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Abstract 
了解基因表現的調控機制是分子生物學中一項重要挑戰，而基因調控網路的重建更

是模擬此機制的基礎。在此報告裡，我們描述一種藉由整合基因表現與調控因子機率性

的方法以重建基因網路。同時，為呈現其效能，我們將此方法測試於 27 個調控模組，

為酵母菌中與細胞周期相關的 6個轉錄因子及 15 個基因重建基因調控網路。 

 
One of the major challenges in molecular biology is to understand the precise mechanism 

by which gene expression is regulated. Reconstruction of transcription networks is essential 
to modeling this mechanism. In this report, we describe a novel approach for building 
transcription networks from transcription modules by combining expression profile 
correlations with probabilistic element assessment. To demonstrate its performance, we 
systematically tested it on 27 transcription modules and reconstructed the transcription 
network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The 
experimental results show that our combinatorial approach can better filter false positives to 
increase the selectivity in prediction of target genes. The regulatory control relationships 
described by the network reconstructed also mostly agree with those in earlier studies. 
 

Introduction 
 

Each cell is the product of specific gene expression programs specified by genomic 
sequences. These programs involve regulated transcription of thousands of genes (Lee, et al., 
2002). The regulation of gene expression is very complex and often accomplished through the 
coordinated actions of multiple transcription factors (TFs) (Yuh et al., 1998; Halfon, et al., 
2000; Fickett, et al., 2000). One way to understand the potential pathways that can be used by 
a cell to regulate global gene expression programs is to model the network of regulator-gene 
interactions.  

As the advent of microarray technology, an enormous amount of gene-expression data 
from a variety of biological analyses has been generated (Spellman, et al., 1998; DeRisi, et al., 
1997; Alon, et al., 1999). High-throughput and large-scale expression profiling is considered 
one of the most promising techniques for reconstructing genetic networks. The experimental 
results enable the global studies of gene regulation (van Berkum and Holstege, 2001). 
Inference of gene-expression regulatory mechanisms is rapidly becoming a major research 
topic in bioinformatics.  

There has been much work on genetic regulatory networks, applying different network 
representations and inference strategies. For example, some is focused on conditional 
probability distribution in Bayesian networks, some derives Boolean functions for Boolean 
networks, and some is based on differential equations (D’haeseleer, et al., 2000; Akutsu, et al., 
2000; Hartemink, et al., 2001; Chen, et al., 1999). More recent studies address the importance 
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of the combinatorial nature of transcription. Using microarray data, they identify novel motif 
combinations and co-occurrence position preference (Pilpel, et al, 2001; Sudarsanam, et al, 
2002). In addition, supervised learning is also adapted to reconstruct transcription networks 
(Soinov, et al., 2003).  

Given the transcription factors and genes of interest, our goal here is to build a 
transcriptional regulatory network that can model the regulator-gene interactions. A 
transcription network can be decomposed into transcription modules (Wang, et al., 2002). 
Each module, related to specific cellular conditions or perturbations that control it, represents 
a functional unit consisting of a transcription factor, the target genes it regulates and the gene 
(or genes if the factor is a complex) that produces it. Based on a bottom-up strategy, we first 
identify transcription modules corresponding to particular gene expression profiles, and then 
we reconstruct a potential transcription network with the links among all the modules found.  

The accuracy of a transcription network depends on correct transcription modules each of 
which defines the role of each gene in the module and its relation with the transcription factor. 
Building a correct module requires not only the identification of the conserved core of the 
DNA regulatory motif(s) in the upstream region recognized by a particular TF, but also the 
knowledge of the genes likely to be regulated by the TF and the gene(s) producing it. Most of 
the computational analyses of transcription factors and the corresponding genes have been 
concentrated on finding regulatory factor binding sites in the DNA sequences upstream of 
genes (Lawrence, et al, 1993; van Helden, et al., 1998; Hertz, et al., 1990). Despite many 
successful applications to predicting significant regulatory elements in groups of functionally 
related genes, the number of false positives of consensus pattern or matrix-based search in a 
large amount of sequence (e.g. genome size) is far from acceptable.  

The development of large-scale expression monitoring and the availability of complete 
genome sequence allow the refinement of computational analysis. The combination of 
expression phenotype and sequence similarity has been suggested to increase the efficiency of 
cis-regulatory element prediction as well as to reduce the false positive rate of target gene 
search (Zhang, 1999; Wolfsberg, et al., 1999). However, few studies were systematically 
evaluated to determine if known elements were detected with a higher selectivity than in 
naïve searches.   

In this report, we describe a novel approach for building transcription networks from 
transcription modules by combining expression profile correlations with probabilistic element 
assessment. We systematically evaluated the method across 121 transcript profile experiments 
with 27 different known factors. Furthermore, to demonstrate its effectiveness of 
reconstructing transcription networks, we applied our method to many cell cycle-related 
transcription factors and their target genes. We compared the predicted networks with those 
validated and published in literature. 

 
Materials and Methods 
 
Toward the Network of Transcription 
 

By applying clustering techniques to the data from genome-wide expression monitoring 
studies, we can first obtain groups of genes according to the similarity of their expression 
levels. From each group we can then detect common cis-regulatory elements (Brazma, et al., 
1998; Hu, et al., 2000; Fujibuchi, et al., 2001). Although similar gene expression behaviors 
can constrain the search space of interesting regulatory sequences, this type of approaches 
only takes into account the correlation between expression profile similarity and gene 
co-regulation. It neglects the potential interactions between the gene(s) that produces the 
transcription factor and those regulated. Unlike previous work, for a particular transcription 
factor, we integrate three different kinds of information to predict its regulatory sequences 



and build the transcription module. They include: (1) the transcription factor binding sites, (2) 
the expression profile similarity of potential target genes and (3) the correlation between the 
expression profile of the gene(s) that produces the factor and that of the target genes the factor 
regulates. By the synergy of various kinds of knowledge, we expect to better characterize the 
nature of transcriptional regulation mechanism, so as to improve the prediction of 
cis-regulatory sequences and ensure the quality of transcription modules. 

We encode TF binding sites in the standard IUPAC/IUB code. For a particular 
transcription factor, we match its binding sites against the upstream region of entire genome. 
This provides the preliminary candidate cis-regulatory sequences. To filter spurious false 
positives from the pattern-based search, we develop a new metric that combines the 
probabilistic element assessment (PEA) with the p-value of F-test (PF) on regression. The 
PEA is a ranking of potential sites according to sequence similarity in the upstream regions of 
genes with similar expression profiles (Fujibuchi, et al., 2001). It evaluates the probability of 
element conservation in expression clusters based on the idea that a sequence pattern is a 
regulatory element (i.e. TF binding site) if observed more often than expected in a gene 
expression cluster. Assuming a binomial distribution, the PEA value is defined as follows: 
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where P is the probability of finding x or more genes whose upstream contains a specific 
regulatory element by chance, m is the expected probability of element occurrence and N is 
the total number of genes in the cluster. The value of m can be estimated from the fraction of 
genome that has the element. The lower the PEA is, the more significant the element is.  

Besides applying PEA to measure the significance of a regulatory element with the 
correlation among the genes in an expression cluster co-regulated by a particular TF, we also 
try to model the association between the gene(s) that produces the TF and the TF’s target 
genes. We perform a linear regression on their expression profiles, followed by an F-test, to 
evaluate the strength of the relationship. For a transcription factor, say F, produced by the 
genes, x1, x2,…, xp (if F is a complex), we define the linear regression model as the following: 

Yi ≈Yi
^
=α + β1x1,i + β2x2,i + ...+ β p xp,i 

where Yi is the expression data of gene Y in the ith transcript profile experiment and Yi
^

 is the 
corresponding estimated value of Yi. We use as the 
estimating formula, where xj,i is the expression data of gene xj in the ith transcript profile 
experiment, α is the constant, and β1…βp are the regression coefficients. Our first step is to 
find the best fit of Yi with 

Yi
^
=α + β1x1,i + β2x2,i + ...+ β p x p,i

Yi
^

 by determining α and β1…βp, using the least square method, 
and then to verify whether all the genes, x1, x2,…, xp, taken together, significantly explain the 
observed Yi. To test the significance, we form the following hypotheses: 

H0: β1 = β2 = … = βp = 0    null hypothesis: Yi does not depend on the xi’s 
H1: at least one βi  ≠ 0     alternative hypothesis: Yi depends on at least one of the xi’s 

We perform an F-test on the regression as a whole. If the null hypothesis is true, the ratio: 
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has an F distribution with p numerator degrees of freedom and n-p-1 denominator degrees of 
freedom.  If the null hypothesis is false, then the F ratio tends to be larger than it is when the 
null hypothesis is true. We define PF = prob(Fp,n− p−1 > F) , where Fp,n-p-1 is the F value 
corresponding to a significance level. Therefore, if PF (p-value of F-test) is significantly 
small, we reject H0, and conclude that Yi is associated with at least one of the xi’s. In our 
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studies, a candidate gene is considered a target gene of a particular TF if: (1) the upstream 
region of the gene contains the cis-regulatory sequence of the TF, (2) the PEA value of the 
gene is significantly small and (3) the PF value (i.e. p-value of F-test) for regression analysis 
of the expression profiles is significantly small. 

Take PDR3 for example. It recognizes the upstream binding site TCCGYGGA. To 
construct its transcription module, we first identify its potential target genes by searching the 
genome for genes whose upstream contains the binding site. For each potential target gene, 
we then compute the PEA value and conduct the regression analysis. Only those genes that 
have the specific binding site and significant PEA values as well as PF are selected to build 
the module. For instance, YBL005W, YDL011W and YDR406W all have the upstream 
binding site TCCGYGGA.  Based on the 121 transcript profile experiments (DeRisi, et 
al.,1997; Eisen et al., 1998; Lashkari, et al., 1997; Chu, et al., 1998; Holstege, et al., 1998; 
Spellman, et al., 1998; Cho, et al., 1998; Jelinsky, et al., 1999), we further evaluate their PEA 
values and calculate the PF for the corresponding regression analyses. We use Figure 1 to 
illustrate the basic idea. The expression profile presents the mRNA level of each gene in the 
121 transcript experiments. If the expression profiles of YBL005W, YDL011W and 
YDR406W are very similar, and can be well clustered together, we can obtain a significantly 
low PEA value for each of them. In addition, as YBL005W produces PDR3, we hypothesize 
that there exists a potential relationship between YBL005W and PDR3’s target genes. This 
relationship is modeled by a linear regression. A significant p-value of F-test indicates the 
strong association. Combining all the analyses above, we may conclude that PDR3 probably 
regulates YBL005W, YDL011W and YDR406W. We can then build a potential transcription 
module for PDR3 as presented in Figure 2. 

The same procedure can be applied to more transcription factors to build more 
transcription modules. The intra-module and inter-module interactions between the genes and 
the transcription factors form a network of transcriptional regulation as a result. A putative 
transcriptional regulatory network may look like that in Figure 3. 

 
Data Preparation 
 

Our current studies are focused on Saccharomyces cerevisiae. To keep the studies 
consistent with some earlier work (Fujibuchi, et al., 2001), we extracted 1000bp upstream of 
each of the 6194 yeast open reading frames, except seven sequences (YAL069W, YFL067W, 
YFL068W, YJR162C, YKL225W, YMR326C and YNR077C). They have a shorter upstream 
region owing to their occurrence close to a chromosome end.  

We used the same expression experiment data as Fujibuchi’s, since all the data are 
available in public databases and had been reported in literature (Fujibuchi, et al., 2001). 
Some of the data represented the time courses in time series-based experiments, and some 
were obtained from multiple (or single) experiments under various control conditions. The 
expression datasets are summarized in Table 1. We described each yeast gene as a vector of 
121 experimental data elements. Each element was stored as the ratio of expression levels in 
two states, experimental and reference. The only exception is the data from Cho et al. (Cho et 
al., 1998). Since only a single value was available in their original work, we used that value 
directly as one element. The data elements were further processed in the same way as in the 
work of Spellman et al. (Spellman et al., 1998) to normalize the sum of all values within a 
specific experiment to zero. We applied a Pearson correlation coefficient-based hierarchical 
clustering algorithm (Eisen, et al., 1998) to the normalized expression data and derived a 
clustering result similar to that of Fujibuchi’s (Fujibuchi, et al., 2001). The clustering result 
and the normalized expression data were the basis of computing PEA values and performing 
regression analyses. 
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Results 

Identification of Transcription Modules 
 

As the accuracy of a transcription network depends on the correctness of its transcription 
modules, before verifying our method can reconstruct meaningful transcription networks, we 
demonstrate its performance of building significant transcription modules.  

A transcription module is composed of a particular transcription factor and its target 
genes. Although several techniques have been proposed to locate the target genes of a 
transcription factor, none of them was systematically evaluated to determine if known 
regulatory elements were better identified than by naïve searches (Quandt, et al., 1995; 
Lavorgna, et al., 1999; Zhang, 1999; Wolfsberg, et al., 1999). , To justify the feasibility of our 
new approach, we compared our method with PROSPECT (Fujibuchi, et al., 2001), which 
had been systematically evaluated. Like PROSPECT, we selected SCPD as the dataset for 
evaluation. We merged the information of recognition sites from SCPD (Zhu and Zhang, 
1999) and TRANSFAC (Wingender, et al., 1996). After removing the sites without sensible 
consensus and disregarding the regulators for which the gene(s) producing them is unknown, 
we selected 27 regulatory elements in our studies. We also used the same metric as in 
PROSPECT, the selectivity ratio, for comparison. For a particular method, the selectivity is 
the fraction of correctly predicted elements out of all elements predicted, and the selectivity 
ratio is defined as the ratio of its selectivity to that of a naïve pattern match method. In 
addition to selectivity, sensitivity is another important evaluation criterion. Despite the lack of 
full knowledge of true target genes, we simply define sensitivity as the fraction of correctly 
predicted elements out of all elements annotated in SCPD, assuming SCPD is complete.  

One important hypothesis behind our method is that there may exist potential 
relationships between the gene(s) producing a transcription factor and those regulated by this 
particular factor. Our experiments justified the hypothesis by showing that the target genes 
could be predicted by exploring the relationships through regression analysis. A lower PF 
value of the regression analysis between a transcription factor and genes suggests a stronger 
relationship between the transcription factor and these genes. To examine the effect of PF 
values on the selectivity ratio, we varied the PF threshold when testing the 27 elements. The 
results showed that for 16 elements, the selectivity ratio increased up to two or higher along 
the decrease of PF threshold. These 16 elements are ACE2, BAS1, BAS2, GCN4, GCR1, 
HAP1, HSTF, LEU3, MIG1, PDR3, PUT3, RAP1, REB1, SBF, SFF and STE12. The 
selectivity ratio fluctuated between one and two for nine elements, ABF1, ADR1, GAL4, 
MATα1, MATα2, MCM1, MBF, PHO4 and repressor of CAR1. Only for SWI5 and TBP did 
the decrease of PF threshold make the selectivity ratio worse instead. We show some of the 
results in Figure 4. Our empirical studies showed that when PF=0.03 and PEA=0.4, 
regression analysis and PROSPECT have the best overall performance respectively over the 
27 elements. We compared their results with those of naïve pattern searches. The results are 
summarized in Table 2. For selectivity ratio, regression analysis outperformed PROSPECT in 
16 elements but lost in 11 elements; as for sensitivity, PROSPECT did better in 14 elements 
and tied in four elements. The experimental results suggest that there indeed exists the 
association between some transcription factors and the target genes, and this relationship can 
be characterized by regression analysis.  

Since neither of regression analysis and PROSPECT outperformed the other in the 
prediction of all the 27 elements, we combined both approaches to benefit from the synergy. 
We consider a gene as a target gene of a particular transcription factor only if its PEA value 
and PF value are both smaller than some significance thresholds. We use both PEA and PF if 
available as the criteria to filter out false positives. To verify the performance of the 
combinatorial approach, we compared the performance of applying PEA or PF alone with that 
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of using both. We carried out a systematic evaluation, using various values of PEA and PF 
(between 0.4 and 10-6), over the 27 regulatory elements. We found that the combinatorial 
approach obtained higher selectivity ratio than either one alone in the prediction of each 
element. It proved the synergy of PEA and PF. By applying PEA and PF together, our method 
identifies the target genes of a particular transcription factor to build the transcription module. 
Reconstruction of Transcription Networks 

Given the transcription factors and the genes of interest, our goal is to reconstruct a 
transcription network that can model the interactions among them. In this specific case, we 
applied our method to the transcription factors and genes that are involved in the yeast cell 
cycle. We chose six regulators (MCM1, ACE2, SWI5, SBF, MBF and SFF) and fifteen genes 
(CLB1, CLB2, SWI5, ACE2, CDC5, CLN3, SWI4, FAR1, RME1, SIC1, CDC6, CLN1, 
CLN2, CLB5 and CLB6) in our studies. They play an important role in the yeast cell cycle 
(Mendenhall et al., 1998). Their functions are described in Table 3. We set the PF threshold at 
0.03 and the PEA threshold at 0.65. We reconstructed the network of transcriptional 
regulation as shown in Figure 5. Comparing Figure 5 to Table 3, we found our method 
correctly identified that transcription factor SFF regulates ACE2, CLB1, CLB2 and SWI5, 
ACE2 regulates RME1, MCM1 regulates SWI4, and SBF regulates CLN1 as well as CLN2. 
In addition, the network shows that SFF indirectly regulates CDC5 via SWI5.  
 
Discussion 
 

The reconstruction of transcriptional regulatory networks is essential to understanding 
how regulators and genes interact. Based on the hypothesis that co-regulated genes have 
similar expression profiles and genes producing transcription factors have strong correlation 
with regulated genes, we combine probabilistic element assessment, regression analysis and 
binding site information to build transcription modules in a network.  

Our combinatorial approach has several advantages. First, each metric covers different 
kinds of background knowledge. Because we exploit more information to identify 
transcription modules, we can better filter false positives. Second, these metrics complement 
each other by characterizing different biological activities, e.g. similar expression profiles 
among co-regulated genes and the associations between regulators and target genes. Third, 
our combinatorial approach is more robust. If one metric is not applicable, our system is still 
functional with the other metrics available. For example, in case the binding site sequences 
are unknown, we can still identify reasonable transcription modules (with more false positives 
though), applying only regression analysis. The intra-module and inter-module links connect 
all the components (genes and regulators) to form a transcription network. The links indicate 
either direct or indirect regulatory control. Our experimental results show the relationships 
that agree with those in previous studies (Mendenhall et al., 1998). 

The current method can be further improved in several directions. Although the 
incorporation of PF values can generally increase selectivity ratio, our experiments showed 
some cases in which the use of PF thresholds could be harmful. Some true positives were 
mistakenly filtered out. Two possible causes of the mistake are: (1) the correlation is only 
implied in part of the expression profiles, so the irrelevant expression data may mislead the 
regression analysis; (2) the correlation cannot be accurately characterized by linear regression. 
One feasible solution to the first problem is to partition the whole expression profile into 
segments based on types of transcript experiments or on time intervals. Regression analysis is 
done on segments separately to reduce the noise caused by irrelevant expression data. As for 
the second problem, we require more domain knowledge to revise our hypothesis about the 
association between genes producing transcription factors and those regulated. Besides, 
high-order regression analyses may be desirable. 
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Figure 1. Synergy of binding sites, co-expression of target genes via a TF and correlation 

between a TF and its target genes. PDR3 regulates YBL005W, YDL011W and YDR406W, 

each of which contains the binding site TCCGYGGA upstream of the gene. The similarity of 

their mRNA levels leads to a low PEA value and suggests that the genes are co-regulated via 

PDR3. The correlation between PDR3 and its target genes is reflected by the relationship 

between YBL005W’s mRNA level (which produces PDR3) and those of YDL011W and 

YDR406W. The relationship can be modeled by regression analysis and its significance is 

measured by F-test. 
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Figure 2. A transcription module of PDR3. The circles pointed by an arrow are the target 

genes of PDR3. The undirected edge between YBL005W and PDR3 indicates that YBL005W 

produces PDR3. 
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Figure 3. An illustration of a transcription network. Circles and squares stand for genes and 

transcription factors respectively. Undirected edges represent the production relationships 

between genes and transcription factors. For example, Gene 1 and 2 produce TF 1. Arrows, 

on the other hand, indicate the regulation relationships between transcription factors and 

genes. For example, TF 2 regulates gene 5, 7 and 10.   

 

 

 

 

 

 

 14



 
Figure 4. The effect of PF threshold on selectivity ratio. The decrease of PF threshold caused 

the selectivity ratio of GCR1 and PDR3 to increase dramatically. The selectivity ratio of 

ABF1 and ADR1 varied between one and two. On the other hand, as PF threshold decreased, 

the selectivity ratio of TBP and SWI5 got lower. 
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Figure 5. The transcription network of several transcription factors and genes involved in 
the yeast cell cycle. This network correctly presents several regulatory relations. For example, 
transcription factor SFF directly regulates ACE2, CLB1, CLB2 and SWI5, ACE2 regulates 
RME1, MCM1 regulates SWI4, and SBF regulates CLN1 as well as CLN2. There are also 
some other interactions that need to be further studied, e.g., the network shows that SFF 
indirectly regulates CDC5 via SWI5. 
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Reference Dataset Description Type Experiments 

DeRisi et al. 1997 Diauxic shift, 

repressor TUP 

deletion, activator 

YAP1 overexpression 

 

Time series,  

cDNA microarray 

9 

Eisen et al. 1998; 

Lashkari et al. 1997 

 

Heat shock, DTT shock, 

cold shock 

Time series,  

cDNA microarray 

 

14 

Chu et al. 1998 Sporulation, 

sporulation ndt80 

knockout 

 

Time series,  

cDNA microarray 

9 

Holstege et al. 1998 Transcription factor 

mutant, SAGA chromatin 

modification complex 

mutant 

Multiple 

experiments, 

oligonucleotide 

chip 

 

11 

Spellman et al. 1998 Cell cycle -facotr 

arrest, cell cycle 

elutriation, cdc15 

arrest 

 

Time series,  

cDNA microarray 

60 

Cho et al. 1998 cdc28 arrest Time series,  

oligonucleotide 

chip 

 

17 

Jelinsky et al. 1999 Alkylating agents Single experiment, 

oigonucleotide chip 

 

1 

Total   121 

 
Table 1. Summary of gene expression profiles datasets. The third column indicates the type of 
the biochip used and whether the data are time courses collected at various time points or 
expression levels obtained from multiple/single transcript experiments. 
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 Naïve Pattern Search  Regression Analysis (PF=0.03) PROSPECT (PEA=0.4) 

Regulatory 

element 
TP P selectivity TP P 

selectivity

ratio 
sensitivity TP P 

selectivity 

ratio 
sensitivity

ABF1 19 2974 0.006389 11 1237 1.391907 0.578947 13 881 2.309696 0.684211 

ACE2 1 1861 0.000537 1 312 5.964744 1.000000 1 1410 1.319858 1.000000 

ADR1 2 5018 0.000399 1 2413 1.039785 0.500000 0 784 0.000000 0.000000 

BAS1 4 1602 0.002497 3 760 1.580921 0.750000 3 1143 1.051181 0.750000 

BAS2 2 5861 0.000341 1 2779 1.054516 0.500000 0 1276 0.000000 0.000000 

GAL4 6 349 0.017192 2 102 1.140523 0.333333 6 312 1.118590 1.000000 

GCN4 9 6193 0.001453 5 2477 1.389001 0.555556 2 1158 1.188448 0.222222 

GCR1 6 6016 0.000997 6 2425 2.480825 1.000000 6 1122 5.361854 1.000000 

HAP1 4 61 0.065574 2 19 1.605263 0.500000 4 58 1.051724 1.000000 

HSTF 6 5225 0.001148 5 1758 2.476773 0.833333 2 1036 1.681145 0.333333 

LEU3 2 37 0.054054 1 14 1.321429 0.500000 1 34 0.544118 0.500000 

MATα1 3 2035 0.001474 1 669 1.013951 0.333333 3 1624 1.253079 1.000000 

MATα2 7 2178 0.003214 3 681 1.370673 0.428571 7 1794 1.214047 1.000000 

MBF 6 1677 0.003578 4 801 1.395755 0.666667 6 1188 1.411616 1.000000 

MCM1 25 2498 0.010008 3 441 0.679728 0.120000 22 1748 1.257574 0.880000 

MIG1 7 652 0.010736 2 281 0.662938 0.285714 6 539 1.036841 0.857143 

PDR3 7 182 0.038462 3 49 1.591837 0.428571 7 167 1.089820 1.000000 

PHO4 4 2209 0.001811 1 711 0.776723 0.250000 4 1806 1.223145 1.000000 

PUT3 1 282 0.003546 0 146 0.000000 0.000000 1 230 1.226087 1.000000 

RAP1 15 2035 0.007371 12 964 1.688797 0.800000 11 1585 0.941535 0.733333 

REB1 12 1440 0.008333 5 635 0.944882 0.416667 11 1261 1.046788 0.916667 

Repressor of 

CAR1 

13 471 0.027601 8 251 1.154766 0.615385 11 391 1.019280 0.846154 

SBF 3 3692 0.000813 3 1245 2.965462 1.000000 2 1011 2.434553 0.666667 

SFF 3 761 0.003942 3 469 1.622601 1.000000 2 613 0.827624 0.666667 

STE12 4 4790 0.000835 1 1734 0.690600 0.250000 0 959 0.000000 0.000000 

SWI5 1 4676 0.000214 0 534 0.000000 0.000000 1 1257 3.719968 1.000000 

TBP 16 4944 0.003236 5 1629 0.948435 0.312500 3 692 1.339595 0.187500 
 

Table 2. Results of naïve pattern search, regression analysis and PROSPECT. TP is the 
number of true positive regulatory elements in yeast genome. P is the number of elements 
predicted. 
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Cell Cycle 

 

TF 

 

Target genes

 

Functions 

 

MCM1 CLN3 Cyclin activator of CDC28 in G1. 

 

SWI4 DNA binding component of SBF transcription factor.  

Important for Start-specific expression of CLN1 and CLN2. 

 FAR1 CKI specific for CDC28-CLN complexes. 

ACE2 

 

RME1 Positive factor in CLN2 expression.   

Negatively regulates early sporulation-specific genes. 

 SIC1 CKI specific for CDC28-CLB complexes. 

M/G1,  

Early G1 

SWI5 

 

CDC6 

 

Required for DNA replication.   

Inhibitor of CLB-CDC28 complexes. 

SBF CLN1 Cyclin activator of CDC28 at Start . 

 CLN2 Cyclin activator of CDC28 at Start . 

MBF CLB5 Cyclin activator of CDC28 at Start . 

Start  

(late G1) 

 

  CLB6 Cyclin activator of CDC28 at Start . 

SFF/MCM1 CLB1 Cyclin activator of CDC28 at G2/M . 

 CLB2 Cyclin activator of CDC28 at G2/M . 

 

SWI5 

 

Transcription factor important for expression  of SIC1, 

CDC6, and RME1. 

 ACE2 Transcriptional activator of SIC1 and RME1. 

G2 

 

 

 

 

CDC5 

 

Protein kinase of the "plol" family.  

Activator of the APC. 

 

Table 3. Summary of yeast cell cycle-related transcription factors and genes. 
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一、參加會議經過 

於 07/13 辦理註冊報到，隔日隨即參加開幕演說，於 07/14-07/17 期間，

參加與會學者之論文發表，並與多位國外學者討論相關研究議題。會議中

不乏中國大陸籍學者之論文，對於我國內生物資訊的發展，應可產生良性

刺激，提供非常多的助益與新的發展方向。 
 

二、與會心得 

根據議程中部分美國研究學者所述，由於經濟壓力上升，美國 NIH 已將研

究主軸放在 translational research，希望藉由在實驗室的研究成果實際

應用於人類醫學。本次參加人數及國家眾多，其研究領域更包括計算機科

學、醫學、生物學等之應用，藉由討論及論文發表，獲得寶貴經驗，對於

未來研究提供了新的方向。其中更結識他國友人，經由研討，可明白其他

國家的發展經驗。從這次與會學習的經驗，我們可以得知國外研究之重點，

作為我國在生物科技的發展依據。 

 

三、考察參觀活動(無是項活動者省略) 

無 

 

四、建議 

生物科技是目前國內新興研究發展之重要產業，懇請國科會及相關單位，

能多支持與獎勵國內學者多參與此類國際研討會，除了增加我國在國際相

關領域的能見度，同時，提供相互學習之機會。此外，建議由國科會主導，

召集國內各大學與民間企業支援，以召開國際性生物資訊與相關科技研討

會，邀請國內外學者共同參與，這是直接提昇我國在生技發展地位的最有

效做法。 
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Using Protein Structural Alphabet to Characterize Local Structure Features  
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2MIB Program at Institute of Statistical Science, Academia Sinica, Taipei, Taipei 
3Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan 

 
Abstract - As the number of available 3D protein structures 
increases rapidly, a wider variety of studies can be conducted 
more efficiently, among which is the design of protein 
structural alphabet. With the structural alphabet, not only can 
we describe the global folding structure of a protein as a 1D 
sequence, but we can also characterize local structures in 
proteins. Previously, we applied a combinatorial approach to 
protein structural alphabet design. In our previous work, we 
verified the usefulness of our structural alphabet by 
demonstrating the competitive accuracy in protein alignment, 
compared with alphabets. Here we took a further step by 
applying motif finding tools to our alphabet with the aim to 
characterize protein structure local features. Two structure 
domains, TIM and EGF, were used to evaluate the 
performance of our structural alphabet. Our method 
successfully recovered their sub-domains as common motifs in 
our structural alphabet.  

Keywords: protein structure, structural alphabet, motifs 

 

Introduction 
  As all proteins have a certain degree of 

structural similarities to other proteins, and they 
probably share a common ancestor in evolution. 
Based on evolutionary relationships and the 
principles governing the 3D structures, a protein 
structure hierarchy, SCOP, was constructed 
mainly by visual inspection with the assistance of 
various automatic tools to compare protein 
structures. The original aim of SCOP was to serve 
as a tool for understanding protein evolution 
through the relationships between sequences and 
structures [1].  

The conservation in local active sites may 
reflect biological meanings, and their structural 
patterns can be used to predict protein functions 
[2], e.g., the binding sites for metal-binding proteins [3]. The 
conserved local structural features can be 
identified in various ways and described in 
different representations. For example, some have 
attempted to investigate the relationships between 

local sequences and structures by identifying 
common structural motifs first, then characterizing 
amino acid preferences [4-6]. Others instead have 
adopted the inverse approach by examining 
structural correlates from recurring sequence 
patterns found to obtain sequence-structure motifs 
[7,8]. 

Unlike those works above on correlations 
between protein local structures and sequence 
patterns, we first convert protein 3D structures 
into 1D structural alphabet letters, and then 
identify and represent conserved local features as 
1D structural alphabet sequence motifs. Besides, 
our goal is to mine the protein families for 
conserved local characteristics rather than to 
predict 3D structures of novel proteins as those 
studies mentioned above. There are several 
advantages of 1D structural alphabet over 3D 
co-ordinates representations. First, 1D 
representation of protein structures is more 
efficient in comparison and more economical in 
storage. Second, many previously designed and 
widely used 1D sequence alignment tools can be 
directly applied to protein structures as well as 
sequences. Third, conserved protein local 
structural features can be described as 1D 
sequence motifs and be identified by various 
well-developed sequence motif-finding tools. Four, 
this type of 1D-based approaches can serve as a 
pre-processor to filter out remotely related or 
irrelevant proteins before we apply other more 
accurate but more computationally intensive 
structure analysis tool. 

Previous analysis of protein structures has 
shown the importance of repetitive secondary 
structures, in particular, α-helix and β-sheet. 
Together with variable coils, they constituted a 
basic standard 3-letter structural alphabet. In spite 



 

of the increase in predictive accuracy, the 
approximation of 3D structures with only a 
3-letter alphabet is apparently too crude for the 
more refined 3D reconstruction [9-13]. Various 
more complex structural alphabets have been 
developed by taking into account the 
heterogeneity of backbone protein structures 
through sets of small protein fragments frequently 
observed in different protein structure databases 
[14-21]. Unlike most other works, we developed a 
multi-strategy method for structural alphabet 
design, which combined self-organizing maps, 
minimum spanning tree algorithm and k-means 
algorithm [22]. The performance of our alphabet 
was demonstrated by the competitive accuracy in 
all-alpha protein search within SCOP using the 
standard 1D sequence alignment tool, FASTA 
[23].  

In this paper, we introduced an improved 
version of our alphabet design pipeline, to which 
we added a substitution matrix self-trainer. The 
substitution matrix used in aligning proteins 
represented by structural alphabets affects the 
accuracy of alignment. In our earlier work, we 
applied the identity matrix in the alignment [22]. 
Though the preliminary results successfully 
demonstrated the feasibility of our alphabet, yet a 
more appropriate matrix will further improve its 
applicability. The substitution matrix is a crucial 
factor in the successful application of 1D sequence 
alignment tools to search for similar 3D structures. 
We thus developed an automatic matrix training 
framework that can generate appropriate 
substitution matrices for new alphabets when 
applied in standard 1D sequence alignment 
methods, e.g. FASTA. Based on the alphabet we 
constructed, we can transform proteins into 1D 
structural alphabet representations. To identify 
protein local structure features, we applied the 
motif-finding tool MEME [24] to detect the 
common motifs. We tested two protein families in 
SCOP, TIM and EGF. The results showed our 
method successfully recovered their structure 
domains.  

 
Materials and Methods 

  
The simplest substitution matrix to use is the 

identity matrix, but it ignores possible acceptable 
alphabet letter substitutions, which significantly 
limits its applicability. Some authors applied 
HMM approach to define the matrix [25], while 
others adopted a similar approach in the 
development of BLOSUM matrices [26,27]. Most 
of these approaches to constructing substitution 
matrices required the alignments of known 
proteins [27-29]. As the alignments may be 
unavailable or even questionable, we took a 
self-training strategy to build a substitution matrix 
for our new structural alphabet. This training 
framework is a flexible and modular design, and it 
does not rely on any pre-alignment of protein 
sequences or structures. This matrix training 
procedure can be applied regardless of how the 
alphabet is derived. Different training data or 
alignment tools available can be incorporated in 
this framework to generate appropriate matrices 
under various circumstances.  

There are three components in the matrix 
training framework, an alignment tool with a 
substitution matrix, training data, and a matrix 
trainer. We used FASTA as the alignment tool, 
and the non-redundant proteins in SCOP1.69 with 
sequence similarity less than 40%, excluding the 
families of size smaller than 5 proteins, as the 
training dataset. We started by using the identity 
matrix as the initial substitution matrix where the 
score is 1 for a match, 0 for a mismatch. Each 
protein in the training dataset was iteratively used 
as a query for FASTA to search the rest of the 
dataset for similar proteins. If a protein returned 
by FASTA belonged to the same family as the 
query, we considered the case as a positive hit; 
otherwise, a negative hit. Those proteins not 
returned by FASTA but in the same family as the 
query were considered as misses. For all positive 
hits and misses, we gathered their alignments with 
the query produced by FASTA. Based on the 
alignments, we computed the log-odd ratios 
defined in the same way as in the BLOSUM 
matrices [28] to build the positive matrix. 
Similarly, with the alignments of negative hits, we 
constructed the negative matrix.  The matrix 
trainer updated the current substitution matrix S(t) 
to S(t+1) as the following. 
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Several protein structure search tools based on 
1D alignment algorithms have been developed, 
including SA-Search [25], YAKUSA [30], 
3D-BLAST [27], but few were evaluated on the 
performance of database-scale search. To keep the 
consistency, we used the same 50 proteins 
selected from SCOP95-1.69 as used in Yang & 
Tung’s experiment to compare our alignment tool 
with 3D-BLAST, PSI-BLAST, YAKUSA 
MAMMOTH and CE in search time, predictive 
accuracy and precision. There are some other 
search tools, e.g. PBE [31], SA-Search [30], 
Vorolign [32] and so on. Because they either 
could not be tested on the SCOP database directly 
(e.g. only PDB available in SA-Search) or the 
version of their databases provided was older (e.g. 
ASTRAL in PBE derived from SCOP-1.65, 
Vorolign server only scans SCOP40-1.69), these 
tools were not chosen for comparison. We 
summarized the results in Table 1. It showed that 
our tool outperformed the other two BLAST-based 
search tools (i.e. 3D-BLAST and PSI-BLAST) 
and another structure search tool that also 
described structures as 1D sequences (i.e. 
YAKUSA) in predictive accuracy and precision. 
Compared with the structural alignment tools (i.e. 
MAMMOTH and CE), our tool obtained a bit 
worse but comparable accuracy as well as 
precision. As for search time (using one Intel 
Pentium 2.8GHz processor and 512Mbytes of 
memory), Table 1 clearly indicated that our 
alignment tool was far more efficient than the 
structural alignment tools, MAMMOTH and CE.  

 
where P and N are the positive and the negative 
matrix respectively, τ is the learning rate (similar 
to the learning rate in neural networks), and Wp 
and Wn are the weights. They were defined as the 
proportion of the total number of positive hits and 
misses to the training data size and the ratio of the 
number of negative hits to the training data size, 
respectively. We repeated the update process to 
train the substitution matrix until there was no 
change in the matrix, i.e. the number of both the 
positive and the negative hits remain constant. The 
converged matrix was our final substitution matrix 
which we combined with FASTA as a new 
alignment tool to demonstrate the applicability of 
our new alphabet and matrix. We compared our 
alignment tool with other similar ones on 
database-scale search tasks. The results were 
detailed in the next section. The matrix training 
framework was presented in Figure 1.  

Currently, we used the non-redundant proteins 
in SCOP1.69 with sequence similarity less than 
40% for training. We defined the positive hit rate 
of a query as the ratio of the number of positive 
hits to the size of the family the query belonged to. 
As we iterated over each training protein (as a 
query), we refined the matrix till we could no 
longer increase the average positive hit rate of all 
the proteins. One learning example was presented 
in Figure 2. We tried different learning rates from 
0.25 to 1.00. The final average positive hit rates 
under different learning rates were similar, 
between 0.9112 and 0.9153. We selected the 
converged matrix with the maximum positive hit 
rate when learning rate set 0.50. We named this 
matrix TRISUM-169 (TRained Iteratively for 
SUbstitution Matrix-SCOP1.69) as shown in 
Figure 3. 
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Fig 1. System architecture of the matrix training 
framework. 
 

 
Fig 2. An example of the learning curve of matrix training. 
The average positive hit rate converged at 0.9153 with the 
learning rate set 0.5. 
 

To demonstrate the ability of our structural 
alphabet to describe protein local structure 
features, we used MEME [24] to detect common 
motifs in the top 100 hits found by our alignment 
tool. These motifs could be well mapped to the 
eight β/α barrel strands of TIM barrel domains. 
Figure 4(a) showed the structure of archaeon 
pyrococcus woesei  (PDB 1hg3a). In Figure 4(b), 
we highlighted the identified motif in PDB 1hg3a, 
and Figure 4(c) illustrated the motif structure. The 
structural alphabet letter sequence of this motif 
and the corresponding amino acids were shown in 
Figure 4(d). In addition to TIM barrel structures, 
we also used the EGF/EGF-like domain as another 
study case. Epidermal growth factor (EGF) 

domains are extracellular protein modules 
typically described by 30-40 amino acids 
primarily stabilized by three disulfide bonds. 
Compared with TIM barrel structures, EGF are 
much smaller domains. We used it to evaluate 
how well a structural alphabet could define the 3D 
structures of small proteins. Many proteins contain 
the regions of homology to EGF, and the cysteine 
residues at similar positions. The homologies and 
available functional data suggest that these 
domains share some common functional features. 
If we number the cysteine residues as Cys1 to 
Cys6, where Cys1 is the closest to the N-terminus, 
the regularity of cysteine spacing defines three 
regions, A, B and C. Based on the conservation in 
sequence and length of these regions, the 
homologies have been classified into three 
different categories [33]. We described the 227 
proteins in the EGF-type module family of SCOP 
1.69 in our alphabet, Yang & Tung’s [27] and de 
Brevern et al.’s [15,26,31], respectively. We then 
used MEME to identify the common motifs 
corresponding to the sub-domains, A, B and C. 
According to InterPro [34], 24 of these proteins 
were exclusively of EGF Type-1, 74 were of 
EGF-like Type-2, and 117 belonged to EGF-like 
Type-3 only. We classified the remaining 12 
proteins as Others. 

[ ]matrixonsubstitutiS t  )( =  

 

 

 
Fig 3.  Substitution matrix TRISUM-169. 

 
Despite that the sub-domains are less 

conserved in EGF-like Type-3, sub-domain A is 
typically composed of five to six residues in 
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Type-1 and 2, sub-domain B usually contains 
10-11 residues in Type-1, but consistently three 
residues shorter than in Type-1, sub-domain C is 
conserved in length with four or five specific 
residues in Type-1 and 2 [33]. We used 8, 10 and 
15 respectively as the motif width and ran MEME 
to find motifs. A motif found was considered as 
corresponding to a sub-domain correctly if more 
than half of the residues in the sub-domain were 
included in the motif. If any single motif of width 
8, 10 or 15 alphabet letters correctly corresponded 
to a sub-domain, we claimed this sub-domain was 
recovered successfully (i.e. a hit). We summarized 
the results of the motifs found in Table 2. It 
showed that with our structural alphabet MEME 
was able to identify more EGF sub-domains than 
using Yang & Tung’s or de Brevern et al.’s 
alphabets. 

 
Fig. 4. Common motif found by MEME in PDB 1hg3a. (a) 
TIM barrel structure of PDB 1hg3a (b) motif highlighted in 
green (c) motif structure (d) PDB 1hg3a described in amino 
acids (AA) and structural alphabet (SA), respectively, where 
motif underlined. (Note. Images are shown in grey scale.) 
 
4  Discussion 

The protein structure data we used to build the 
alphabet were from the non-redundant PDB 
database instead of some specialized databases, 
e.g. Pair Database [27] and PDB-SELECT [29], 

with the aim to ensure the generality of our 
alphabet. We also proposed an automatic matrix 
training framework to construct an appropriate 
substitution matrix for the alphabet. This training 
strategy did not need any information of known 
alignments that most previous works required. 
Using different training data and update rules, the 
self-training methodology can be applied to 
various alphabets. 

To demonstrate the performance of our 
alignment tool, we systematically compared it 
with other search tools. The results showed that 
our new tool was very competitive in predictive 
accuracy and alignment efficiency for 
database-scale search. We further evaluated the 
potential of using motif-finding tools, e.g. MEME, 
to detect structure domains/sub-domains 
represented in our structural alphabet. Two 
examples of different protein classes, TIM in α/β 
and EGF in small proteins, have been tested. The 
results indicated that the identified motifs mapped 
well to the known structure sub-domains.  

(a)                (b)               (c) 

We can extend the work in several directions. 
First, we can use a more complete datasets for 
substitution matrix training to increase sensitivity 
and selectivity in database search. Second, besides 
FASTA, we can combine other alignment tools 
with our substitution matrix, and evaluate the 
performance of different combinations. Third, 
currently we use MEME to detect motifs, and we 
have demonstrated it is able to recover some 
structure sub-domains described in our structural 
alphabet. MEME was originally designed to find 
motifs in amino acid and nucleic acid sequences. 
To increase the performance in structural motif 
detection, we can either modify MEME or develop 
a new motif-finding tool specifically for our 
structural alphabet. Finally, several structural 
alphabets have been developed based on different 
protein structural characteristics. It is worthwhile 
to conduct a thorough comparative study and 
evaluate the feasibility of combining different 
alphabets. The combination of structural alphabets 
that complement each other will increase their 
overall applicability and characterize 3D protein 
structures more completely. 

     

 

(d) 
1        10        20        30        40        50 
|--------|---------|---------|---------|---------|  

(AA) AKLKEPIIAINFKTYIEATGKRALEIAKAAEKVYKETGVTIVVAPQLVDL 
(SA) NNEACWNEEEMRQSFRQSFRQTTTTTTTTTTTTTSLKGHNEEEEEARQPT 

51        10        20        30        40       100 
|--------|---------|---------|---------|---------| 

(AA) RMIAESVEIPVFAQHIDPIKPGSHTGHVLPEAVKEAGAVGTLLNHSENRM 
(SA) TTTTPSFCWNEEACWNEEEMADWLADHNARQTTTLKGHRCWNADARQSNE 

101        10        20        30        40      150 
|--------|---------|---------|---------|---------| 

(AA) ILADLEAAIRRAEEVGLMTMVCSNNPAVSAAVAALNPDYVAVEPPELIGT 
(SA) ARQTTTTTTTTTTLKGHNEEEEACARQTTTTTTLKGFCWNEEEARQPPLK 

151        10        20        30        40      200 
|--------|---------|---------|---------|---------| 

(AA) GIPVSKAKPEVITNTVELVKKVNPEVKVLCGAGISTGEDVKKAIELGTVG 
(SA) GHFRQLKGQTTTTTTTTTTTTTSPPCNNEEMMDDHCARQTTTTTTLKGLR 

201        10        20        30        40      250 
|--------|---------|---------|---------|---------| 

(AA) VLLASGVTKAKDPEKAIWDLVSGI  
(SA) DWNARQTTTSFCQPQTTTTTTTPP  
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Table 1. Comparison between our alignment tool, 3D-BLAST, PSI-BLAST, YAKUSA, MAMMOTH and CE on 50 
proteins selected  fromSCOP95-1.69. 

 

 

 

Search tool Average time required for a query (sec) Relative to SA-FAST Accuracy (%) Average precision (%) 
Our Tool 1.15 1.00 96 90.80 

3D-BLAST 1.30 1.13 94 85.20 
PSI-BLAST 0.48 0.42 84 68.16 
YAKUSA 8.88 7.72 90 74.86 

MAMMOTH 1834.18 1594.94 100 94.01 
CE 22053.32 19176.80 98 90.78 

 

 

 

 

 

 

 



 

 

 

Table 2. Comparison between our structural alphabet, Yang & Tung’s and de Brevern et al.’s in describing motifs 
found by MEME within EGF family. 

(a) Number of motifs found by MEME, using different structural alphabets to describe EGF (EGF-like) proteins 

 Our SA  Yang & Tung’s de Brevern et al.’s  

Sub-domain 

Type 
A B C A B C A B C 

EGF 

proteins 
No.a Hitsb Covc Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov

Type 1 24 23 95.8 22 91.7 23 95.8 11 45.8 21 87.5 19 79.2 18 75.0 14 58.3 18 75.0

Type 2 74 73 98.6 71 95.9 74 100.0 62 83.8 73 98.6 60 81.1 68 91.9 62 83.8 70 94.6

Type 3 117 116 99.1 106 90.6 61 52.1 54 46.2 102 87.2 25 21.4 109 93.2 112 95.7 48 41.0

Others 12 12 100.0 11 91.7 11 91.7 9 75.0 11 91.7 9 75.0 12 100.0 11 91.7 9 75.0

All 227 224 98.6 210 92.5 169 74.4 136 59.9 207 91.2 113 49.8 207 91.2 199 87.7 145 63.9
aThe number of EGF proteins of a specific type, bWe called it a hit for a sub-domain when more than half of the sub-domain residues were 
contained in a motif. We presented the count of hits of different types, cCov(Coverage) was defined as the ratio of the count of hits to the number 
of EGF proteins, e.g., if No.=24 and Hits=22, then Cov=22/24=91.7%.   
 
 
(b) Statistics of EGF (EGF-like) proteins whose sub-domains detected by MEME 

 Structural Alphabet 

 

Our SA 

 

 

Yang & Tung’s  

 

 

de Brevern et al.’s  

 

EGF proteins 

Count Percentage Count Percentage Count Percentage 
Found 3a 

151 66.52 79 34.80 104 45.81 
Found 2b 

74 32.60 78 34.36 116 51.10 
Found 1c 

2 0.88 63 27.75 7 3.08 
Found 0d 

0 0.00 7 3.08 0 0.00 
Total 

227 100.00 227 100.00 227 100.00 
aEGF (EGF-like) proteins in which all three sub-domains (A, B and C) were found by MEME, bEGF (EGF-like) proteins in which two out of 
three sub-domains were found by MEME, cEGF (EGF-like) proteins in which only one sub-domain was found by MEME, dEGF (EGF-like) 
proteins in which MEME failed to identify any sub-domain. 
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