule) is given by |A N C|/|C|. The confidence of rule i (i.e., the predictive accuracy) is given by

|[ANC|/|4| (Freitas, 1999). After several trials on the combination of these three indices, this paper

uses predictive accuracy (PA4;) and coverage ratio (CR;) as the fitness function (f;) of rule i, which
can be expressed as follows:

fi = 1000-(P4;)-(CR))?
1)

2.2.3.3 Genetic Operators

Because the genes in our GRM model are not encoded binary, simple genetic algorithms proposed
by Goldberg (1989) cannot be used. Instead, we employ the max-min-arithmetical crossover
proposed by Herrera et al.(1998) and the non-uniform mutation proposed by Michalewicz (1992). A
brief description is given below.

(1) Max-min-arithmetical crossover

Let G, ={ 2w/ ... gk oo gk’ Y and G ={ g/ ..., @i ... 2 }be two
chromosomes selected for crossover, the following four offsprings can be generated:

G/ = aG, + (I-a)G,/ )
G2t+1 _ ant + (]-Cl)th (3)
G3t+1 with ggkﬁ]:min{gwkt, gvkt} (4)
G/ with gy =max{g., g’} )

where a is a parameter (0 < ¢ < 1) and ¢ is the number of generations.

(2) Non-uniform mutation
LetG,={g/.... g,.... g} be achromosome and the gene g;’ be selected for mutation (the
domain of g/’ is [g¢, i]), the value of g;"*/ after mutation can be computed as follows:

1 gkl+A(t’g/lcl_gkl) if b=0
&k - t t I . (6)
g, —Alt,g, —g) if b=1
where b randomly takes a binary value of 0 or 1. The function A(z,z) returns to a value in the range
of [0, z] such that the probability of A(z,z) approaches to O as ¢ increases:

A(t,z) = z(1—r&'D") @)

where r is a random number in the interval [0, ], T is the maximum number of generations and 7% is
a given constant. In Eq.(7), the value returned by A(z,z) will gradually decrease as the evolution
progresses.

2.2.3.4 Rule Selection

To avoid selecting redundant rules during the evaluation process, the rules are selected according to
the following steps:

Step 1: Rank rules in the final population (i.e. final potential rule set, FR) according to their fitness
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values in a descending order.

Step 2: Select the rule with the highest fitness value from the set of FR.

Step 3: Check the redundancy of the rule selected by Step 2. If its redundancy ratio (7;) is less than
0.5, then remove the rule from FR to the mined rule set (MR); otherwise, delete the rule
from FR. The redundancy ratio (r;) can be expressed as:

Dij
h= \gl%{w"f - F,} (8)
where, wy; is the degree of redundancy between rules i and j. Dj; is the total number of
variables in the antecedent part sharing the same value, except for zero, in both rules i and ;.
R; is the total number of variables appearing in the antecedent part of rules i. MR is the set
of mined rules.

Step 4: Terminate if no rule left in FR. MR is the optimal combination of rules. Otherwise, go to
Step 2.

Even if the chromosomes have been filtered by redundancy index, it cannot be avoided that two or
more rules with different predicted classes might still be simultaneously fired by a crash case. To
synthesize the predicted degree of more than one rules fired, we take an average value of predicted
degrees of all fired rules and round it to the nearest integer, which can be expressed as:

sg = Int(izg ) 9)
|F jeF
where, G is the predicted severity degree by the proposed algorithm. /nz(-) is a rounding operator,
which rounds value in parenthesis to the nearest integer. F is a set of sequence numbers of fired
rules. As such, the correctness rate of the model can be computed as the number of correctly
predicted cases divided by the total number of cases.

2.2.4 Results and discussions
2.2.4.1 Results

The parameters of the proposed GMR model are set as follows: population size=50, crossover
rate=0.85, mutation rate=0.08, and maximum number of generations=1000.

Table 2 shows the final selected rules along with its corresponding performance indices. Note that a
total of 19 rules are selected with a descending order according to f. In terms of fitness value (f)),
the top seven rules have remarkably higher values than the rest of twelve rules, suggesting that it is
promising to use only the top seven rules to conduct the prediction. In terms of coverage ratio (CR)),
R7 can explain 828 cases, followed by R2 (633 cases) and R6 (597 cases). In contrast, some rules
cover only very few cases, such as R14 (3 cases) and R18 (4 cases). In terms of predictive accuracy
(PA;), R1 has the highest predictive accuracy of 0.930, followed by R14 (0.667), and R19 the least
(0.094).

The importance of variable can be identified by the number of variables presenting in rules. In this
regard, xs (obstacle) is the most important variable which appears at 13 rules (appearance rate
68.42%), followed by x; (surface condition) with appearance rate 47.37%. Four variables are not
shown in any rule, which are xs (lighting condition), xq (marking), xi1¢ (location), and x17 (vehicle
type), indicating their insignificance to crash severity. There are four rules associated with Al crash,
six rules with A2 crash, and nine rules with A3 crash.
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Table 2 Combination of rules mined by GRM model

Rules X; X2 X3 X4 X5 Xg X7 Xg Xg Xjgp Xj; Xj2 X3 X14 Xj5 Xj6 Xj7 X18 Xj9 X20 X271 X22 YV f, CR; P4,
RI 1 1 3 1 1 54.997 71 0.930
R2 1 1 1 1 3 37.604 633 0.395
R3 1 1 1 1 3 31.436 533 0.394
R4 1 2 1 1 1 3 28.689 238 0.500
RS 2 3 23.711 447 0.380
RO 1 1 1 2 23.652 597 0.345
R7 1 1 1 1 21196 828 0.298
RS 3 3 9.077 195 0.364
R9 1 1 1 1 3 8.952 180 0.372
RI0 2 1 2 1 3 4.134 40 0.475
RI11 1 1 1 1 4 3 3.901 90 0.356
RI2 1 3 4 2 3.720 49 0.429
RI3 1 1 1 2 3.675 80 0.363
RI14 1 3 1 2 0.857 3 0.667
RIS 1 2 1 1 1 1 0.439 40 0.225
RI6 1 1 1 4 1 3 3 0.393 29 0.241
RI17 1 2 2 0.125 31 0.161
RIS 1 4 4 1 5 1 0.060 4 0.250
RI9 1 1 3 1 2 0.025 32 0.094
n 9 4 5 313 0 51 0 1 5 8 2 3 1 0 0 2 3 1 1 1 - - - -

Note: n is the number of appearance of the variable in the selected 19 rules.

Table 3 gives the distribution of cases with degree of severity predicted by GRM model and with
real degree of severity. As shown in Table 3, in the training dataset, the proposed GRM model can
actually predict A3 crash with a correct rate of 96.82%, followed by A1l crash (correct rate 73.99%)
and A2 (correct rate 64.64%). The overall correct rate of the proposed GRM model achieves
78.50%. In the validation dataset, the overall correct rate slightly has decreased to 74.16%.

Table 3 Number of cases with degree of severity predicted by GRM
Predicted severity

Datasets Real severity Total
Al A2 A3
Al 256 (73.99%) 84 (24.28%) 6 (1.73%) 346 (100.00)
Training A2 51 (14.78%) 223 (64.64%) 71 (20.58%) 345 (100.00)
A3 4 (1.16%) 7 (2.02%) 335 (96.82%) 346 (100.00)
Total 311 314 412 1037
Al 105 (70.95%) 37 (25.00%) 6 (4.05%) 148 (100.00)
Validation A2 15 (10.07%) 96 (64.43%) 38 (25.50%) 149 (100.00)
A3 5 (3.38%) 14 (9.46%) 129 (87.16%) 148 (100.00)
Total 125 147 173 445

Note: The percentages are given in the parentheses.

2.2.5 Comparisons

To prove the performance of our proposed GRM model, a decision tree (DT) model is also used to
mine the rules explaining the same crash dataset. The learning process of the DT model is depicted
in Figure 2. Note that the misclassification rate decreases as the number of leaves gets larger.

Table 4 presents the number of cases with various degrees of severity predicted by the DT model.
Note that the DT model performs slightly better for predicting A2 crash (correct rates in training
and validation are 78.84% and 77.18%, respectively) than the proposed GRM model. However, the
DT model performs much worse than the proposed GRM model while predicting both Al and A2
crashes. Averagely, the overall correct rates of the DT model in training and validation are 63.84%
and 61.25%, respectively, which are much lower than those of the proposed GRM model. Thus, the
performance of the proposed GRM model has been proven.
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Figure 2 Learning process of the DT model

Table 4 Number of cases with degree of severity predicted by DT
Predicted severity

Datasets Real severity Total
A2 A3
Al 188 (54.34%) 150 (43.35%) 8 (2.31%) 346 (100.00)
Training A2 33 (9.57%) 272 (78.84%) 71 (11.59%) 345 (100.00)
A3 6 (1.73%) 138 (39.88%) 202 (58.38%) 346 (100.00)
Total 227 560 250 1037
Al 68 (45.95%) 72 (48.65%) 8 (5.41%) 148 (100.00)
Validation A2 11 (7.38%) 115 (77.18%) 23 (15.44%) 149 (100.00)
A3 3 (2.03%) 55 (37.16%) 90 (60.81%) 148 (100.00)
Total 82 242 121 445

Note: The percentages are given in the parentheses.

Atotal of 11 rules are generated by the DT model as follows. There are a total of four rules
associated with A1 crash, five rules with A2 crash, and two rules with A3 crash.

R1:
R2:
R3:
R4.
R5:
R6:
R7:
R8:
R9:

If x,={3,4} Theny=1

If x,,={1,2,3}and x,,={1, 2,4,5,6, 7} and x,,= {1, 2} Theny =2

If x,,=1and x,,= {1, 2} and x,,= 3 and x,,= {1, 2} Theny =3

If x,,= {2, 3,5} and x,,= {1, 2} and x,,= 3 and x,, ={1, 2} Then y = 2

If x,= {1, 5} and x,,= {3, 4} and x,,= 3 and x,,= {1, 2} Then y = 3

If x,,= {2, 3,4} and x,,= {3, 4} and x,,= 3 and x,= {1, 2} Then y = 2

If x,,=6 and x,,= {1, 4, 5,67} and x;,= {1, 2} Theny =1

If x5= {1, 2, 4,5} and x,,=2 and x,,= {4, 5, 6} and x,= {1, 2} Theny =1
If x;;= 3 and x,,= 2 and x,,= {4, 5, 6} and x,,= {1, 2} Then y = 2

Rlo IfX16— {1 4} and X2— {4 5} and X2= {1 4 5 6 7} and X = {1 2} Theny 2
Rll Ithg— {2 3 5} and x22_ {4 5} and .X'21— {l 4 5 6 7} and XH— {1 2} Theny 1

2.2.6 Conclusion
This paper employs individual approach to identify contributing factors to crash severity by

developing a novel genetic rule mining (GRM) model. To avoid over-mining problem caused by
unevenly distributed cases across degrees of severity, identical numbers of Al-type, A2-type and
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A3-type of crash cases are selected from 2003-2007 Taiwan freeway accidents dataset. A total of 19
rules have been mined which can achieve an overall correct rate of 78.50% in training and 74.16%
in validation, respectively, which have demonstrated much higher correctness than the conventional
decision tree model. The performance of the proposed GRM model has been proven. According to
the mined rules, xs (obstacle) and x; (surface condition) are two key factors contributing to crash
severity.

Some directions for future studies can be identified. First, the neighboring traffic condition of the
crash is also an important factor to crash severity; however, the police accident investigation report
did not have such information. The crash data may be further matched with the traffic database so
as to gain more information regarding the contributing factors to crash severity. Second, in order to
simplify the model complexity, various performance indices may be integrated into an overall
fitness function; as such, a multi-objective GRM model deserves further elaboration. Last but not
least, more comparisons can be made to other commonly used methods (e.g., logistic regression
model, artificial neural network) to demonstrate the superiority of our proposed GRM model.
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