
WARD: a transmission control protocol-friendly
stateless active queue management scheme

C.-Y. Ho, Y.-C. Chan and Y.-C. Chen

Abstract: In this article, the problem of providing a fair bandwidth allocation to the flows sharing a
congested link in a router is investigated. Queue management, bandwidth share and congestion
control are very important to both the robustness and fairness of the Internet. The buffer at the out-
going link is a simple FIFO, shared by packets belonging to the flows. A new transmission control
protocol (TCP)-friendly router-based active queue management scheme, termed WARD, is pro-
posed to approximate the fair queueing policy. WARD is a simple packet-dropping algorithm
with a random mechanism which discriminates against flows that submit more packets per
second than is allowed as their fair share. By doing this, it not only protects TCP connections
from user datagram protocol flows, but also solves the problem of competing bandwidth among
different TCP versions, such as TCP Vegas and TCP Reno. In addition, WARD works quite
well for TCP flow isolation even with different round trip times. In other words, WARD improves
the unfair bandwidth allocation properties. Furthermore, as it is stateless and easy to implement,
WARD controls unresponsive or misbehaving flows with only a minimum overhead.
1 Introduction

The Internet provides a connectionless, best-effort, end-to-end
packet service using the IP protocol. Its performance and stab-
ility depends on the congestion avoidance algorithm, intro-
duced by Jacobson [1], being implemented in the transport
layer protocols to provide good service under heavy load. In
practice, TCP has been widely deployed to carry most of the
traffic in the Internet. TCP helps a traffic source to determine
how much bandwidth is available in the network and adjust
its transmission rate accordingly. By using an additive
increase/multiplicative decrease strategy, TCP keeps the
network from being overloaded; it has become a crucial
factor in the robustness and stability of the Internet.
However, a lot of TCP implementations do not include

the congestion avoidance mechanism either deliberately
or by accident [2]. Moreover, different types of appli-
cations, especially multimedia and audio/video streaming
applications, are being increasingly deployed over the
Internet. Such applications utilise the user datagram proto-
col (UDP) instead, which does not employ end-to-end flow
and congestion control. In other words, the flows of these
applications do not back off properly when they receive
congestion indication. Rather, the sending rate is set by
the application and normally little or no consideration of
network congestion is taken into account during the trans-
mission. As a result, UDP flows aggressively use up more
bandwidth than other TCP compatible flows. This could
eventually cause ‘Internet Meltdown’ [3] or result in two

The Institution of Engineering and Technology 2007

doi:10.1049/iet-com:20060595

Paper first received 4th April 2006 and in revised form 11th June 2007

C.-Y. Ho and Y.-C. Chen are with the Department of Computer Science,
National Chiao Tung University, No. 1001, Ta Hsueh Road, Hsinchu City
30050, Taiwan

Y.-C. Chan is with the Department of Computer Science and Information
Enginearing, National Changhua University of Education, No.1, Jin-De Road,
Changhua City 50007, Taiwan

E-mail: cyho@csie.nctu.edu.tw
IET Commun., 2007, 1, (6), pp. 1179–1186
major problems already identified in the Internet:
unfairness and congestion collapse [4]. Therefore it is
necessary to have router mechanisms to shield responsive
flows from unresponsive or aggressive flows, to effectively
detect congestion in the network, to achieve fair share
among flows and to provide a satisfactory quality of
service to all users.
Besides, even when there is no UDP flow in the network,

an unfairness problem may still occur when connections
with different TCP versions such as TCP Vegas [5] and
TCP Reno [6] coexist [7, 8], as their slow start, congestion
avoidance and fast retransmit mechanisms are different. For
example, TCP Vegas uses the difference between the
expected and actual throughput, whereas TCP Reno
detects the packet loss as an indicator to estimate the
available bandwidth in the network, control the throughput
and avoid congestion. TCP Vegas achieves much higher
throughput, and has a fairer and stabler bandwidth
share than TCP Reno [5]. The latter is an aggressive
control scheme in which each connection captures more
bandwidth until the transmitted packets are lost. TCP
Vegas, however is a conservative scheme in which each
connection obtains a proper bandwidth. Thus, the TCP
Reno connections take bandwidth from the TCP Vegas con-
nections when they coexist [9]. To solve this unfairness
problem, several end-system-based solutions such as TCP
NewVegas [10], TCP Vegas-A [11], TCP Vegasþ [12]
and so on have been proposed. Nevertheless, these mechan-
isms merely solve the problem in some particular network
environments. As a result, to regulate the flows causing
the unfairness problem, router-based schemes are more
appropriate.
This article takes a step in the direction of bridging

fairness and simplicity. Specifically, we exhibit an active
queue management (AQM) algorithm, called WARD, that
is simple to implement and differentially penalises misbe-
having flows by dropping more of their packets. By doing
this, WARD aims to approximate max–min fairness for
the flows that pass through a congested router.
1179

The basic idea behind WARD is that the contents of the
FIFO buffer form a sufficient statistic about the incoming
traffic and can be used in a simple fashion to penalise
misbehaving flows. When a packet arrives at a router,
WARD may draw two packets randomly from the FIFO
buffer and compare them with the arriving packet. If two
or all of them belong to the same flow, then they are
dropped, else the randomly chosen packets are left intact
and the arriving packet is admitted into the buffer. The
reason for doing this is that the FIFO buffer is more
likely to have packets belonging to a misbehaving flow
and hence these packets are more likely to be chosen for
comparison. Further, packets belonging to a misbehaving
flow arrive more often in greater numbers and are more
likely to trigger comparisons. The intersection of these
two high-probability events is precisely the event in
which packets belonging to misbehaving flows are
dropped. Therefore, packets of misbehaving flows are
dropped more often than packets of well-behaved flows.
The rest of this paper is organised as follows. Section 2

explains our motivation and goals for using the WARD
mechanism and describes the WARD algorithm in detail.
The simulation results are presented in Section 3. Finally,
a summary of this work is provided in Section 4.

2 Motivation, goal and WARD

Our work is motivated by the need for a simple,
TCP-friendly and stateless algorithm that can achieve fair
bandwidth allocation and flow isolation, as there are
some problems or drawbacks in the existing algorithms
(Because the space is limited, the details and descriptions
of each mechanism can be found in [13].). For example,
how to set the value of minimum and maximum thresholds
in the random early detection (RED) [14] and CHOose and
Keep for responsive flow (CHOKe) [2] algorithms to suit a
topology with variable connections is a tough problem
because both RED and CHOKe are sensitive to parameter
settings [15]. Moreover, improper parameter settings
may lead to unsatisfactory TCP performance [16].
Similarly, how to decide the suitable size of the tables in
a stochastic fair blue [7] algorithm is another question.
We are seeking a solution to avoid these problems in the
context of the Internet. In addition, we are motivated to
find a solution that could penalise the ‘unresponsive’ or
‘unfriendly’ flows, such as UDP-based and poor implemen-
tations of TCP. Further, we hope that our solution will
avoid global synchronisation, ensure low delays, keep
buffer occupancies small and bias against bursty traffic.
Thus, we propose a stateless queue management algorithm,
WARD, which is discussed in the following paragraphs.
Next, we need a benchmark to compare the extent of

fairness achieved by our solution. From [2], max–min
fairness suggests itself as a natural candidate for two
reasons: (a) It is well-defined and widely understood in
the context of computer networks and (b) the fair queueing
(FQ) algorithm is known to achieve it. However, it seems
almost impossible for a scheme to achieve perfect max–
min fairness without flow state information. Max–min fair-
ness is not suitable in our context because we do not identify
the flow(s) with the minimum resource allocation and maxi-
mise its (their) allocation, instead we identify and reduce the
allocation of the flows that consume the most resources. In
other words, we attempt to minimise the resource consump-
tion of the maximum flow as a fairness index function (1),
proposed in [18]. The resource freed up as a result of mini-
mising the maximum flow consumption is distributed
1180
among the other flows. In the Internet context, the former
flows are either unfriendly TCP or UDP and the latter
flows are TCP.

F(x) ¼
(
P

xi)
2

n(
P

x2i)
(1)

2.1 Mechanism description

Suppose that a router maintains a single FIFO buffer for
queueing the packets of all the flows that share an outgoing
link. We describe an algorithm, WARD, that differentially
penalises unresponsive and unfriendly flows. In addition,
even though the idea of WARD is similar to CHOKe, their
methods are different. (There are two major differences
between WARD and CHOKe. One is that WARD is
embedded in Drop Tail and CHOKe is embedded in RED.
Therefore the two schemes deal with an incoming
packet differently. The other is that in order to protect
congestion-sensitive flows from congestion-insensitive or
congestion-causing flows effectively, WARD selects more
packets queued in the buffer to compare with an incoming
packet than CHOKe does.) The state, taken to be the number
of active flows and the flow ID of each parameter packet, is
assumed to be unknown to the algorithm. The only observable
for the algorithm is the total occupancy of the buffer.
Before describing the WARD algorithm, we give a

weighted value to every position in the FIFO buffer. First,
the index of every position is divided by the FIFO buffer
size. Second, the weighted value of every position equals
the first number beyond a decimal point of the above
result. For example, assuming the FIFO buffer size is 100,
then the weighted values of the 1st to 9th position are 0.0,
the 10th to 19th 0.1, . . . , the 90th to 99th 0.9 and the last
position is 1.0. The packets entering the beginning or the
head of a buffer means that there is no congestion yet;
however, the congestion may occur when the buffer
becomes full.
When a packet k, which may be queued into the position

P, arrives at the buffer, we choose a uniformly distributed
random decimal number U, which is no larger than 1. If
U is bigger than the weighted value of position P, this
packet k is queued into the FIFO buffer. Otherwise, the
packet k is compared with two packets i and j that are ran-
domly selected from the FIFO buffer. First, if these three
packets have the same flow ID, they will be all dropped.
Second, the flow ID of either packet i or j is the same as
that of the packet k; these two packets with same ID will
both be dropped. Third, if packets i and j have the same
flow ID, which is different from the flow ID of the packet
k, both packets i and j will be dropped too. Otherwise, the
randomly selected packets i and j are kept in the buffer
(in the same position as before) and the arriving packet k
is queued in the position P. Besides, in the sensitive case,
the buffer is full when the packet k comes in. WARD will
do all the above steps except queueing the packet k in the
last step. A flow chart of the WARD’s algorithm is given
in Fig. 1.
There are two reasons for choosing two packets randomly

from the FIFO buffer. (1) The FIFO buffer is more likely to
have packets belonging to a misbehaving flow and hence
these packets are more likely to be chosen for comparison.
(2) If we randomly choose more than two packets from the
buffer, the comparison of those packets will be complicated.
In addition, according to simulation results, the whole
network performance and responsive flow throughput
are decreased, although the dropping rate of the
IET Commun., Vol. 1, No. 6, December 2007

Fig. 1 WARD algorithm
unresponsive flows for choosing more packets is (just a
little) higher than that for choosing two packets.
WARD is a truly stateless algorithm. It does not require

any special data structure. Compared to a pure FIFO
queue, WARD just needs to perform a few simple extra
operations: giving weighted values, choosing a random
number, drawing two packets randomly from the queue,
comparing flow IDs and possibly dropping the incoming
and the candidate packets. We may say that WARD is
embedded in Drop Tail, which is a commonly used
scheme, so there is no big problem in using WARD. In
other words, as a stateless algorithm, it is nearly as simple
to implement as RED. To see this, let us consider the
details of implementation. We use two numerals P and F
to represent the current buffer length and the fixed physical
buffer size, respectively. Thus, a weighted value of each
position can be counted by P/F. Drawing two packets ran-
domly can be implemented by generating a random address
from which a packet flow ID is read out. Comparison of
flow ID can be done easily in hardware. It is arguably
more difficult to drop one or two randomly chosen
packets because this means removing them from a linked
list. Instead of doing this, we add one extra bit to the
packet header, as is done in [2]. If the potential candidate
is to be dropped, the bit is set to one and the value of P is
decreased at the same time. When a packet advances to
the head of the FIFO buffer, the status of this bit determines
whether it is to be immediately discarded or transmitted to
the outgoing link.
In the following section, we demonstrate that the pro-

posed scheme improves the fairness of bandwidth allocation
on the basis of numerical results. Indeed, a deterministic
fluid model that explicitly models the feedback equilibrium
of TCP/WARD system and the UDP throughput behaviour
with WARD can be found in [9]. (When the number of TCP
flows is large, the UDP bandwidth share peaks at
IET Commun., Vol. 1, No. 6, December 2007
(2e)21 ¼ 0.184 as well as drops to zero as the UDP input
rate tends to infinity.)

3 Simulation results

This section presents simulation results of WARD’s
performance in penalising misbehaving flows and thus
approximating fair bandwidth allocation. We use the
RED, CHOKe, and Drop Tail schemes for comparison.
The mechanisms that require full per-flow state information
are not included here because of the practical limitations of
scalability, especially in high-speed routers that usually
handle thousands of flows. The simulations range over a
spectrum of network configurations and traffic mixes. The
results are presented in five parts: single unresponsive
flow, multiple unresponsive flows, TCP sources with differ-
ent versions, TCP sources with different round trip times,
and web-mixed experiments. (In fact, we observed that
when the number of independent flows increases to ten or
hundreds of thousand flows, two chosen packets and the
incoming packet may come from different flows. In the
worst case, the behaviour of WARD is the same as that of
Drop Tail. However, only in core routers, a circumstance
of many tens or hundreds of thousand flows are likely. In
this section, we assumed WARD is used in an edge router
and no large flows connect to an edge router. In our next
article, we will present a modified mechanism of WARD
to handle many thousands flows in a core router.)

3.1 Simulation setup

We use the network simulator ns2 [20] and the dumb-bell
topology shown in Fig. 2 to assess the performance of
WARD, which will be compared with Drop Tail, RED
and CHOKe. The congested link in this network is
between the routers R1 and R2. The link, has a capacity
1181

of 1 Mbps, is shared by m TCP (with one version) and n
UDP or m TCP Vegas and n TCP Reno flows. An
end host is connected to the routers using a 10 Mbps
link, which is ten times the bottleneck link bandwidth. All
links have a small propagation delay of 1 ms except the last
scenario, so that the delay experienced by a packet is
mainly caused by the buffer delay rather than the trans-
mission delay. The maximum window size of TCP is set to
500 segments such that it does not become a limiting factor
of a flow’s throughput. The TCP flows are derived from
FTP sessions, which transmit large sized files. The UDP
hosts send packets at a constant bit rate (CBR) of g Kbps,
where g is a variable. The size of all packets are set to 1 KB.

3.2 Single unresponsive flow

To study how much bandwidth a single nonadaptive UDP
source can obtain when the routers use different queue man-
agement schemes, we set up a simulation with 32 TCP
sources (Flow1 to Flow32) and 1 UDP source (Flow33) in
the network. The UDP source sends packets at a rate of
2 Mbps, twice the bandwidth of the bottleneck link, such
that the link R1–R2 becomes congested.
To observe how WARD achieves fair bandwidth allo-

cation, the individual throughput of each of the 33 connec-
tions with buffer size 132 (4 packets per flow), along with
their ideal fair shares, are plotted in Fig. 3. Although the
throughput of the UDP flow (Flow33) is still higher than
the rest of the TCP flows, it can be seen that each TCP is
allocated a bandwidth relatively close to its fair share.
Furthermore, the dropping probability of UDP flow is
about 96%. A packet may be dropped because of a match
or buffer overflow in WARD. A misbehaving flow, which

Fig. 3 Throughput per flow with same RTT

Fig. 2 Simulation topology
1182
has a high arrival rate and a high buffer occupancy, incurs
packet dropping mostly because they are matched. On the
other hand, the packets of a responsive flow are unlikely
to be matched, so they will be dropped mainly because of
buffer overflow. Moreover, we change the link delays for
the 32 TCP flows to 1, 2, 3, and 4 ms, respectively. In
other words, the 32 TCP flows are separated into four
groups. The simulation result is shown in Fig. 4. Although
the throughput of the UDP flow (Flow33) is still higher
than the rest of the TCP flows, it can be seen that each
TCP is allocated a bandwidth relatively close to its fair
share no matter what the round trip propagation delay is
due to.
The throughput of the UDP flow under different queue

management algorithms, Drop Tail, RED, CHOKe and
WARD, is plotted in Fig. 5. The minimum threshold in
the RED and CHOKe is set to 100, allowing on average
around three packets per flow in the buffer before a router
starts dropping packets. Following [14], we set the
maximum threshold to be twice the minimum threshold.
In addition, with no partiality, the buffer size of Drop Tail
and WARD is fixed at 200 packets due to the maximum
threshold mentioned above. From Fig. 5, we clearly see
that the Drop Tail and RED gateways do not discriminate
against unresponsive flows. The UDP flow takes away
more than 85% of the bottleneck link capacity and the
TCP connections only obtain the remaining 150 Kbps.
Although CHOKe improves the throughput of the TCP
flows dramatically by limiting the UDP throughput to
250 Kbps, the UDP throughput is still much higher than
each of TCP throughput. WARD boosts the total TCP
flows’ throughput from 150 Kbps (in Drop Tail gateway)
to at least 850 Kbps and limits UDP throughput to at most
150 Kbps, which is only around 15% of the link capacity.

Fig. 5 UDP throughput comparison

Fig. 4 Throughput per flow with different RTTs
IET Commun., Vol. 1, No. 6, December 2007

Fig. 6 Performance under different traffic load
With the fixed buffer size (200), we vary the UDP arrival
rate g to investigate WARD’s performance under different
traffic load conditions. The simulation results are summar-
ised in Figs. 6 and 7, where the UDP and average TCP
throughput are plotted against the UDP flow arrival rate.
The drop percentage of the UDP flow is also shown in
Fig. 6. From Fig. 6, we see that the maximum UDP band-
width share is 0.1845 (¼184.5 Kbps/1 Mbps) when the
UDP’s sending rate is set to 600 Kbps. From the plots, we
can observe some characteristics of WARD as compared
with CHOKe. (1) When the UDP arrival rate is lower
than the fair share bandwidth, WARD protects the through-
put of the UDP flow as best as it can. For example, no
packets are dropped from UDP flow when its arrival rate
is 10 Kbps. As the UDP arrival rate increases, the drop per-
centage goes up as well. For instance, WARD drops 21.9%
of the UDP packets when its rate achieves 100 Kbps.
Moreover, WARD drops almost all packets (99.7%) when
the arrival rate reaches 10 Mbps since the probability of
obtaining a matched UDP packet increases with the increas-
ing arrival rate of UDP flow. In other words, the packets of
UDP flow have higher probability to be matched. (2) The
average throughput of TCP flows with the WARD algor-
ithm is higher than that with CHOKe. The drop percentage
of UDP flow when using WARD is higher than when using
CHOKe when its rate is higher than the fair share band-
width. In addition, we do not compare WARD with Drop
Tail and RED here because the comparisons of CHOKe,
RED and Drop Tail have already been made in [2].
Now, a UDP source uses variable bit rate (VBR) with

Pareto model and with shape 1.5 to generate the packets.
In addition, UDP source is an ON–OFF source. During
ON periods, UDP sends data at 2 Mbps. The average

Fig. 7 Average TCP throughput under different traffic load
IET Commun., Vol. 1, No. 6, December 2007
throughput of the UDP flow is from 0 Kbps to 1 Mbps,
which is the link capacity. The simulation results are
shown in Table 1, where the traffic load is defined as the
average throughput of UDP flow divided by 1 Mbps,
TCPavg is the average TCP throughput (Kbps), UDPthr is
the UDP throughput (Kbps) and Pdrop is the drop percentage
of the UDP flow, respectively. No matter what the traffic
load is, WARD protects TCP flows as best it can.
With the UDP sending packets at CBR of 2 Mbps, we

vary the buffer size from 66 (2 times 33 flows) to 330 (10
times 33 flows) to study WARD’s performance. The
details of different conditions are shown in Table 2.
Although the average TCP flow throughput is still close to
the fair share throughput, the UDP throughput increases

Table 1: Comparisons of WARD with different
traffic load

Traffic load 0 0.1 0.2 0.3

TCPavg 29.30 27.35 26.51 25.63

UDPthr – 64.60 95.26 129.06

Pdrop – 32.7% 41.0% 51.4%

Traffic load 0.4 0.5 0.6 0.7

TCPavg 24.71 24.50 24.55 23.90

UDPthr 155.26 160.93 163.33 182.00

Pdrop 63.1% 68.2% 72.3% 71.9%

Traffic load 0.8 0.9 1.0 –

TCPavg 24.03 24.3 24.10 –

UDPthr 179.93 170.00 179.26 –

Pdrop 78.1% 80.0% 81.3% –

Table 2: Performance of WARD with different
buffer sizes

Buffer size 66 132 200

TCPavg 28.87 28.61 27.02

UDPthr 65.26 82.46 131.33

Pdrop 96.7% 95.9% 93.4%

Buffer size 264 330 –

TCPavg 25.15 24.2 –

UDPthr 193.8 225.53 –

Pdrop 90.3% 88.7% –
1183

relatively. The reason is that, when the buffer size becomes
larger, more UDP packets will be queued in the buffer even
the dropping probability of UDP packets increases.

3.3 Multiple unresponsive flows

We follow the traffic model mentioned above (i.e. Fig. 2).
Recall that the first model includes 32 TCP flows (Flow1
to Flow32) and 1 UDP flow (Flow33); we do not change
any variables here except the number of sources with TCP
or UDP flows. The second traffic model includes 31 TCP
flows (Flow1 to Flow31) and 2 UDP flows (the sending
rate of Flow32) is 2 Mbps and that of Flow33 is 1 Mbps).
There are 29 TCP flows (Flow1 to Flow29) and 4 UDP
flows (Flow30 to Flow33) in the third traffic model. The
rates of the UDP flows are 2 Mbps, 1 Mbps, 100 Kbps and
30 Kbps, which is smaller than the ideal fair share through-
put. The results of these two traffic models are shown in
Table 3, where Thr is throughput (Kbps) of a flow, SR is
sending rate (Kbps) of a UDP flow and Pdrop is dropping
probability, respectively. In addition, the ideal fair share
throughput is 30.3 Kbps. From Table 3, we see that the
UDP flow with a low rate is also treated fairly. In other
words, the dropping probability is greater when the
sending rate becomes higher. When the number of TCP
and UDP flow changes, the WARD algorithm tries to
achieve FQ. If we consider the input rates of UDP flows,
the performance is really satisfactory.

3.4. TCP sources with different versions

When a TCP Vegas user competes with other TCP Reno
users, it does not receive a fair share of bandwidth due to
the conservative congestion avoidance mechanism used
by TCP Vegas. The reason is that TCP Reno continues to
increase the window size until a packet is lost. This would
occur mainly due to buffer overflow (if the queue manage-
ment algorithm is Drop Tail). This bandwidth estimation
mechanism results in a periodic oscillation of window
size and buffer-filling behaviour of TCP Reno. Thus,
while TCP Vegas tries to maintain a smaller queue size,
TCP Reno keeps inserting many more packets into the
buffer and stealing more bandwidth [7–11]. How to drop
some packets sent by TCP Reno before buffer overflow is
an interesting issue.
In this subsection, we use 20 TCP sources in the dumb-

bell topology, as shown in Fig. 2. Moreover, the ideal fair
share throughput of each flow is 50 Kbps. Among these
20 TCP sources, the source traffic from TCP Vegas
decreases from 20 to 0. We show the simulation results of
using a WARD algorithm with different buffer sizes in
Tables 4, 5, and Fig. 8, where B is the buffer size, V the
TCP Vegas and R the TCP Reno, respectively. In Table 4,

Table 3: Average throughput of TCP and throughput
of each UDP

2UDP TCP UDP1 UDP2 UDP3 UDP4

Thr 26.3 65.1 41.2 – –

SR – 2000 1000 – –

Pdrop – 96.75% 95.88% – –

4UDP TCP UDP1 UDP2 UDP3 UDP4

Thr 24.8 64.4 62.7 57.6 25.5

SR – 2000 1000 100 30

Pdrop – 96.78% 93.73% 42.40% 15.11%
1184
we see a fairness index of each buffer size of over 99%,
regardless of the number of sources using either TCP
Vegas or TCP Reno in the network. Furthermore, the
detailed average throughput of TCP Vegas and TCP Reno
are shown in Table 5 because in Table 4, the fairness
index demonstrates the whole situation. Figure 8 uses a
bar chart to present the details of average throughput

Table 4: Fairness index of different TCP versions
and buffer sizes

Fairness index

B Vegas–Reno flows

20–0% 15–5% 10–10% 5–15% 0–20%

60 99.7 99.6 99.4 99.5 99.5

70 99.8 99.6 99.7 99.4 99.4

80 99.7 99.7 99.5 99.6 99.6

90 99.7 99.8 99.6 99.5 99.3

100 99.1 99.6 99.7 99.6 99.5

110 99.9 98.7 99.2 99.5 99.8

120 99.5 99.5 99.2 99.6 99.6

Table 5: Average throughput of different TCP
versions and buffer sizes

Average throughput, Kbps

B Vegas–Reno flows Ver.

20–0 15–5 10–10 5–15 0–20

60 49.9 50.2 51.1 50.6 – V

– 47.0 46.0 46.8 47.4 R

70 50.0 50.0 50.1 49.3 – V

– 47.0 47.3 47.7 47.3 R

80 50.0 50.0 48.8 48.7 – V

– 47.0 48.3 47.6 47.4 R

90 50.1 50.2 48.0 45.9 – V

– 46.8 49.2 48.5 47.2 R

100 49.8 49.8 47.3 46.1 – V

– 47.8 49.9 48.6 47.5 R

110 50.0 47.9 45.0 44.0 – V

– 53.0 52.1 49.2 47.3 R

120 50.0 47.9 44.7 43.9 – V

– 53.3 52.4 49.2 47.3 R

Fig. 8 Average throughput of different TCP versions as buffer
size is 70
IET Commun., Vol. 1, No. 6, December 2007

when the buffer size is 70. When the buffer size is smaller
than 90, the throughput of TCP Vegas is better than that
of TCP Reno. On the other hand, if the buffer size is
greater than 90, the performance of TCP Vegas is not
much worse than that of TCP Reno, since the dropping
probability of TCP Reno packets is greater than that of
TCP Vegas. Thus, we think that TCP Vegas could
compete for network resources with TCP Reno when
using WARD algorithm in a router. Furthermore, TCP
Vegas and TCP Reno share the network resources fairly
when the buffer size is four times the number of total flows.
We compare the fairness index of WARD with other

algorithms, such as Drop Tail, RED, CHOKe and fair
random early detection (FRED) [21]. In addition, the phys-
ical buffer size is 120 for each algorithm and minimum and
maximum thresholds are set to 60 and 120 for RED,
CHOKe and FRED algorithms. The result is shown in
Table 6. We when see that the performance of WARD is
much better than others, even the algorithm requires full
per-flow state information.

3.5 TCP sources with different RTTs

In the early TCP versions such as TCP Reno, when TCP
connections feature different RTTs, the sources with
shorter RTT get more network resources [22]. Different
from TCP Reno, TCP Vegas is not biased against the con-
nections with longer RTT [23, 24]. Thus, we show the
results of TCP Reno sources with different RTTs in
Fig. 9. The network topology is a dumb-bell, as shown in
Fig. 2. There are three cases in our test. In case 1, there
are 20 sources competing for 1 Mbps bottleneck bandwidth,
so the ideal fair share throughput is 50 Kbps. The RTT of
ten sources are 20 ms and 40 ms for the others. From the
simulation result, the average throughput of the shorter
RTT is 47.31 Kpbs and that of the longer, 48.04 Kbps.
We add another ten sources with 60 ms RTTs to the

Table 6: Fairness index of different queue
management algorithms

Fairness index

algorithm Vegas–Reno flows

20–0% 15–5% 10–10% 5–15% 0–20%

Drop Tail 96.3 60.7 76.9 95.8 97.7

RED 96.3 74.2 83.4 91.3 98.9

CHOKe 96.3 84.3 92.9 97.1 99.3

FRED 96.3 62.2 78.4 91.5 99.7

WARD 99.4 99.5 99.2 99.6 99.6

Fig. 9 TCP sources with different round trip times
IET Commun., Vol. 1, No. 6, December 2007
network topology in Case 2. As a result, the ideal fair
share throughput is 33.3 Kbps. The average throughput of
sources with 20, 40 and 60 ms RTTs are 32.05, 31.65 and
31.42 Kbps, respectively. Similarly, ten sources with
80 ms RTTs are added in Case 3 and the ideal fair share
throughput is 25 Kbps; the result is demonstrated in
Fig. 9. Although these 40 sources come with different
RTTs, the average throughput for each RTT is about
24 Kbps. In addition, the buffer size in the router is 5
times that in sources. For example, the buffer size is 150
(¼5 � 30) in Case 2.

3.6 Web-mixed experiments

Fig. 10 shows the dropping rate of web packets of Drop
Tail, RED, CHOKe and WARD for the web-mixed exper-
iments with different web traffic load and FTP flows. In
addition, the dropping rate of web packets is counted
from the number of dropping web packets divided by the
number of dropping packets. From this figure, we see that
when the web traffic load is lower than 93%, WARD
drops less web packets than the other three mechanisms.
In other words, short-lived TCP connections may have
better protection from long-lived TCP flows with WARD
when the web traffic load is lower than 93%. On the other
hand, when the web traffic load is higher than 93%, only
the performance of Drop Tail is better than that of
WARD. Maybe this is because the probability of choosing
packets from the same web source is growing. In order to
further improve the performance of WARD when there is
a high web traffic load, the scheme will need to be
fine-tuned.

4 Conclusions

In this article, we propose a packet-dropping scheme called
WARD. It is not only a stateless queue management algor-
ithm but also a TCP-friendly router-based mechanism. The
goal of WARD is to approximate FQ at a minimal
implementation cost. Simulations demonstrate that it
works well in protecting congestion-sensitive flows from
congestion-insensitive or congestion-causing flows. Also,
it solves the problem of competing bandwidth among differ-
ent TCP versions, such as TCP Vegas and TCP Reno.
Furthermore, WARD’s performs still better in web-mixed
experiments. Further work involves studying the perform-
ance and spatial characteristic analysis of this algorithm
under a wider range of parameters, network topologies
and real traffic traces, obtaining more accurate theoretical

Fig. 10 Dropping rate of web packets under different web traffic
load
1185

models and insights and considering hardware implemen-
tation issues. Moreover, the analysis and simulations of
WARD with short-lived TCP flows such as web traffic
and the amount of TCP traffic sources hunting for band-
width will be also discussed in our future work.

5 References

1 Jacobson, V.: ‘Congestion Avoidance and Control’. Proc. ACM
SIGCOMM’88, August 1988, pp. 314–329

2 Pan, R., Prabhakar, B., and Psounis, K.: ‘CHOKe: A stateless active
queue management scheme for approximating fair bandwidth
allocation’. IEEE INFOCOM’2000, March 2000, vol. 2, pp. 942–951

3 Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D.,
Floyd, S., Jacobson, V., Minshall, G., Partridge, C., Peterson, L.,
Ramakrishnan, K., Shenker, S., Wroclawski, J., and Zhang, L.:
‘Recommendations on queue management and congestion avoidance
in the internet’. IETF RFC (Informational) 2309, April 1998

4 Floyd, S., and Fall, K.: ‘Promoting the use of end-to-end congestion
control in the internet’, IEEE/ACM Trans. Netw., 1999, 7, (4),
pp. 458–472

5 Brakmo, L.S., and Peterson, L.L.: ‘TCP Vegas: end to end congestion
avoidance on a global internet’, IEEE J. Sel. Areas Commun., 1995,
13, pp. 1465–1480

6 Jacobson, V.: ‘Modified TCP congestion avoidance algorithm’,
Mailing list, end-to-end-interest, April 1990

7 Ait-Hellal, O., and Altman, E.: ‘Analysis of TCP Vegas and TCP
Reno,’ IEEE ICC’97, June 1997, vol. 1, pp. 495–499

8 Mo, J., La, R.J., Anantharam, V., and Walrand, J.: ‘Analysis and
comparison of TCP Reno and Vegas’. IEEE INFOCOM’99, March
1999, vol. 3, pp. 1556–1563

9 Lai, Y.C., and Yao, C.L.: ‘Performance comparison between TCP
Reno and TCP Vegas’. IEEE ICPADS’2000, July 2000, pp. 61–66

10 De Vendictis, A., Baiocchi, A., and Bonacci, M.: ‘Analysis and
enhancement of TCP Vegas congestion control in a mixed TCP Vegas
andTCPReno network scenario’,Perform. Eval., 2003, 53, pp. 225–253
1186
11 Srijith, K.N., Jacob, L., and Ananda, A.L.: ‘TCP Vegas-A: solving the
fairness and rerouting issues of TCP Vegas’. IEEE IPCCC’2003, April
2003, pp. 309–316

12 Hasegawa, G., Kurata, K., and Murata, M.: ‘Analysis and
improvement of fairness between TCP Reno and Vegas for
deployment of TCP Vegas to the internet’, IEEE ICNP’2000,
November 2000, pp 177–186

13 Chatranon, G., Labrador, M.A., and Banerjee, S.: ‘A survey of
TCP-friendly router-based AQM schemes’, Comput. Commun.,
2004, 27, (15), pp. 1424–1440

14 Floyd, S., and Jacobson, V.: ‘Random early detection gateways for
congestion Avoidance’, IEEE/ACM Trans. Netw., 1993, 1, (4),
pp. 397–413

15 Bonald, T., May, M., and Bolot, J.C.: ‘Analytic evaluation of RED
performance’. IEEE INFOCOM’2000, March 2000, vol. 3,
pp. 1415–1424

16 May, M., Bolot, J., Diot, C., and Lyles, B.: ‘Reasons not to deploy
RED’. Proc. Int. Workshop Quality-of-Service (IWQoS), 1999,
pp. 260–262

17 Feng, W., Kandlur, D.D., Saha, D., and Shin, K.G.: ‘Stochastic fair
blue: a queue management algorithm for enforcing fairness’. IEEE
INFOCOM’2001, 2001, pp. 1520–1529

18 Jain, R., Chiu, D., and Hawe, W.: ‘A quantitative measure of fairness
and discrimination for resource allocation in shared computer
systems’, DEC Research Report TR-301, 1984

19 Ho, C.-Y., Chan, Y.-C., and Chen, Y.-C.: ‘WARD study:
a deterministic fluid model’, IET Commun., 2007, 1, (4), pp. 711–717

20 http://www.isi.edu/nsnam/ns
21 Lin, D., and Morris, R.: ‘Dynamics of random early detection’. ACM

SIGCOMM’97, September 1997, pp. 127–137
22 Floyd, S., and Jacobson, V.: ‘Connection with multiple congested

gateways in packet-switched networks, part1: one-way traffic’, ACM
Comput. Commun. Rev., 1991, 21, (5), pp. 30–47

23 Mo, J., La, R.J., Anantharam, V., and Walrand, J.: ‘Analysis and
comparison of TCP Reno and Vegas’. IEEE INFOCOM99, March
1999, vol. 3, pp. 1556–1563

24 Hasegawa, G., Murata, M., and Miyahara, H.: ‘Fairness and stability
of congestion control mechanism of TCP’, Telecommun. Syst. J.,
2000, pp. 167–184
IET Commun., Vol. 1, No. 6, December 2007

