
行政院國家科學委員會補助專題研究計畫 成 果 報 告
□期中進度報告

多功能個人/群體通訊系統設計

計畫類別： 個別型計畫 □ 整合型計畫

計畫編號：96-2221-E-009-074-
執行期間：96 年 8 月 1 日至 97 年 7 月 31 日

計畫主持人：張明峰

共同主持人：

計畫參與人員：李忠育、范坤揚、蔡玄亞、游伯瑞

成果報告類型(依經費核定清單規定繳交)：□精簡報告 完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、列

管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：交通大學 資訊工程系

中 華 民 國 九十七 年 十 月 二十 日

行政院國家科學委員會專題研究計畫成果報告
多功能個人/群體通訊系統設計

Multi-Function Personal/Group Communication System Design

計畫編號：96-2221-E-009-074-
執行期限：2007.08.01 至 2008.07.31

主持人：張明峰 交通大學資工系

計畫參與人員： 李忠育、范坤揚、蔡玄亞、游伯瑞 交通大學資工系

中文摘要

現今的通訊系統，包含電信系統、即時通訊、電子郵件、和網路電話等，都利

用明確的使用者識別碼來指定使用者。如不知道接收端的識別碼即不能通訊。本計

畫開發一多功能通訊平台（MFPGC）能利用指定接收端的各項屬性，例如姓名、年紀，

學校等。一個使用者屬性的集合可視為使用者的辨識碼，具有好記、有意義的優點。

我們的系統同時支援明確辨識碼和多屬性之通訊功能。透過屬性發佈和搜尋的機

制，媒合發話端和受話端。MFPGC 架構在 Chord 之上，使用布隆過濾器(Bloom filter)

來儲存多屬性的資料，包含字串，數值和混合型態的屬性。系統可以讓發話端和受

話端可以設定必須要符合的屬性以過濾不想接收的訊息。媒合發話端和受話端是透

過比對代表受話端屬性的布隆過濾器與代表發話要求的布隆過濾器。第三者無法從

布隆過濾器得知發話端的訊息或受話端的屬性，因此保護了使用者隱私。我們也支

援離線使用者處理機制 ─ 使用者在各個狀態中離線，而通話要求會被保留到下次

使用者上線後繼續進行。和傳統的通訊系統比起來，MFPGC 提供使用者新穎的，更

彈性的通話方式。

關鍵字：網路通訊，多屬性查詢，布隆過濾器

ABSTRACT

Communication services today, such as telephony, instant message, email, and VoIP,

use a specific user or device ID to specify the called party. If the callee’s ID is unknown,

communication becomes impossible. Another way to indicate the callee(s) is to specify

 i

the callee’s attributes, such as the callee’s name, age, etc. A set of user attributes, which is

meaningful and easy to remember, can be used to set up a communication. Developed in

this project, a Multi-Function Personal/Group Communication (MFPGC) system supports

communications using specific IDs and/or multiple under-specified attributes.

Communications using multiple user attributes is feasible through publishing and

querying users’ attributes on a DHT. The DHT of MFPGC system is based on Chord, and

Bloom filter is used to represent user attributes, which can be string, numeric, and hybrid

data. Communications are set up by matching the Bloom filters representing callees’

attributes and callers’ requests. Since only Bloom filters are published and queried, the

users’ personal information is protected; a third party cannot obtain user information from

the Bloom filters published. In addition, callees can specify necessary attributes that must

be matched to filter unwanted calls. On the other hand, callers can also specify necessary

attributes to limit the number of matched callees, and non-necessary attributes to increase

likelihood of matching callee’s necessary attributes. To enhance the flexibility of

communications, MFPGC system also stores and forwards communication requests for

off-line users. Compared to traditional communication system, MFPGC system provides

a new, flexible communication method for users.

Keywords: Internet communications, multiple-attribute query, Bloom filter

 ii

Tables of Contents
Chapter 1 Introduction .. 1

1.1 Motivation ... 1
1.2 Objectives ... 3

Chapter 2 Related Work .. 4

2.1 Chord and DHT routing .. 4
2.1.1 Structure peer-to-peer architecture ... 4
2.1.2 Chord.. 5

2.2 Multiple attributes ... 7
2.3 Range query .. 10
2.4 Bloom filter ... 12

Chapter 3 System Design .. 15

3.1 System overview ... 15
3.2 Publish with Bloom filter .. 17
3.3 Query with Bloom filter .. 18
3.4 Numeric Attributes .. 20
3.5 Necessary attributes .. 21
3.6 Call Handling for Off-line Users .. 25

3.6.1 Delayed query .. 25
3.6.2 Delayed CallYou .. 26
3.6.3 Delayed CallBack .. 27

Chapter 4 System Implementation .. 29

4.1 System components .. 29
4.2 Bloom filter implementation ... 32
4.3 Message encryption .. 32

Chapter 5 Performance Evaluation ... 34

Chapter 6 Conclusions .. 38

Reference .. 39

 iii

List of Figures
Figure 2.1: A routing and a finger table example. .. 6
Figure 2.2: Iterative search for multi-attribute query. ... 8
Figure 2.3: Relay search and Bloom filter used in relay search. 9
Figure 2.4: A query example of different query order. ... 9
Figure 2.5: The load balance mechanism in Mercury. .. 11
Figure 2.6: A space filling curve example .. 12
Figure 2.7: Multiple attributes with Bloom filter.. 13
Figure 3.1: System Architecture Overview. .. 15
Figure 3.2: The call flow of MFPGC system .. 16
Figure 3.3: Mapping into a Bloom filter. .. 18
Figure 3.4: The publish process. ... 18
Figure 3.5: A Bloom filter matching Example.. 19
Figure 3.6.a: A user attributes example.. .. 22
Figure 3.6.b: The publish process ... 23
Figure 3.7.a: Matching error example ... 24
Figure 3.7.b: Matching error example. ... 24
Figure 3.7.c: The successfully matching example. ... 25
Figure 3.8: The delay query flow .. 26
Figure 3.9: The delay CallYou flow .. 27
Figure 3.10: The delay CallBack flow .. 27
Figure 4.1: Layers of MFPGC system .. 29
Figure 4.2: The three types of component in MFPGC system 30
Figure 4.3: The encrypt process in query .. 32

 iv

 v

List of Tables
Table 4.1: The difference between the three components 30
Table 5.1: The comparison between the five systems ... 36
Table 5.2: The comparison between the five system .. 37

Chapter 1 Introduction
Traditional telephony services have been transformed by the developments of

mobile technologies and Internet technologies. More and more Internet communication

services, such as MSN and Skype, have been widely used through wired and wireless

networks. The advantages of using the Internet as the communication platform include

low cost and more powerful service functionalities. However, the PLMN (Public Land

Mobile Network) system is still the most used voice communication platform, so that

most of Internet communication system developers have been making efforts to integrate

their systems into mobile devices for the large user base, and even integrate their systems

with the PSN (Public Switching Telephone Network).

1.1 Motivation

Communication services today, such as telephony, instant message, email, and VoIP,

use a specific user or device ID, such as telephone number, e-mail address, and SIP URI,

to specify the called party. A call cannot be set up if the callee’s ID is unknown to the

caller. It would be very useful if a caller can initiate a communication with a callee(s)

without knowing the callee’s specific ID. For example, Billy graduated from NCTU 20

years ago, and he wants to hold a reunion, but the telephone numbers and email addresses

of some classmates have become invalid. It would be very useful if he can send a

message to all his classmates without the knowledge of their telephone number of email

address. The drawback of using specific ID for communications is that the ID may be no

longer valid, and it may be difficult to associate an ID, such as telephone number, with its

owner.

One way to indicate a callee(s) is to specify the callee’s attributes, such as the name,

 1

the age, and the school he or she studies, etc. A user can be associated with sets of user

attributes. In other words, a set of user attributes can be used to specify the callee of a call.

Such specifications are meaningful and easy to remember for the caller, and they do not

change over time. However, a set of user attributes may not uniquely identify a specific

callee in the caller’s mind. It is the caller’s responsibility to give the specifications with

enough information about the callee.

To set up a communication with the callee’s attributes specified by the caller, the

callee needs to publish his or her user profile on the Internet first. The user profile may

consist of attribute value pairs (AVPs). A call request is also made up of AVPs. To serve a

call request, we need to do multi-attribute data matching between the call request and the

callee’s user profile. This can be done by a client-server architecture where the server

stores all user profiles and matches call requests with the user profiles. Since a

client-server architecture does not scale up well and has the disadvantage of single point

of failure, we used peer-to-peer (P2P) technologies for multiple attributes matching.

Although P2P technologies has be used by many researchers for multiple attribute

query, the routing overhead of most current P2P solutions increases linearly with the

number of attributes. This can be a great drawback for our applications because the

number of user attributes of a call request is usually large. An efficient publishing/query

of user attribute profile on peer-to-peer overlay network is needed.

Another major issue to be addressed in a communication platform using user

attributes to set up connections is user privacy. No one, except the matched callers,

should obtain the user information of a user from the user’s published user profile. A user

profile should be encrypted first, and then published. However, the P2P overlay network

should be able to match call requests and user profiles without the knowledge of it real

 2

information. Another ignored issue is how to filter spam messages. A user should be able

to select necessary attributes that must be matched for a call request, so that unwanted

call request is ignored.

1.2 Objectives

The goal of this project is to build a communication system providing the

following features:

1. Support communications using specific user ID and/or unspecific user attributes.

2. Flexible attributes including numeric and numeric range attributes.

3. Efficiently Match call requests and user profiles; filter unwanted call requests.

4. Protect all users’ privacy and prevent maliciously gathering user information.

5. Store and forward call-related message for off-line users.

In order to implement such a communication system, we adopted structured

peer-to-peer architecture - DHT (distributed hash table) - as the platform and proposed a

novel publishing/query mechanism to accomplish above requirements.

The remaining of this report is organized as follows. Chapter 2 describes current

work in peer-to-peer researches related to our system. Chapter 3 presents our system

design in details. Chapter 4 describes the actual implementation, and Chapter 5 discusses

the system performance. Finally, conclusions and future work are given in Chapter 6.

 3

Chapter 2 Related Work
We used Chord [1], a DHT, as the under-layer routing platform, and other P2P

technologies to support multiple-attribute query including range query. In this chapter, we

briefly describe related research, and their limitations that cannot satisfy the requirements

of our communication platform. In addition, we will describe the design of Bloom filter

[2], which is a space-efficient, randomized data structure representing a data set. Bloom

filter was used for user attribute publishing and call request matching in our system.

2.1 Chord and DHT routing

In the early stage of P2P development, there were two ways to locate resources on

an overlay P2P network. In one way, resource indexing and searching were performed by

centralized servers, and resource sharing was directly operated between peers. However

single point of failure may imperil this approach. The most well-known system of this

approach was Nasper [3]. In another way, resource searching was done by flooding the

resource requests to peers. Each node randomly records a number of nodes as its

neighbors and maintains direct connection with the neighbors. Gnutella is a typical

example of this approach [4]. However, flooding would cause massive redundant

messages, and result in inefficient usage of network bandwidth. It is clear that the

aforementioned two approaches of P2P architecture do not scale up well, as the number

of the nodes dramatically increases.

2.1.1 Structure peer-to-peer architecture

The applications of peer-to-peer technologies were not very popular until the

invention of distributed hash tables (DHT). DHTs take advantage of consistent hash to

locate resources in an overlay network. By using consistent hash, nodes and resources

 4

hash their names to keys or IDs, which is usually longer than 128 bits. A resource

registers its location with the corresponding node with the same ID. If such a node does

not exit, it registers with the previous node, the node with an ID less than, but the nearest

to, the resource’s ID. Any peer can find the location of a resource by using the same hash

function. Due to the property of consistent hash, the corresponding node can be uniquely

determined in the overlay network. By requesting the corresponding node, a peer can

obtain the location of the requested resource. The inherent decentralized, efficient, and

load-balancing properties of DHT make DHT the major research topic of recent P2P

networks.

2.1.2 Chord

Although DHT is the basic idea of many structured peer-to-peer networks, there are

still problems to be solved, for example, how to route a message to a node with a

particular ID in the overlay network, how to handle ungracefully peer departure or churn,

and how to join the overlay network. After DHT had been proposed, many researchers

designed various kinds of routing algorithms, including Chord, Pastry [5], Tapestry [6],

and CAN [7]. These algorithms provided characteristic routing with the same order of

hop counts, , where n is the total number of nodes. In addition, they adopt

different churn handling mechanisms.

)(log nO

Chord is one of the early DHT-based routing algorithms, and it is used as the

backbone of our system. Chord works as follows. First, each node maps its name to an ID

in the range of 0 to where m is the scale of the DHT. All nodes form a ring with

an increasing order of their IDs. Similar to a linked list, each node stores the links to its

successor and neighbors in the ring. To route a message to a node with a particular ID, the

message traverses the link of the ring. By adding a finger table in each node to keep links

12 −m

 5

to additional nodes, the routing can be done in time, where n is the number of

nodes. The finger table is a structure to save links to additional nodes whose node ID are

, where k is the node ID where the finger table is saved and i is in the range

from 0 to m-1. When a node generates a query, it first looks up its finger table to find an

ID smaller than the target ID of the query, and then forwards the query. This greedy

algorithm would pass the query to the closest node with ID smaller than the target ID.

The node that receives the query repeats the same forwarding process until the

corresponding node of the target ID. Figure 2.1 depicts a routing process from node

001000 to node 011101. In node 001000, the level 3 link of the finger table is the closest

ID to the destination. node 001000 thus forwards the message to node 010001, and nodes

in Chord will repeat the process until the message reaches the corresponding node of key

011101.

)(log nO

mi k 2)%2(+

12 −m

001000 -> 011101

0 0001 -> 0111011

011 00 -> 0111011

010001

001000

011100
011101

0000101010005
100011
010001
001111
001111
001111
nodeID

0110004
0100003
0011002
0010101
0010010
targetlevel

0000101010005
100011
010001
001111
001111
001111
nodeID

0110004
0100003
0011002
0010101
0010010
targetlevel

Finger table of
001000

Figure 2.1 A routing example and a finger table example

Each node of a Chord ring maintains links to other nodes and a message

can be routed to the corresponding node of a particular ID in hops. Because a

successful query requires every node in the routing path to forward the message, the

correctness of the finger tables must be kept, especially the link to the successor. Chord

)(log nO

)(log nO

 6

has a stabilization mechanism to handle ungraceful node departure and new node arrival.

Periodically each node pings the successor and asks whether his predecessor has been

changed. If so, the node updates his new successor to the old successor’s new predecessor;

this complete the joining of a new node. Each node also maintains several backup

successors, which will be used when the successor ungracefully disappears. The

stabilization mechanism provides reparation in churn, and works well with high

probability. The nodes linked in a finger table also need to be checked periodically by

sending keep-alive message to them. If any node does not reply a keep-alive message, the

link is rebuilt. The aforementioned mechanisms make Chord stable during serious churn

and provide more reliable publishing and query results for upper layer applications.

2.2 Multiple attributes

Multiple-attribute matching needs to perform an “and” operation, i.e., a query

carries several attributes, and items that own all of those attributes match the query. In an

ordinary DHT design, every attribute is hashed to a different node. As a result, a

multiple-attribute queryis usually handled by all the nodes that store the attributes of the

query. The overhead of DHT routing leads to inefficiency of a multiple-attribute query.

The most intuitive idea behind multiple-attribute query is through iterative search.

The querying node first sends the query to the corresponding node of a selected attribute

of the query. The corresponding node finds the matched results, and forwards the query

and the matched results to the corresponding node of another attribute of the query. The

process repeats and each corresponding node would keep only the intersection of its

matched results and the matched results it received, until all attributes of the query have

been handled. The responding node of the last attribute sends the final results back to the

querying node. This is the simplest iterative way to achieve multiple attributes query.

 7

155

264

377419

642 Matched :
A,C,F

A,F

Matched and
intersected:

SourceHash

114

65

N,R

D

SourceHash
212 A,B,F

SourceHash
341 A,C,F

SourceHash
390 R,S

SourceHash

609

544

D,F

A

H_IDStrValAttrName

Nation

Name

tw

Peter

212

341

step1
step2

step3
155

264

377419

642 Matched :

Matched and
intersected:

A,C,F

A,F

SourceHash

114

65

N,R

D

SourceHash
212 A,B,F

SourceHash
341 A,C,F

SourceHash
390 R,S

SourceHash

609

544

D,F

A

StrVal H_IDAttrName

Nation

Name

tw

Peter

212

341

step1
step2

step3

Figure 2.2 Iterative search for multi-attribute query.

Figure 2.2 depicts an iterative multiple attribute query. First, the querying node,

node 155, sends the query to node 377, the responding node of attribute “Nation:tw”.

Then, node 377 forwards the matched results {A,C,F} to node 264, the responding node

of attribute “Name:Peter”. After intersecting the matched results, node 264 returns the

results {A, F} to node 155.

Since the results matching an attribute may be a very large set in an iterative query,

Reynolds [8] proposed that transmitting the Bloom filter of the matched set to reduce the

transmission bandwidth. Bloom filter is a efficient data compression method; a data set

can be compressed to an array with a small possibility of false positives. We will describe

Bloom filter in more details later. Figure 2.3 shows a query example. The querying node

searches attributes A and B. The left-hand side of Figure 2.3 depicts an iterative query;

the right-hand side an iterative query using Bloom filter. The querying node first forwards

the query to the responding node of A, that is, SA. SA hashed the matched items to a

Bloom filter F(A), then forward F(A) to SB, the corresponding node of B, SB finds the

matched items of B, and only keep the matched items that are also in F(A). If there

 8

aremore than two attributes, the process repeated until all attributes are matched, and the

matched results returned to the querying node. Due to the inherent false positive problem

of Bloom filter, the final results of the query can be transmitted backward in the reverse

order and checked twice. Although using Bloom filter reduces the transmission overhead,

the additional check may cause overhead.

}5,6,7{.3 BA ∩REQUEST.1

}5,6,7,8,9{.2 A

}5,6,7{.4 BA∩
REQUEST.1

}5,6,7,8,9){(.2 AF

}4,5,6,7{)(.3 BAF ∩

Figure 2.3 Relay search and Bloom filter used in relay search

query
1968
files

276
files

15
files

music band MayDay

query
50

files
37

files
15

files
musicbandMayDay

 Figure 2.4: A query example of different query order

Lintao [9] observed that if we query more specific attributes first, we could reduce

the amount of transmission data during an iterative query. More specific attributes mean

fewer users have the attribute, so a query would match fewer items. They also proposed a

fusion dictionary to dynamically detect hot keywords that many users use, and put hot

keywords in the last of a query order. Each node maintains a fusion dictionary and

 9

updates it by the responding nodes of keywords flooding adding-keyword message to

every node. Furthermore, this keywords fusion mechanism can merge two hot keywords

as one less hot keyword to enhance the query process, and a merged keyword can be

added to the fusion dictionary to return hot. Figure 2.4 show the effects of query process

with the fusion dictionary, the example on the top queries hot keywords first, while the

example below queries the specific keywords first. We can clearyly observe the

difference of transmission data. However, this algorithm would pay additional overhead

to maintain and synchronize the fussion dictionary in each node.

2.3 Range query

A range query searches for items with an attribute value in a range. For example,

find a file of size 100K-200K bytes. Consistent hash functions used in most DHTs break

the locality of attributes for load balancing, i.e., two similar keywords with their attribute

values close may be hashed to two corresponding nodes far distributed. However, a range

query needs to find keywords with similar attributes, and may not be efficiently

performed by a DHT. There have been some researches toward efficient range query.

Most of them used location preserving hash function and provided another way for load

balancing.

MAAN [10] supported both multiple-attribute and range queries based on Chord. It

useed uniform location preserving hash for range query and single attribute dominated

query for multiple attributes query. Location preserving hash used in MAAN simply

linearly maps a numeric attribute domain to the namespace of Chord ID. The minimum of

the numeric attribute maps to 0 and the maximum to 12 −m in Chord. Although the hash

has load balancing problems, the authors claimed that MAAN does suffer load unbalance

by consider the real distribution of the numeric attribute in mapping instead of a linear

 10

mapping. Single attribute dominated query selects an attribute to query instead of

querying all attributes iteratively. In order to achieve this goal, a resource must be

published to the corresponding nodes of all attributes of the resource with all the attribute

information. Therefore, a multiple-attribute query can be compared all attributes in any of

the corresponding node. Single attribute dominated query would suffer privacy problem

and require more storage.

Node 100

Node 250
{140,154,16
2,178,193,1

12,134}

Node 980

Node 100

Node 250

{178,193}

Node 175
{140,154,16
2,112,134}Adjust

{}

 Figure 2.5 The load balance mechanism in Mercury

Mercury [11] adopted single attribute dominated query and location preserving hash,

and further designed a dynamic load detecting and balancing mechanism that can

effectively solve the load balancing problem. First, a Mercury node randomly and

periodically sends a “load probing” packet to one of its neighbors. The “load probing”

packet also contains pre-defined TTL value which decreases when it arrives at a new

node. While the TTL value reaches zero, the final node sends back to the sender the

collected load information. If a node observes that its own load is heavier than the

collected load by a constant threshold, it sends a “light probing” packet to search a node

with light load, and then ask that node to gracefully leave and rejoin at the heavier load

position. According to the property of consistent hash, the heavy load would be shared by

the rejoining node. In Figure 2.5 node 980 rejoins at the request of node 175 and shares

the load between 100 and 250. Periodically executing this process makes the load of

 11

every node balanced.

Another approach of multiple attributes and range queries is using space filling

curves (SFC). SQUID [12] and SCARP [13] transforms multiple attributes range query

into multidimensional query. Each dimension represents a numeric attribute; strings are

treated as ASCII numbers. SQUID also uses SFC to map multi-dimension data into one

dimension line and location preserving hash to map the line into Chord. Therefore

multiple-attribute query can be handled in a node to reduce the transmission overhead.

Figure 2.6 shows a 2-dimensional example using SFC to map a 2-dimensional plane to a

1-dimensional line, and on the right is the mapping of the range X:0-1 and Y:1-3 in a line.

 Figure 2.6 A space filling curve example

However, range search in SFC can still generate fragmentation because a contiguous

range in a high dimension does not always map to a continuous segment in the line,

especially in a higher dimension. As a result, range query using SFC only suits to a fixed

and lower dimension, such as, longitude and latitude information.

2.4 Bloom filter

Bloom filter is a space-efficient data structure representing a data set. It supports

elements insertion but not deletion. It check whether a certain element is in the set with a

 12

probability of false positives. A Bloom filter contains an m-bit array and k independent

hash functions. Initially, all bits of the m-bit array are set to 0. The element insertion

process works as follow. First, use k hash functions to hash the element into k integers

whose range is between 0 and m, and then set the bits in position o

1. All elements in a data set are inserted in the same way. To check if a certain element

(testee) is in the data set represented by a Bloom filter, simply hash the testee into

 and check if all the k positions are set to 1. If so, the testee is assumed to be in

the set. Bloom filter is very efficient in element insertion and checking using a constant

bit array that provides good space utilization.

khhh K21,

khhh K21,

khhh K21, t

Figure 2.7 Multiple attributes with Bloom filter

However, the most serious hazard of bloom filter is false positives. Even though all

hashed positions of a testee are set to 1, it is still possible that the testee does not belong

to the data set. The positions might be set to 1 by other elements of the data set. Figure

2.7 shows an example false positive, the hashed positions of A collide with the hashed

positions of elements B, C, and D. A is falsely determined to be in {B, C, D}. General

speaking, the more number of bits set to 1 in a Bloom filter, the more likely false

positives can occur. Furthermore, the number of elements (n) inserted to a Bloom filter of

size m bits, and the number of hash function (k) determine the false positive probability.

Therefore, applications using Bloom filter must adjust those parameters to achieve

 13

desired false positive probability, which isusually below than 1%, and provide additional

examination methods to handle false positives. In spite of false positive, Bloom filter has

very good performance in terms of storage space and computation, and thus has been

widely used in network applications. Our communication system also adopted Bloom

filter to store data, and we will describe in the next chapter.

 14

Chapter 3 System Design

3.1 System overview

MFPGC system used Chord as the application layer routing method and SIP as the

communication protocol. The Figure 3.1 depicts that the system operates on the top of a

Chord ring, and PDA users can only communicate with others through a P2P node. Users

communicate with each other using SIP UA.

Figure 3.1 System Architecture Overview

The message routing on DHT follows the design of Chord, and thus the detaials will

not be presented in this report. MFPGC system publishes and queries information over

Chord and we do not make any change in message routing. Although we used Chord as

the under-layer routing protocol, we can implement our system on any DHT-based

routing protocol, if it supports single-attribute publishing and query.

 15

Caller

Callee

Responding node

1. Publish

2. Query

3. CallYou

4. Callback5. Answer

Figure 3.2 The call flow of MFPGC system

Since a communication using a specific ID is a conventional SIP call, it is not

presented in this report; we only present communication using unspecific user attributes

in MFPGC system. The communication works as follow:

0. A MFPGC user joins the communication system though a well-known node in the

MFPGC system.

1. The user publishes his or her attributes to the DHT network, so that the responding

nodes of each of the attributes maintain a copy of the user information. (Note that it is

represented by a Bloom filter and will be described latter in this report).

2. A caller initiates a call request by querying users with certain attributes, and the query

will be forwarded to the corresponding node of one of the attributes in the query.

3. The corresponding node compares the attributes of its data and the query, and then

sends the call requests to all the matched users.

 16

4. The matched users receive the call request and decide if they want to reply the call

request. If so, a callback message is returned to the caller.

5. The caller can answer the call and start the communication with the callee.

The five steps is the basic call model of our system. However, the attributes can be

numeric, string, or hybrid type, and they are handed by different methods.

3.2 Publish with Bloom filter

One of the most important features of our system is the usage of Bloom filter. As we

have presented in Chapter 2, Bloom filter is a space-efficient data structure for

representing a data set and widely used in network applications. Therefore, we use Bloom

filter to store user attributes and to represent call request queries.

When a user registers the user’s attributes in MFPGC system, the user would first a

user profile stored in the local database of the user’s device. A user profile consist of user

attributes; each attribute is an (attribute name, value) pair. The attribute value can be of

numeric, numeric range, string, or hybrid type. There are system-defined attributes whose

attribute names are defined by the system, and user-defined attributes whose attribute

names are defined by users to suit their purposes. For each attribute, we can obtain its

corresponding node by hashing the (attribute name, value) pair by SHA1 hash function.

When a user publishes his or her profile, the system sends publishing messages to the

corresponding nodes of all attributes. As a result, a call request can be served by any

corresponding node.

Instead of publishing user attributes in clear text, MFPGC publishes the Bloom filter

of the attributes. Each published message includes the user contact information including

the IP address, port, etc, and a Bloom filter representing all attributes. Figures 3.3 and 3.4

 17

depicts the publishing process of Peter’s attributes

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328 10000100 10000100

Hash to bloom filter

00100100 00100100

00100001 00100001

10100101 10100101

Bloom filter of the
three attributes

Peter’s attributes

Figure 3.3 An example that maps three attributes of a profile into a Bloom filter

328

1981

4096

8721

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

10100101 10100101

Bloom filter (Bf)

Bf851

851

Bf6023

6023

Bf8721Data

8721Source

NodeID = 328

Bf851

851

Bf6023

6023

Bf8721Data

8721Source

NodeID = 328

Bf1098

1098

Bf8721

8721

Bf488Data

488Source

NodeID = 1981

Bf1098

1098

Bf8721

8721

Bf488Data

488Source

NodeID = 1981

Bf4851

4851

Bf623

623

Bf8721Data

8721Source

NodeID = 4096

Bf4851

4851

Bf623

623

Bf8721Data

8721Source

NodeID = 4096

Figure 3.4 The publish process of the profile in Figure 3.3

3.3 Query with Bloom filter

A call request is a query to search users whose profiles match with the attributes

specified in the call request. Similar to publishing, a query first maps the attributes of the

call request to a Bloom filter, and then sends a query message including the Bloom filter

to any one of the corresponding node of the attributes. The most significant difference

between publishing and query is that publishing needs to be sent to all of the attributes

but query only needs to be sent to one. Since the Bloom filter representing user

 18

information has been published to all corresponding nodes, the query can match the

Bloom filters in any one of those nodes. Furthermore, if we can choose a more specific

attribute to query, we can balance the query load in the DHT network. MFPGC system

currently still lacks of a mechanism that dynamically detects specific attributes.

10000100 10000100

Attribute ”A”

Attribute ”B”

00000110 00000110

10000110 10000110

Attribute ”A and B”

+

=

10000110 10000110

Target attributes (T)

1000110 0 1000110 0

Query 1
(no match)

1000010 0 1000010 0

Query 2
(Q belongs to T)

10001110 10001110

Query 3
(T belongs to Q)

Figure 3.5 A Bloom filter matching example

When a node receives a query message, it compares the Bloom filter in the query

with the Bloom filters published by users and stored in the local database. An example

Bloom filter matching is depicted in Figure 3.5. On the left is the Bloom filter of user

attribute set {A, B}. On the right is the matching between a target user profile (T) and

queries (Q1-3). In general, Q ⊆ T means a match, but we will describe additional

constraints for the matching in next section.

When a corresponding node detects a match between a call request and a user

profile, it sends a “CallYou” message to the node publishing the profile. There may be

several published profiles matching the query, and all the publishing nodes will receive a

“CallYou” message. When a user receives a “callyou” message, he or she can decide

whether to call back or not. If so, the user initiates a SIP call to the caller. Note that if the

 19

user decide not to call back, the caller is unknown of the existence of the matched user.

Another problem in using Bloom filter is false positive. Our solution is double check

the call request at the callee’s node where both user profile and the “CallYou” message

are available. The “CallYou” message is encrypted so that only the matched nodes can

decrypted; the corresponding nodes of the query cannot decrypt the message.

3.4 Numeric attributes

We have described that MFPGC system provides not only string type attributes but

also numeric and hybrid attributes. Many user attributes, such as age, income, location,

etc., contain numeric values, and the query may be searching for a range of the values,

such as, age from 20 to 29. It is inefficient if we query each age at a time using the simple

publish/query mechanism described. Therefore, a new query method for numeric

attributes is needed. This problem is known as range query that we have presented in

Chapter 2.

The method we used in MFPGC system for range query is dividing the domain of a

numeric attribute into levels. Values in each level are treated as the same value. For

example, attribute AGE can be partitioned into levels of every five years. Therefore, 1-5

is the first level, 6-10 is the second, and so on. However, this dividing results in more

false positives in using Bloom filter. For example, we query a range “AGE 3-13”, and the

query include three age levels, “AGE 1-5”, “AGE 6-10”, and “AGE 11-15”. It is clear

that some values in the three levels do not match our query, such as, “AGE 14-15” and

“AGE 1-3”. These false positives in Bloom filter can also detected by the callee node. In

other words, we check whether the range in a query covers the number of callee when a

“callyou” message is received by the callee.

 20

We store range attributes in a Bloom filter by the same way as string attributes. For

example, inserting Latitude 23.0000 in a Bloom filter is to set array positions

hi("Latitude230000") to 1. For example, a square area of Latitude 25.0000-25.0999 and

Longitude 121.1000-121.1999 represents approximately 1.1km*1km area. To be accurate

to the four decimal places, the area can be described by two numeric ranges

(250000-250999) and (1211000-1211999), each of which consists of 1000 numeric

values. Note that the precession of this representation is about 10 meters. This type of

data can be valuable in supporting location-based communications, for example,

broadcasting a message to users in this area. However, it is clear that the classic Bloom

filter cannot store this type of data in a space-efficient way. The simple dividing method

may not be adequate for this application. We will investigate this problem in the future.

An important factor of dividing is the size of each level. The smaller the partition is

the more numbers of levels are contained in a query. This means that more bits will be set

to 1 in the Bloom filter. On the other hand, the bigger the partition is, the fewer number

of levels are contained in a query, but the false positives caused by dividing occurs more

often. Thus, the size of partition is a trade-off between the number of bits inserted in

Bloom filter and the false positive rate generated by dividing.

3.5 Necessary attributes

We have described that MFPGC system enable users to filter unwanted calls. By

specifying necessary attributes that must be matched for a call request, a user can filter

unwanted calls, and only users who have sufficient personal information of a callee can

reach the callee. MFPGC system provides two kinds of necessary attributes in both the

sender side and the receiver side.

 21

3.5.1 Receiver-specified necessary attribute set

To screen out unwanted call requests, a user can specify certain attributes that must

be matched by call requests. These attributes will be referred to as the receiver-specified

necessary attribute set and represented by a Bloom filter in publishing to the responding

nodes. We modify the publishing message to include two Bloom filters, one representing

all receiver-specified attributes set (RAS), and the other representing receiver-specified

necessary attributes set (RNAS).

When a node receiving a query, in addition to checking whether the query is a subset

of RAS, the node also checks whether the query contains RNAS, i.e., matches all

receiver-specified attributes. If both conditions are satisfied, the query matches the user

profile. If only the former condition satisfies but the latter one does not, it means the

caller intends to call the callee but the callee would not like to receive this request. This

mechanism costs overheads in maintaining and comparing two Bloom filters for each

user profile on the responding node, but it can filter unwanted calls before the call

requests are sent to callee. Figure 3.6 depicts an example of publishing Peter’s attributes

including RNAS and RAS to three responding nodes.

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

4096PeterName

HashStrValAttrName

Depart.
School

CSIE
NCTU

1981
328 10100100 10100100

Bloom filter of RNAS
Peter’s attributes

10100101 10100101

Bloom filter of RAS

Figure 3.6.a Peter’s user attributes; the first and second attributes are RNAS

 22

328

1981

4096

8721

N
Y
Y

Nec

4096PeterName

H_valStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

N
Y
Y

Nec

4096PeterName

H_valStrValAttrName

Depart.
School

CSIE
NCTU

1981
328

10000100 10000100

Bf(RNAS)

10100101 10100101

Bf(RAS)

Figure 3.6.b The publishing Peter’s attributes

3.5.2 Sender-specified necessary attribute set

To limit the number of users who will receive a call request, a caller can specify

sender-specified necessary attribute set (SNAS) containing attributes that must be

matched in the callee’s user profile. Therefore, a call request is also a query represented

by two Bloom filters. One representing SNAS; the other all sender-specified attribute set

(SAS). The set SAS-SNAS consists of all non-necessary attributes specified by the

sender; this set increase the likelihood of satisfying RNAS. In MFPGC system, a call

request and a user profile match if and only if the following condition is satisfied.

)(&)(RASSNASSASRANS ⊆⊆

Since attributes in SNAS must be matched, the query of a call request must be sent

the corresponding node of a sender-specified necessary attribute. Consider that Peter’s

profile with necessary attributes School and Department has been published as shown in

Figure 3.6. Figure 3.7.a depicts an example where SNAS is satisfied but RNAS is not.

Since attributes “Depart:CSIE“ and “Name:Peter are SNAS, MFPGC system chooses one

of the responding nodes of SNAS to query. Node 4096 was chosen in this example.

Although SNAS match Peter’s RAS, but Peter’s RNAS does not match because

 23

“School:NCTU” is not included in query A. Figure 3.7b shows a 4-attribute query where

RNAS is satisfied but SNAS is not. Although Peter’s RNAS are subset of SAS, a

sender-specified necessary attribute, “Name:John”, is not contained in Peter’s attributes,

and thus the query is not forwarded to Peter. In Figure 3.7.c, although attribute “Name:John”

does not match “Name:Peter”, the two attributes are in neither RNAS nor SNAS, and both

RNAS and SNAS are satisfied. The call request is forwarded to Peter.

N
N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

Peter
CSIE

4096
1981

N
N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

Peter
CSIE

4096
1981

Query A

328

1981

4096

8721

 true
false

RASSNAS
SASRNAS

⊆
⊆

Figure 3.7.a SNAS is satisfied but RNAS is not

1981CSIEYDepart.
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
School

John
NCTU

882
328

1981CSIEYDepart.
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
School

John
NCTU

882
328

Query B

328

1981

4096

8721

false
 true

RASSNAS
SASRNAS

⊆
⊆

Figure 3.7.b RNAS is satisfied but SNAS is not

 24

328NCTUYSchool
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

John
CSIE

882
1981

328NCTUYSchool
N

N
Y

Nec

3100BridgeClub

H_valStrValAttrName

Name
Depart.

John
CSIE

882
1981

Query C

328

1981

4096

8721

 true
 true

RASSNAS
SASRNAS

⊆
⊆

Figure 3.7.c A successfully matching example

3.6 Call Handling for Off-line Users

Recall the call flow described in Section 3.1, a call flow contains 5 steps, which are

publishing, query, CallYou, Callback, and answer. Since at each step, the caller or callee

may be off line, MFPGC system provides off-line user handling mechanisms to store the

state of a call flow for off-line users, and resume the call flow when the users are on line.

3.6.1 Delayed query

A delayed query means a matched callee publishes after a call request queries the

matched callees. We support delayed query by giving a TTL (Time-to-live) value to each

query, and a CallYou message is sent to matched calless who publish after the call request

but before its TTL expires. The delay query flow is displayed in Figure 3.9. To achieve

delayed query we must save the query in the corresponding node, and check the query

when receiving each publishing message.

 25

Figure 3.8 A delayed query flow

In order to identify each user, we use a profile ID for each publishing message. A

profile ID is an integer number generated by hashing all attributes of that user. We

assume each user would input enough specific attributes and could be identified by those

attributes, so a profile ID could roughly identify a user profile in MFPGC system. After a

node received a query message and compared the user profile in its local database, it

saves the query and a list of the matched profile IDs until the query is expires. If a

publishing profile is received during this time interval, the profile is compared with the

non-expired queries and their list of matched profile IDs. A newly publishing user would

receive a CallYou message from the corresponding node as depicted in Figure 3.8.

3.6.2 Delayed CallYou

A delay CallYou means a CallYou message for an off-line user is stored and

forwarded to the user when he or she is on line later. We mark a user profile on-line or

off-line in the corresponding node and require a “CallYouReply” message from a callee

to acknowledge the “CallYou” message the callee receives. If the corresponding node

 26

does not receive a “CallYouReply” message after sending a callyou message, the

corresponding node marks the profile off-line. When the profile is marked off-line, every

matched query is stored in the corresponding node. When the user of this profile becomes

on line and registers the profile with the corresponding nodes, the CallYou messages will

be forward to the user according to the matched queries. Figure 3.9 depicts a delayed

CallYou flow.

Figure 3.9 A delayed CallYou flow

3.6.3 Delayed CallBack

When a matched callee received a CallYou message and calls back to the caller, the

caller may not be on line to answer the call. In this case, the callee can inform the

corresponding node that the CallYou message received by the callee is invalid. The

corresponding node saves the CallYou message and send another CallYou message to the

callee when the caller register with the corresponding node later. To do this, we add a

query ID for each query message and keep each query for a TTL interval in the local

machine. Next time when the caller becomes on line, the unexpired queries are sent to the

corresponding nodes with query ID, and the stored CallYou messages will be forwarded

to the matched callees again. The delayed CallYou and Callback processes could repeat

 27

until the caller and caller are on line at the same time.

Figure 3.10 A delayed CallBack flow

 28

Chapter 4 System Implementation
In this chapter we present our system implementation in details. Our system was

developed using C++. CCLSIP UA, a SIP communication system, Chord DHT and IP

were used to built MFPGC system. Figure 4.1 depicts the layered structure of MFPGC

system and all MFPGC messages.

Join Reply ChangePre FindPre

RePre Publish Query Store

CallYou CYReply KAL Re_KAL

Leave

Figure 4.1 Layers of MFPGC system and the MFPGC messages

4.1 System components

Our system supports three types of nodes with different functionalities according to

the capability of nodes; There are P2P nodes, non-P2P nodes and PDA nodes. Figure 4.2

depicts the communication modes between the components, and Table 4.2 lists their

differences that we will describe in more details.

 29

.

Figure 4.2 The three types of components in MFPGC system

Table 4.1 The differences between the three components

components
DHT routing

Store user
profiles

Publish and
query

GPS Location
information

P2P node Y Y Y N

Non-P2P node N N Y N

PDA node N N Y Y

4.1.1 P2P node

P2P nodes are the back-bone of our system and provide all of the peer-to-peer

functionality including routing, storing user profiles, and communication functions -

publishing, query, and communications. Based on the design of Chord, a P2P node should

maintain a finger table and a backup successor list for routing purpose. Each P2P node

maintains a thread that periodically sends keep-alive messages to each node in its finger

table, so that the node can rebuild its finer table when any node ungracefully left the

Chord ring.

 30

Each P2P node maintains another thread listening a network socket and handles

MFPGC messages received. The node also maintains a database to store user profiles

published by MFPGC users. When users publish their profile or attributes, MFPGC will

read the attributes from database and publish them. When a P2P-node receives the

published attributes of other users, it will store them in the database too.

4.1.2 Non-P2P node

Non-P2P nodes are peer-to-peer nodes without node IDs, and thus cannot provide

peer-to-peer functionalities; they provide a lightweight scheme for nodes with less

computing, storage, and/or networking capabilities. A non-P2P node would use a P2P

node as a gateway to send MFPGC messages. The gateway P2P node of a non-P2P node

could be a famous node or a node assigned by famous nodes. Since non-P2P nodes have

no node ID, P2P nodes will not add non-P2P nodes to their finger tables, and thus no

DHT message will be forwarded to non-P2P nodes. The only messages sent by a non-P2P

node are Publish and Query which contain the IP address and port number of the non-P2P

node for future communications. By using the IP information, other nodes can directly

connect to non-P2P nodes without node IDs. In other words, the basic functionalities of

non-P2P nodes are publishing user profiles and sending the query of a call request..

4.1.3 PDA node

PDA nodes are non-P2P nodes on PDA devices; they may be equipped with GPS

functionality for location-based applications. The MFPGC system on a PDA is based on a

mini SIP UA, CCL-UA, implemented on Windows Mobile platform. Note that CCL-UA

was developed by CCL, ITRI. The user’s location attribute can be directly obtained from

the GPS module on board. The design of PDA nodes is the same as that of non-P2P

nodes.

 31

4.2 Bloom filter implementation

As we have described in Chapter 3, MFPGC system uses Bloom filter to represent

user attributes. The Bloom filter we used is a 512-bit array, and MD5 hash function is

used to hash a user attribute to 8 array positions. In order to generate 8 indices, we used

the same hash function but with 8 different input texts for a given user attribute. The 8

different input texts are obtained by concatenating the original text and a number of 0’s.

For example, consider a system-defined attribute “Club:Bridge”. We hash “Club:Bridge”,

“Club:Bridge0”, “Club:Bridge00”, …, and “Club:Bridge0000000” to 8 indices and set

those positions of the bit array to 1.

4.3 Message encryption

Figure 4.3 The encrypt process in query

In MFPGC system, a caller can add a short message in the query of a call request to

invite the callee to call back. The Callee can read the message and decide whether to call

back or not. Since a query message is first sent to the corresponding node of an attribute

in SNAS, to provide confidential communications, the query message can be encrypted

 32

using Advanced Encryption Standard (AES) algorithm. The encryption key used in AES

is the hash value of the string concatenating all attribute names and values in SNAS in an

increasing order of the attribute name. The query message also includes, in plain texts, all

the attribute names of SNAS, but not their values. The corresponding node cannot

decrypt the message since it does not have the attribute values of SNAS. When a matched

callee receives the query, the callee can use the attribute names of SNAS, which is in

plain texts) and the callee’s own attribute values of SNAS to find the key of AES because

each attribute of SNAS must be the same as the attributes of the matched callee.

Furthermore, the attribute and value pairs of SAS can also be included in the query

message of a call request, and SAS can also be encrypted using the same approach. In

this way, a matched callee can decrypt the SAS of a query can check false positives.

 33

Chapter 5 Performance Evaluation
The core functionalities of MFPGC system are multiple-attribute query and range

query using DHT. In addition, MPFGC system used Bloom filter and encrypted message

to protect user privacy and confidential communications. Many existing DHT-based

systems support multiple-attribute and/or range queries, but very few of them, if any,

consider data confidentiality. In this Chapter, we compare MFPGC with DHT-based

systems in their efficiency supporting multiple-attribute query and/or range query. First,

we introduce performance metrics used for evaluation.

Hops: The number of nodes traversed in routing a message is the most general metric to

evaluate the routing overhead of P2P overlay networks. It measures the distance and time

from the source to the destination. The fewer number of hops in a route results in lower

communication overhead and quicker response time. If there are multiple destinations,

the maximum number of hops to all destinations is used for comparison. Since a message

transmitted between two nodes means an increment of hop count, the number of

transmitted messages is proportional to the number of hops.

The number of nodes serving a query: To serve a multiple-attribute query, the query may

be relayed to several nodes, each of which searches a certain attributes. The number of

nodes serving a multiple-attribute query indicates the response time of the query. The

more number of serving nodes for a query, the longer the response. Furthermore, the

extra routing overhead on a P2P overlay network, this long response problem can be

more severe.

Number of nodes serving a publishing: A resource described by multiple attributes may

need to be published to a number of nodes. The number of nodes storing the publishing

 34

information represents the number of messages transmitted when a resource is published.

It is an indicator of the communication cost of publishing.

Storage for a publishing in a node: The size of the storage used in a corresponding node

to store a published item indicates the storage cost. Note that the overall storage cost is

the size of the storage in a node times the number of nodes storing the publishing

information..

Hops with respect to selectivity: The selectivity is a variable in range query and implies

the percent of the numeric scope that a range occupies. Bigger selectivity means bigger

range. The hops might increase with increasing the selectivity in general range query

systems.

We compare the four DHT systems we have presented in Chapter 2 with MFPGC

system in Tables 5.1 and 5.2. Table 5.1 lists the comparison of multiple attribute query.

Let n denote the number of nodes in the system, the number of attributes in a query

and a publishing, M the size of the Bloom filter used. The term misc. represents the

storage for information of constant length, such as, IP address, node ID, and port number.

 denotes the probability that a bit set to 0 in a Bloom fitler.

attrn

0P)(1 0 attrnP− denotes the

probability of a bit set to 1 after inserting attributes. attrN

The results in Table 5.1 indicate that MFPGC provides comparable performance

measures as MAAN. However, MFPGC provide confidential communications and

protect user privacy, while MAAN does not. SCARP and MURK outperform MFPGC in

term of the number of hops in routing and the number of nodes to store a published object.

However, this advantage is obtained with the limitation that the set of attributes is fixed,

i.e., no attribute can be added after the system is developed. Therefore, no user-defined

attributes can be used. By contrast, MFPGC provides great flexibility in specifying

 35

user-defined attributes. This flexibility is very important for the communication scenarios

targeted by MFPGC.

Table 5.1 The comparison between five systems supporting multiple attribute query

class Multiple attribute query

Metrics Number of nodes
for a query Hops Number of nodes

for a publish
Storage in a node

for a publish

MFPGC 1)log(n attrn .miscM +

SCARP 1)log(n 1 .miscnattr +

MURK 1)(log2 n 1 .miscnattr +

MAAN 1)log(n attrn .miscnattr +

Table 5.2 displays the comparison for range query. We only compare MFPGC and

MAAN because MKey does not support range query. The performance of SCARP and

MARK on range query varies by a large degree with different sizes of the range, and it is

difficult to obtain the performance metrics in a closed form. Let s denotes the selectivity

of a range attribute, and the minimum selectivity of the ranges in a query. and

denote the lower bound and the upper bound of the domain of the numeric attribute.

level denotes the size to dividing the range in MFPGC system. The rightmost column lists

the computation complexity when the responding node compares a query with its

maintained data, where denotes the number of records that have the same resource

ID as the query. The results in Table 5.2 clearly indicate MFPGC provide better or

comparable performance measures in all metrics.

mins

tn

maxR

minR

 36

Table 5.2 The comparison of five systems supporting range query

class
Single attribute

range query
Multiple attribute range query computation

Metrics Hops with respect to
selectivity

Hops with respect to
selectivity

Number of nodes
for search

Match a query
in one node

MFPGC)log()(minmax n
level

RRs
×

−×
)log()(minmax n

level
RRs

×
−×

level
RRs)(minmax −× Mnt ×

SCARP attrt nn ×

MURK attrt nn ×

MAAN sn× min)log(snn ×+ minsn× attrt nn ×

 37

Chapter 6 Conclusions
Traditional communications, such as telephony, email and VoIP, use a specific ID to

specify the callee. In this thesis we design a novel communication system using user

attributes to specify the callee(s). Communication is possible even if the callee’s ID is

unknown. Chord and Bloom filter have been used to publish and match user attributes.

By using Bloom filter to represent user attributes and encrypting the communication

messages, user privacy has been protected; only a matched callee can receive and decrypt

the caller’s message. To support necessary attributes specified by the caller and the callee,

two Bloom filters, one for necessary attributes and the other for all attributes, were used

in publishing a user profile, and in querying matched callees. MFPGC system also

provides off-line user handling mechanisms to store communication messages of off-line

users, and to forward the messages the user when he or she is on line.

For the corresponding nodes of hot keywords, the loading in networking, storage,

and computation may dramatically increase as the number of users increase. An efficient

load balancing mechanism for our system is critical to deploy MFPGC system in a large

scale. The mechanism should consider hot keyword attributes and improve the level

dividing method for range query. Another limitation of MFPGS is a sender-specified

necessary range attribute was not supported and this could result in complex query

process. An efficient solution is needed for this problem.

 38

 39

Reference
[1] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
Proceedings of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications, p.149-160, August 2001, San Diego,
California, United States.

[2] Burton H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, v.13 n.7, p.422-426, July 1970

[3] “Napster.” http://www.napster.com/
[4] “Gnutella.” http://gnutella.wego.com.
[5] A. Rowstron and P. Druschel,“Pastry: Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems,＂Lecture Notes in Computer Science,
Vol. 2218, 2001.

[6] B. Zhao, J. Kubiatowicz and A. Joseph, “Tapestry: An Infrastructure for
Fault-Tolerant Wide-Area Location and Routing,＂Technical Report
UCB/CSD-01-1141, 2001.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. “A scalable
content-addressable network.” In Proceedings of the 2001 ACM SIGCOMM, pages
161-172.

[8] P. Reynolds, A. Vahdat, Efficient peer-to-peer keyword searching, in:
ACM/IFP/USENIX Int’l Middleware Conference, Middleware 2003,.

[9] Lintao Liu, Kyung Dong Ryu, and Kang-Won Lee.Keyword fusion to support ecient
keyword-based search in peer-to-peer le sharing. In 4th Int Work-shop on Global and
P2P Computing (GP2PC in con-junction with IEEE/ACM CCGRID), Chicago
IL,April 2004.

[10] Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely, “MAAN: A Multi-Attribute
Addressable Network for Grid Information Services,” Proceedings of the Fourth
International Workshop on Grid Computing, p.184, November 17-17, 2003

[11] A. Bharambe, M. Agrawal, and S. Seshan. “Mercury: Supporting scalable
multi-attribute range queries.” In Proc. SIGCOMM, 2004.

[12] Cristina Schmidt, and Manish Parashar, "EnablingFlexible Queries with Guarantees
in P2P Systems,"IEEE Internet Computing, Vol. 8, No. 3, pp. 19-26,May/June 2004.

[13] Prasanna Ganesan, Beverly Yang, Hector GarciaMolina,"One Torus to Rule them
All: Multidimensional Queries in P2P Systems," Proc. WebDB’04, Paris, France,
2004.

http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=383071&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218
http://portal.acm.org/citation.cfm?id=952051&dl=GUIDE&coll=GUIDE&CFID=20766112&CFTOKEN=72762218

