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Modified perfectly matched layer conductivity profile
for the alternating direction implicit finite-difference
time-domain method with split-field perfectly
matched layer

J.-N. Hwang and F.-C. Chen

Abstract: The modified perfectly matched layer (PML) conductivity profiles are proposed to
improve the stability of the alternating direction implicit (ADI) finite-difference time-domain
(FDTD) method with a split-field PML absorber. The amplification matrix of this scheme is
derived based on the Von Neumann method. From the stability analysis, it is found that this
scheme is unstable at the PML interface and inside the PML regions. The instability of this
scheme inside the PML regions can be improved with the modified PML conductivity profile.
The theoretical results are validated by means of numerical simulations.
1 Introduction

The finite-difference time-domain (FDTD) method has been
widely used to analyse the electromagnetic problems. Due
to its explicit nature, the time step size is restricted by the
Courant, Friedrichs and Lewy (CFL) stability condition.
Recently, a stable alternating direction implicit (ADI)
scheme was introduced for the FDTD method. The
ADI-FDTD method is an attractive method because of its
unconditional stability with large CFL number [1–3]. To
study about unbounded region problems, the split-field per-
fectly matched layer (PML) [4] was employed for the
ADI-FDTD method [5, 6]. However, the implementation
of split-field PML in the ADI-FDTD method can affect
the stability of this scheme. In [7, 8], from numerical simu-
lation, it is found that the ADI-FDTD method with a split-
field PML led to late-time instability. In [7], the authors
indicated that the instability from the split-field PML
equations can be prevented by using an unsplit form PML
implementation. However, the split-field PML formulation
is less complicated and more straightforward compared to
an unsplit form PML implementation. Therefore a more
stable PML implementation for ADI-FDTD method is
highly desirable.

In this paper, the theoretical stability analysis of the
ADI-FDTD method with split-field PML is described
through deriving the amplification matrix. The amplifica-
tion matrix is derived using the actual updating equations
of the field components. From the stability analysis, it is
found that this scheme is unstable at the PML interface
and inside the PML regions. The effect of the PML
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conductivity profile on the stability of this scheme is inves-
tigated. It is found that the instability of this scheme is due
to the conductivities within the PML medium and the
instability inside the PML regions can be improved signifi-
cantly by using a modified PML conductivity profile.
Numerical results of the 3-D ADI-FDTD method with split-
field PML are demonstrated to validate the theoretical
results.

2 Theoretical amplification matrix

In this section, the amplification matrix of the ADI-FDTD
method with split-field PML is derived. For simplicity, a
2-D TM ADI-FDTD is studied. In this scheme, the field
components Ezx, Ezy, Hx and Hy for the first updating pro-
cedure can be written as

E
nþ1=2
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n
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where

Cas ¼
1 � (ssDt=41)

1 þ (ssDt=41)
Cbs ¼

Dt=21Ds

1 þ (ssDt=41)

Das,n ¼
1 � (s�

s,nDt=4m)

1 þ (s�
s,nDt=4m)

Dbs,n ¼
Dt=2mDs

1 þ (s�
s,nDt=4m)

s ¼ x, y; n ¼ 1, 2

s�
x,1 ¼ s�

x iþ1=2, j, s�
x,2 ¼ s�

x i�1=2, j, s�
y,1 ¼ s�

y i, jþ1=2,

s�
y,2 ¼ s�

y i, j�1=2

Since the electrical conductivity s and magnetic conduc-
tivity s� within the PML are usually scaled for small reflec-
tion, the PML parameters s and s� in (1) are position
dependent. In this study, the amplification matrix is
derived using the actual updating equations of field com-
ponents to capture the effect of the PML conductivity
profile.

Similarly, for the second updating procedure, the field
components can be written as
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nþ1
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� �
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We assume the spatial frequencies to be kx, ky and kz-
along the x, y and z directions, respectively, and the
field components in the spatial spectral domain can be
written as

E
n
zx i, j ¼ E

n
zxe

�j(kxiDxþkyjDy) (3a)

E
n
zy i, j ¼ E

n
zye
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xi, jþ1=2

¼ Hn
x e�j(kxiDxþky(jþ1=2)Dy) (3c)

Hn
yiþ1=2, j

¼ Hn
y e�j(kx(iþ1=2)DxþkyjDy) (3d)
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After substituting these equations into (1), we can obtain
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Denote the field vector in the spatial spectral domain as

X
n
¼ En

zx En
zy Hn

x Hn
y

� �T
(5)

The time marching relation of field vector can be written in
matrix form as

M1X
nþð1=2Þ

¼ P1X
n (6)

where
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We can apply the same procedure for the second updating
equations.
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We combine the two half-time steps to one time step

X nþ1
¼ M�1

2 P2M
�1
1 P1X

n
¼ LX n (8)

It can be found that not only s�
x iþ1=2, j and s�

y i, jþ1=2 but also
s�
x i�1=2, j and s�

y i, j�1=2 are within the amplification matrix L.

The stability criterion requires that the eigenvalues of L lie
within or on the unit circle that is jlLj � 1
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007
3 Stability analysis

For the stability analysis of this scheme, the eigenvalues of
amplification matrix are evaluated. Due to the complexity of
the amplification matrix L, it is difficult to obtain the sim-
plified analytical expression for the eigenvalues. The eigen-
values are numerically calculated by Matlab. The stability
matrix is a function of a discrete wavenumber. Since the
stability must be independent of the angle of wave propa-
gation, all angles must be considered. We find that the
maximum eigenvalues occur when sin (ksDs=2) ¼ 1,
where s ¼ x, y, z.

A 2-D computation domain that contains 42 � 42 cells is
studied. The cell size with Dx ¼ Dy ¼ 1.0 mm and FDTD
time step limit Dtmax ¼ 2.35 ps are used. Ten layers of
PML are used in x and y direction. The parameters of
PML are chosen the same as those in [5]. A polynomial
scaling is used for the PML conductivity profile

ssmax ¼ sopt ’
(mþ 1)

150pDs

ss(s) ¼
ssmaxjs� s0j

dm

m

s ¼ x, y, z (9)

where d is the thickness of PML absorber, Ds is the cell size,
and s0 represents the interface. In this simulation, we choose
scaling factor m ¼ 4 and smax ¼ 10.61 S/m for optimum
PML performance [5].

To validate the proposed amplification matrix, the eigen-
values of amplification matrix are computed for free space
condition s ¼ s� ¼ 0 and PML medium with uniform con-
ductivity s ¼ smax. The time step size is 5Dtmax. As shown
in Table 1, this scheme is stable under these conditions since
all eigenvalues are smaller than unity.

The ADI-FDTD method with the conventional PML con-
ductivity profile (9) is studied. Since the parameters s and
s� within the PML are position dependent, the amplification
matrix is also different for different PML coefficients. The
eigenvalues of amplification matrix are computed for four
PML coefficients, as shown in Fig. 1. Position 1 is located
at free space. The positions within the PML mediums are
studied. Position 2 is located at the interface between the
PML and free space where s�

y i, jþ1=2 ¼ 0 and s�
y i, j�1=2 ¼

30:1592. Position 3 is located at the first layer of the PML
where s�

y i, jþ1=2 ¼ 30:1592 and s�
y i, j�1=2 ¼ 934:9371.

Position 4 is located at the eighth layer of PML where
s�
y i, jþ1=2 ¼ 481372:0127 and s�

y i, j�1=2 ¼ 792615:6173.

The condition sx ¼ s�
x ¼ 0 is used for all the four positions.

The calculated eigenvalues of L for different time steps
and positions are shown in Table 2. For the numerical accu-
racy, different values are tested to ensure that round-off
error does not affect the calculated eigenvalues. As shown
in Table 2, it is found that the maximum eigenvalue
increases as the time step size increases. This scheme is
unstable at Position 2 and Position 3 as the eigenvalues

Table 1: Eigenvalues of L for free space and uniform
PML mediums s 5 smax

Free space

s ¼ 0

PML medium

s ¼ smax

jlLj 1.0000000 � 10000 8.7121313 � 102001

1.0000000 � 10000 8.7121313 � 102001

1.0000000 � 10000 4.8417857 � 102001

1.0000000 � 10000 4.8417857 � 102001
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are larger than unity. In [7], it has been described that the
instability of the ADI-FDTD method with split-field PML
was unavoidable. The eigenvalue of this scheme with time
step size less than the CFL limit is also investigated. It
can be seen that some eigenvalues are larger than unity at
Position 2 and Position 3 when the time step size 0.9Dtmax

is used.

4 Modified conductivity profiles

The PML conductivity profile affects the stability of the
ADI-FDTD method when a split-field PML is used. As
shown in Table 2, it is found that all the eigenvalues are
smaller than unity at Position 4. We find that there are
two conditions for this scheme to be stable inside the
PML regions. The first condition is that the ratio of the suc-
cessive magnetic conductivities in the PML should be small
and the second condition is that the electrical and magnetic
conductivities inside the PML regions should be large
enough. Since the PML conductivity is increased from
the PML interface to the PEC boundary, it is found that
the ratio of the successive magnetic conductivities in the

Fig. 1 Four positions for eigenvalue calculation
1074
PML close to the PML interface should be smaller than
1.3 and that close to the PEC boundary should be smaller
than 1.5 to avoid the instability.

The effect of the conductivity profile on the stability of
this scheme is investigated. Two modified conductivity pro-
files are studied. For the first modified conductivity profile,
the smax ¼ 10.61 S/m and the ratio of the successive mag-
netic conductivities inside the PML regions are arranged as

s�
x,2

s�
x,1

¼
s�
y,2

s�
y,1

¼ 1:3 (from 1st layer to 3rd layer)

s�
x,2

s�
x,1

¼
s�
y,2

s�
y,1

¼ 1:4 (from 4th layer to 5th layer)

s�
x,2

s�
x,1

¼
s�
y,2

s�
y,1

¼ 1:5 (from 6th layer to 10th layer) (10)

The increase of the PML conductivity of (10) is not polyno-
mially scaled. Therefore the PML performance with the first
modified PML conductivity profile (10) is significantly
affected. A second modified PML conductivity profile
with a constant scaling factor m is proposed. In this modi-
fied PML conductivity profile, the successive PML conduc-
tivity is scaled using the polynomial function (9) with
smax ¼ 21.22 S/m and m ¼ 2.

ss(s) ¼
ssmaxjs� s0j

d2

2

s ¼ x, y, z (11)

The corresponding normal reflection coefficient R(0) of (11)
is 6.8 � 10224, which is much smaller than the convention-
al value. The comparisons between the conventional PML
conductivity profile (9), the first modified conductivity
profile (10) and the second modified conductivity profile
(11) are shown in Fig. 2.

The same 2-D computation domain is studied. The time
step is 5Dtmax. The calculated eigenvalues of this scheme
with different conductivity profiles at different positions
are shown in Table 3. First, the PML medium with a
uniform conductivity s ¼ 10.61 is studied. It is found that
this scheme can be stable inside the PML regions.
However, the maximum eigenvalue at the (21, 10) is
larger than unity. The instability of this scheme at the
Table 2: Eigenvalues of L for 2-D ADI-FDTD with PML

Position 1 (21, 20) Position 2 (21, 10) Position 3 (21, 9) Position 4 (21, 2)

00.9Dtmax 1.0000000 � 10000 9.9999985 � 102001 9.9991584 � 102001 6.9932975 � 102001

1.0000000 � 10000 9.9999985 � 102001 9.9991584 � 102001 6.9932975 � 102001

1.0000000 � 10000 1.0000000 � 10000 9.9977724 � 102001 6.4315304 � 102001

1.0000000 � 10000 1.0000021 � 10000 1.0000735 � 10000 6.4315304 � 102001

Dtmax 1.0000000 � 10000 9.9999977 � 102001 9.9990957 � 102001 6.8325119 � 102001

1.0000000 � 10000 9.9999977 � 102001 9.9990957 � 102001 6.8325119 � 102001

1.0000000 � 10000 1.0000000 � 10000 9.9974524 � 102001 6.1599183 � 102001

1.0000000 � 10000 1.0000028 � 10000 1.0001031 � 10000 6.1599183 � 102001

2Dtmax 1.0000000 � 10000 9.9999766 � 102001 9.9983507 � 102001 5.8437802 � 102001

1.0000000 � 10000 9.9999766 � 102001 9.9983507 � 102001 5.8437802 � 102001

1.0000000 � 10000 1.0000000 � 10000 9.9940408 � 102001 3.9758804 � 102001

1.0000000 � 10000 1.0000141 � 10000 1.0005628 � 10000 3.9758804 � 102001

4Dtmax 1.0000000 � 10000 9.9998999 � 102001 9.9960137 � 102001 7.2137644 � 102001

1.0000000 � 10000 9.9998999 � 102001 9.9960137 � 102001 5.0510375 � 102001

1.0000000 � 10000 1.0000000 � 10000 9.9871437 � 102001 5.0510375 � 102001

1.0000000 � 10000 1.0000451 � 10000 1.0017621 � 10000 1.5426083 � 102002
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007



Fig. 2 Conductivity profiles for the PML mediums
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PML interface is unavoidable. Although the instability
inside the PML regions can be improved, this scheme
suffers from larger reflection errors since the conductivity
is not increased from the PML interface to the PEC bound-
ary. The conventional conductivity profile (9) for optimum
PML performance is studied. As shown in Table 3, this
scheme is unstable from position (21, 10) to position (21,
3) and is stable from position (21, 2) with the conventional
conductivity profile. This is because the ratio of the succes-
sive magnetic conductivities in the PML layers is less than
1.5 only at the regions close to the PEC boundary.

The ADI-FDTD method with the modified PML conduc-
tivity profile is studied. For the first modified conductivity
profile (10), it is found that all the eigenvalues of this
scheme are smaller than unity from position (21, 9) to pos-
ition (21, 1), which means this scheme is stable inside the
PML region. For the second modified conductivity profile
(11), the ratio of the successive magnetic conductivities in
Table 3: Calculated eigenvalues of L for different conductivity profiles

Position (21, 10) Position (21, 9) Position (21, 8) Position (21, 7) Position (21, 6) Position (21, 3) Position (21, 2)

Uniform PML

medium

s ¼ 10.61

8.3167465

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.3167465

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

8.7121313

� 102001

1.0000000

� 1000
4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

2.2607177

� 1000
4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

4.8417857

� 102001

Conventional

conductivity

profile

9.9998595

� 102001

9.9947387

� 102001

9.9501294

� 102001

9.7672831

� 102001

9.2963950

� 102001

8.0873543

� 102001

8.5231622

� 102001

9.9998595

� 102001

9.9947387

� 102001

9.9501294

� 102001

9.7672831

� 102001

9.2963950

� 102001

3.4158314

� 102001

5.8450767

� 102001

1.0000607

� 1000
1.0023617

� 10000
9.8273693

� 102001

9.2571923

� 102001

7.9713001

� 102001

5.3701283

� 102002

5.1407068

� 102001

1.0000000

� 1000
9.9837472

� 102001

1.0149820

� 10000
1.0462747

� 10000
1.0958000

� 1000
1.0400832

� 1000
3.3159060

� 102002

First modified

conductivity

profile

9.7912834

� 102001

8.8457772

� 102001

8.5285313

� 102001

8.4633346

� 102001

8.8028977

� 102001

7.7235998

� 102001

5.7646377

� 102001

9.7912834

� 102001

8.8457772

� 102001

8.5285313

� 102001

7.7764778

� 102001

6.3334230

� 102001

8.6715348

� 102001

5.7646377

� 102001

1.0952721

� 1000
7.6986223

� 102001

7.1107860

� 102001

6.1748176

� 102001

5.0285471

� 102001

2.5298972

� 102001

7.4761908

� 102001

1.0000000

� 1000
9.8777229

� 102001

9.8155369

� 102001

9.9755841

� 102001

9.8509416

� 102001

1.2658093

� 102002

8.5740395

� 102002

Second modified

conductivity

profile

9.9540604

� 102001

9.5110019

� 102001

8.1956499

� 102001

8.3465030

� 102001

9.2765962

� 102001

8.4492806

� 102001

9.0538676

� 102001

9.9540604

� 102001

9.5110019

� 102001

8.1956499

� 102001

4.6990210

� 102001

7.5040601

� 102001

8.4492806

� 102001

9.0538676

� 102001

1.0200902

� 1000
8.1340254

� 102001

4.9000128

� 102001

1.7718996

� 102001

3.0547466

� 102001

4.7954231

� 102001

5.2417697

� 102001

1.0000000

� 1000
1.1607705

� 10000
1.2344384

� 10000
1.1379080

� 10000
1.7064586

� 102002

4.7954231

� 102001

5.2417697

� 102001
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the PML is smaller than 1.5 from position (21, 6) to position
(21, 1). As shown in Table 3, the calculated eigenvalues of
this scheme with the second modified conductivity profile is
stable in these positions. Compared to the conventional
conductivity profile, the instability inside the PML region
can also be improved significantly with the second modified
conductivity profile.

The PML performances of this scheme with the modified
conductivity profiles are studied. A differentiated Gaussian
pulse is launched for the H component. The source exci-
tation is located at (21, 21) and the observation position is
located ten cells away from the excitation and close to the
PML interface. The relative reflection error of the PML is
evaluated by

R ¼ 20 log10

H
t
� H

t
ref

		 		
max jH t

ref j

� �
(12)

where Ht is the H field component recorded at the obser-
vation point and Ht

ref is the reference value calculated
from a large enough domain. The recorded H components
for TM and TE waves are Hx and Hz fields, respectively.
The calculated relative reflection errors of the 2-D TM
and TE waves are shown in Fig. 3a and 3b, respectively.
In the PML equations, s�

y is used in the Hy equation and
both the s�

x and s�
y are used in the Hzx and Hzy equations,

respectively. Therefore the calculated reflection errors of
TM and TE waves are somewhat different. As shown in
Fig. 3a and 3b, the results are compared to the PML
scheme with the conventional PML conductivity profile.
For the first modified PML conductivity profile (10), it is
found that the PML performance deteriorates at about 22
and 16 dB for TM and TE waves, respectively. For the
second modified conductivity profile (11), the maximum

Fig. 3 Calculated relative reflection error of the 2-D TM and TE
wave

a Relative reflection error of the 2-D TM ADI-FDTD method with
PML ABC
b Relative reflection error of the 2-D TE ADI-FDTD method with
PML ABC
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reflection error is reduced to 12 and 1.8 dB for TM and
TE waves, respectively. The PML performance of the
ADI-FDTD with the second modified PML conductivity
profile is better than with that of the first modified PML con-
ductivity profile, as shown in Fig. 3. Although the PML per-
formance of first modified PML conductivity profile can be
improved by increasing the PML thickness, the correspond-
ing conductivity becomes small and the instability of this
scheme also increases. From Table 3, it is found that the
ADI-FDTD scheme with the first modified PML conduc-
tivity profile is unstable in the vacuum–PML regions. The
worse PML performance of the first modified PML conduc-
tivity profile makes this scheme more unstable since the
reflection wave from the boundary is amplified in the
unstable vacuum–PML regions.

As shown in Table 3, the instability of the ADI-FDTD
with PML can also be improved if the second modified
PML conductivity profile is employed and the PML per-
formance can still be maintained. The first modified conduc-
tivity can be viewed as a guideline for the design of the
stable split-field PML. By considering the PML perform-
ance and the stability of this scheme, the second modified
PML profile (11) is more suitable for the ADI-FDTD
simulation.

5 Numerical simulation

In Section 2, the theoretical amplification matrix is derived
based on the Von Neumann method. The Von Neumann
method assumes that the wave propagates in an unbounded
region. If the calculated eigenvalues of ADI-FDTD with
split-field PML are larger than unity, it means that the elec-
tromagnetic field is unstable in the homogenous region with
these PML coefficients. Since the ADI scheme is unstable
with these PML coefficients, the ADI-FDTD with PML
implementation would also become unstable. A method to
validate the instability of the ADI-FDTD with PML
implementation is to calculate the amplification matrix of
the total computational domain. However, the amplification
matrix of the total computational domain is very compli-
cated and is not suitable for other problems. A simple
way to analyse the stability of the total computational
domain can be accomplished by numerical simulations. In
this section, the numerical tests of the ADI-FDTD method
with split-field PML are performed. From the stability
analysis, it is found that the ADI-FDTD method with split-
field PML is unstable at the vacuum–PML interface and
inside the PML regions. For a 2-D case, the eigenvalue is
small and it requires a large number of time steps to make
the field components unstable. Numerical simulation is

Fig. 4 Hx component with the conventional conductivity profile
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performed for a 3-D ADI-FDTD method with split-field
PML. A uniform mesh with cell size
Dx ¼ Dy ¼ Dz ¼ 1.0 mm and FDTD time step limit
Dtmax ¼ 1.92 ps are used. The computation domain is
42 � 42 � 42. PML layers that are ten cells thick termi-
nated all six sides of the computation domain. A differential
Gaussian pulse applied to Hx field is excited at the centre
position (21, 21, 21) and the time step size in this study is
5Dtmax. First, the numerical simulation of this scheme
with the conventional PML conductivity profile (9) is per-
formed. Fig. 4 shows the time-domain Hx fields recorded
at the position (21, 20, 21). As shown in Fig. 4, this
scheme becomes unstable after running 3500 time steps.

After considering the PML performance, this scheme
with the second modified PML conductivity profile (11) is
studied. Fig. 5 shows the simulated time-domain Hx fields.
No instability is observed after running 15 000 time steps.
Although there are several eigenvalues larger than unity
and the PML performance is affected by the second

Fig. 5 Hx component with the modified PML conductivity profile
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007
modified conductivity profile, it is found that the stability
of this scheme can be significantly improved.

6 Conclusion

In this work, the stability analysis of the ADI-FDTD method
with split-field PML mediums is studied. It is found that this
scheme is unstable at the vacuum–PML interface and inside
the PML regions. The instability of this scheme inside the
PML regions can be improved by using the modified con-
ductivity profile. The theoretical results are validated by
numerical simulations.
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