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One of the major challenges in molecular biology is to understand the precise mechanism
by which gene expression is regulated. Reconstruction of transcription networks is essential
to modeling this mechanism. In this report, we describe a novel approach for building
transcription networks from transcription modules by combining expression profile
correlations with probabilistic element assessment. To demonstrate its performance, we
systematically tested it on 27 transcription modules and reconstructed the transcription
network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The
experimental results show that our combinatorial approach can better filter false positives to
increase the selectivity in prediction of target genes. The regulatory control relationships
described by the network reconstructed also mostly agree with those in earlier studies.

Introduction

Each cell is the product of specific gene expression programs specified by genomic
sequences. These programs involve regulated transcription of thousands of genes (Lee, et al.,
2002). The regulation of gene expression is very complex and often accomplished through the
coordinated actions of multiple transcription factors (TFs) (Yuh et al., 1998; Halfon, et al.,
2000; Fickett, et al., 2000). One way to understand the potential pathways that can be used by
a cell to regulate global gene expression programs is to model the network of regulator-gene
interactions.

As the advent of microarray technology, an enormous amount of gene-expression data
from a variety of biological analyses has been generated (Spellman, et al., 1998; DeRisi, et al.,
1997; Alon, et al., 1999). High-throughput and large-scale expression profiling is considered
one of the most promising techniques for reconstructing genetic networks. The experimental
results enable the global studies of gene regulation (van Berkum and Holstege, 2001).
Inference of gene-expression regulatory mechanisms is rapidly becoming a major research
topic in bioinformatics.

There has been much work on genetic regulatory networks, applying different network
representations and inference strategies. For example, some is focused on conditional
probability distribution in Bayesian networks, some derives Boolean functions for Boolean
networks, and some is based on differential equations (D’haeseleer, et al., 2000; Akutsu, et al.,
2000; Hartemink, et al., 2001; Chen, et al., 1999). More recent studies address the importance
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of the combinatorial nature of transcription. Using microarray data, they identify novel motif
combinations and co-occurrence position preference (Pilpel, et al, 2001; Sudarsanam, et al,
2002). In addition, supervised learning is also adapted to reconstruct transcription networks
(Soinov, et al., 2003).

Given the transcription factors and genes of interest, our goal here is to build a
transcriptional regulatory network that can model the regulator-gene interactions. A
transcription network can be decomposed into transcription modules (Wang, et al., 2002).
Each module, related to specific cellular conditions or perturbations that control it, represents
a functional unit consisting of a transcription factor, the target genes it regulates and the gene
(or genes if the factor is a complex) that produces it. Based on a bottom-up strategy, we first
identify transcription modules corresponding to particular gene expression profiles, and then
we reconstruct a potential transcription network with the links among all the modules found.

The accuracy of a transcription network depends on correct transcription modules each of
which defines the role of each gene in the module and its relation with the transcription factor.
Building a correct module requires not only the identification of the conserved core of the
DNA regulatory motif(s) in the upstream region recognized by a particular TF, but also the
knowledge of the genes likely to be regulated by the TF and the gene(s) producing it. Most of
the computational analyses of transcription factors and the corresponding genes have been
concentrated on finding regulatory factor binding sites in the DNA sequences upstream of
genes (Lawrence, et al, 1993; van Helden, et al., 1998; Hertz, et al., 1990). Despite many
successful applications to predicting significant regulatory elements in groups of functionally
related genes, the number of false positives of consensus pattern or matrix-based search in a
large amount of sequence (e.g. genome size) is far from acceptable.

The development of large-scale expression monitoring and the availability of complete
genome sequence allow the refinement of computational analysis. The combination of
expression phenotype and sequence similarity has been suggested to increase the efficiency of
cis-regulatory element prediction as well as to reduce the false positive rate of target gene
search (Zhang, 1999; Wolfsberg, et al., 1999). However, few studies were systematically
evaluated to determine if known elements were detected with a higher selectivity than in
naive searches.

In this report, we describe a novel approach for building transcription networks from
transcription modules by combining expression profile correlations with probabilistic element
assessment. We systematically evaluated the method across 121 transcript profile experiments
with 27 different known factors. Furthermore, to demonstrate its effectiveness of
reconstructing transcription networks, we applied our method to many cell cycle-related
transcription factors and their target genes. We compared the predicted networks with those
validated and published in literature.

Materials and Methods

Toward the Network of Transcription

By applying clustering technigues to the data from genome-wide expression monitoring
studies, we can first obtain groups of genes according to the similarity of their expression
levels. From each group we can then detect common cis-regulatory elements (Brazma, et al.,
1998; Hu, et al., 2000; Fujibuchi, et al., 2001). Although similar gene expression behaviors
can constrain the search space of interesting regulatory sequences, this type of approaches
only takes into account the correlation between expression profile similarity and gene
co-regulation. It neglects the potential interactions between the gene(s) that produces the
transcription factor and those regulated. Unlike previous work, for a particular transcription
factor, we integrate three different kinds of information to predict its regulatory sequences
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and build the transcription module. They include: (1) the transcription factor binding sites, (2)
the expression profile similarity of potential target genes and (3) the correlation between the
expression profile of the gene(s) that produces the factor and that of the target genes the factor
regulates. By the synergy of various kinds of knowledge, we expect to better characterize the
nature of transcriptional regulation mechanism, so as to improve the prediction of
cis-regulatory sequences and ensure the quality of transcription modules.

We encode TF binding sites in the standard IUPAC/IUB code. For a particular
transcription factor, we match its binding sites against the upstream region of entire genome.
This provides the preliminary candidate cis-regulatory sequences. To filter spurious false
positives from the pattern-based search, we develop a new metric that combines the
probabilistic element assessment (PEA) with the p-value of F-test (PF) on regression. The
PEA is a ranking of potential sites according to sequence similarity in the upstream regions of
genes with similar expression profiles (Fujibuchi, et al., 2001). It evaluates the probability of
element conservation in expression clusters based on the idea that a sequence pattern is a
regulatory element (i.e. TF binding site) if observed more often than expected in a gene

expression cluster. Assuming a binomial distribution, the PEA value is defined as follows:
N

N N -1
P(k > x) = .;(( | )m (1-m)

where P is the probability of finding x or more genes whose upstream contains a specific
regulatory element by chance, m is the expected probability of element occurrence and N is
the total number of genes in the cluster. The value of m can be estimated from the fraction of
genome that has the element. The lower the PEA is, the more significant the element is.

Besides applying PEA to measure the significance of a regulatory element with the
correlation among the genes in an expression cluster co-regulated by a particular TF, we also
try to model the association between the gene(s) that produces the TF and the TF’s target
genes. We perform a linear regression on their expression profiles, followed by an F-test, to
evaluate the strength of the relationship. For a transcription factor, say F, produced by the
genes, Xi, Xz,..., Xp (if F is a complex), we define the linear regression model as the following:

Yi=Yi=a+ BX; + BoXyi+ ot B X,
where Y; is the expression data of gene Y in the ith transcript profile experiment and Yi is the

corresponding estimated value of Yi. We use Yi=a+ X + B,X,; +...+ B, X, as the

estimating formula, where x;;; is the expression data of gene x;in the ith transcript profile
experiment, « is the constant, and fi... 4 are the regression coefficients. Our first step is to

find the best fit of Y; with Yi by determining e and fi... 4, using the least square method,
and then to verify whether all the genes, xi, X2,..., X,, taken together, significantly explain the
observed Y;. To test the significance, we form the following hypotheses:

Ho: fi==...= =0 null hypothesis: Y; does not depend on the x;’s

H;: at leastone 5 #0 alternative hypothesis: Y; depends on at least one of the x;’s
We perform an F-test on the regression as a whole. If the null hypothesis is true, the ratio:

Z(?a-?)z
F=—=" where Y = lZYi
Z(Y.—Y.)Z n-._;
|71n7p71
has an F distribution with p numerator degrees of freedom and n-p-1 denominator degrees of

freedom. If the null hypothesis is false, then the F ratio tends to be larger than it is when the
null hypothesis is true. We define PF = prob(F,,_ , >F), where Fyn.p.1 is the F value

corresponding to a significance level. Therefore, if PF (p-value of F-test) is significantly
small, we reject Hyp, and conclude that Y; is associated with at least one of the x;’s. In our
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studies, a candidate gene is considered a target gene of a particular TF if: (1) the upstream
region of the gene contains the cis-regulatory sequence of the TF, (2) the PEA value of the
gene is significantly small and (3) the PF value (i.e. p-value of F-test) for regression analysis
of the expression profiles is significantly small.

Take PDR3 for example. It recognizes the upstream binding site TCCGYGGA. To
construct its transcription module, we first identify its potential target genes by searching the
genome for genes whose upstream contains the binding site. For each potential target gene,
we then compute the PEA value and conduct the regression analysis. Only those genes that
have the specific binding site and significant PEA values as well as PF are selected to build
the module. For instance, YBLO0O5W, YDL011W and YDR406W all have the upstream
binding sitt TCCGYGGA. Based on the 121 transcript profile experiments (DeRisi, et
al.,1997; Eisen et al., 1998; Lashkari, et al., 1997; Chu, et al., 1998; Holstege, et al., 1998;
Spellman, et al., 1998; Cho, et al., 1998; Jelinsky, et al., 1999), we further evaluate their PEA
values and calculate the PF for the corresponding regression analyses. We use Figure 1 to
illustrate the basic idea. The expression profile presents the mRNA level of each gene in the
121 transcript experiments. If the expression profiles of YBL0O05W, YDL011W and
YDR406W are very similar, and can be well clustered together, we can obtain a significantly
low PEA value for each of them. In addition, as YBLO05W produces PDR3, we hypothesize
that there exists a potential relationship between YBLO0O5W and PDR3’s target genes. This
relationship is modeled by a linear regression. A significant p-value of F-test indicates the
strong association. Combining all the analyses above, we may conclude that PDR3 probably
regulates YBLOO5W, YDL011W and YDR406W. We can then build a potential transcription
module for PDR3 as presented in Figure 2.

The same procedure can be applied to more transcription factors to build more
transcription modules. The intra-module and inter-module interactions between the genes and
the transcription factors form a network of transcriptional regulation as a result. A putative
transcriptional regulatory network may look like that in Figure 3.

Data Preparation

Our current studies are focused on Saccharomyces cerevisiae. To keep the studies
consistent with some earlier work (Fujibuchi, et al., 2001), we extracted 1000bp upstream of
each of the 6194 yeast open reading frames, except seven sequences (YALO69W, YFLO67W,
YFLO68W, YJR162C, YKL225W, YMR326C and YNRO77C). They have a shorter upstream
region owing to their occurrence close to a chromosome end.

We used the same expression experiment data as Fujibuchi’s, since all the data are
available in public databases and had been reported in literature (Fujibuchi, et al., 2001).
Some of the data represented the time courses in time series-based experiments, and some
were obtained from multiple (or single) experiments under various control conditions. The
expression datasets are summarized in Table 1. We described each yeast gene as a vector of
121 experimental data elements. Each element was stored as the ratio of expression levels in
two states, experimental and reference. The only exception is the data from Cho et al. (Cho et
al., 1998). Since only a single value was available in their original work, we used that value
directly as one element. The data elements were further processed in the same way as in the
work of Spellman et al. (Spellman et al., 1998) to normalize the sum of all values within a
specific experiment to zero. We applied a Pearson correlation coefficient-based hierarchical
clustering algorithm (Eisen, et al., 1998) to the normalized expression data and derived a
clustering result similar to that of Fujibuchi’s (Fujibuchi, et al., 2001). The clustering result
and the normalized expression data were the basis of computing PEA values and performing
regression analyses.



Results

Identification of Transcription Modules

As the accuracy of a transcription network depends on the correctness of its transcription
modules, before verifying our method can reconstruct meaningful transcription networks, we
demonstrate its performance of building significant transcription modules.

A transcription module is composed of a particular transcription factor and its target
genes. Although several techniques have been proposed to locate the target genes of a
transcription factor, none of them was systematically evaluated to determine if known
regulatory elements were better identified than by naive searches (Quandt, et al., 1995;
Lavorgna, et al., 1999; Zhang, 1999; Wolfsberg, et al., 1999). , To justify the feasibility of our
new approach, we compared our method with PROSPECT (Fujibuchi, et al., 2001), which
had been systematically evaluated. Like PROSPECT, we selected SCPD as the dataset for
evaluation. We merged the information of recognition sites from SCPD (zZhu and Zhang,
1999) and TRANSFAC (Wingender, et al., 1996). After removing the sites without sensible
consensus and disregarding the regulators for which the gene(s) producing them is unknown,
we selected 27 regulatory elements in our studies. We also used the same metric as in
PROSPECT, the selectivity ratio, for comparison. For a particular method, the selectivity is
the fraction of correctly predicted elements out of all elements predicted, and the selectivity
ratio is defined as the ratio of its selectivity to that of a naive pattern match method. In
addition to selectivity, sensitivity is another important evaluation criterion. Despite the lack of
full knowledge of true target genes, we simply define sensitivity as the fraction of correctly
predicted elements out of all elements annotated in SCPD, assuming SCPD is complete.

One important hypothesis behind our method is that there may exist potential
relationships between the gene(s) producing a transcription factor and those regulated by this
particular factor. Our experiments justified the hypothesis by showing that the target genes
could be predicted by exploring the relationships through regression analysis. A lower PF
value of the regression analysis between a transcription factor and genes suggests a stronger
relationship between the transcription factor and these genes. To examine the effect of PF
values on the selectivity ratio, we varied the PF threshold when testing the 27 elements. The
results showed that for 16 elements, the selectivity ratio increased up to two or higher along
the decrease of PF threshold. These 16 elements are ACE2, BAS1, BAS2, GCN4, GCR1,
HAP1, HSTF, LEU3, MIG1, PDR3, PUT3, RAP1, REB1, SBF, SFF and STE12. The
selectivity ratio fluctuated between one and two for nine elements, ABF1, ADR1, GAL4,
MATal, MATa2, MCM1, MBF, PHO4 and repressor of CAR1. Only for SWI5 and TBP did
the decrease of PF threshold make the selectivity ratio worse instead. We show some of the
results in Figure 4. Our empirical studies showed that when PF=0.03 and PEA=0.4,
regression analysis and PROSPECT have the best overall performance respectively over the
27 elements. We compared their results with those of naive pattern searches. The results are
summarized in Table 2. For selectivity ratio, regression analysis outperformed PROSPECT in
16 elements but lost in 11 elements; as for sensitivity, PROSPECT did better in 14 elements
and tied in four elements. The experimental results suggest that there indeed exists the
association between some transcription factors and the target genes, and this relationship can
be characterized by regression analysis.

Since neither of regression analysis and PROSPECT outperformed the other in the
prediction of all the 27 elements, we combined both approaches to benefit from the synergy.
We consider a gene as a target gene of a particular transcription factor only if its PEA value
and PF value are both smaller than some significance thresholds. We use both PEA and PF if
available as the criteria to filter out false positives. To verify the performance of the
combinatorial approach, we compared the performance of applying PEA or PF alone with that
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of using both. We carried out a systematic evaluation, using various values of PEA and PF
(between 0.4 and 10°°), over the 27 regulatory elements. We found that the combinatorial
approach obtained higher selectivity ratio than either one alone in the prediction of each
element. It proved the synergy of PEA and PF. By applying PEA and PF together, our method
identifies the target genes of a particular transcription factor to build the transcription module.
Reconstruction of Transcription Networks

Given the transcription factors and the genes of interest, our goal is to reconstruct a
transcription network that can model the interactions among them. In this specific case, we
applied our method to the transcription factors and genes that are involved in the yeast cell
cycle. We chose six regulators (MCM1, ACE2, SWI5, SBF, MBF and SFF) and fifteen genes
(CLB1, CLB2, SWI5, ACE2, CDC5, CLN3, SWi4, FAR1, RMEL1, SIC1, CDC6, CLN1,
CLN2, CLB5 and CLB6) in our studies. They play an important role in the yeast cell cycle
(Mendenhall et al., 1998). Their functions are described in Table 3. We set the PF threshold at
0.03 and the PEA threshold at 0.65. We reconstructed the network of transcriptional
regulation as shown in Figure 5. Comparing Figure 5 to Table 3, we found our method
correctly identified that transcription factor SFF regulates ACE2, CLB1, CLB2 and SWI5,
ACE2 regulates RME1, MCML1 regulates SWI4, and SBF regulates CLN1 as well as CLN2.
In addition, the network shows that SFF indirectly regulates CDC5 via SWI5.

Discussion

The reconstruction of transcriptional regulatory networks is essential to understanding
how regulators and genes interact. Based on the hypothesis that co-regulated genes have
similar expression profiles and genes producing transcription factors have strong correlation
with regulated genes, we combine probabilistic element assessment, regression analysis and
binding site information to build transcription modules in a network.

Our combinatorial approach has several advantages. First, each metric covers different
kinds of background knowledge. Because we exploit more information to identify
transcription modules, we can better filter false positives. Second, these metrics complement
each other by characterizing different biological activities, e.g. similar expression profiles
among co-regulated genes and the associations between regulators and target genes. Third,
our combinatorial approach is more robust. If one metric is not applicable, our system is still
functional with the other metrics available. For example, in case the binding site sequences
are unknown, we can still identify reasonable transcription modules (with more false positives
though), applying only regression analysis. The intra-module and inter-module links connect
all the components (genes and regulators) to form a transcription network. The links indicate
either direct or indirect regulatory control. Our experimental results show the relationships
that agree with those in previous studies (Mendenhall et al., 1998).

The current method can be further improved in several directions. Although the
incorporation of PF values can generally increase selectivity ratio, our experiments showed
some cases in which the use of PF thresholds could be harmful. Some true positives were
mistakenly filtered out. Two possible causes of the mistake are: (1) the correlation is only
implied in part of the expression profiles, so the irrelevant expression data may mislead the
regression analysis; (2) the correlation cannot be accurately characterized by linear regression.
One feasible solution to the first problem is to partition the whole expression profile into
segments based on types of transcript experiments or on time intervals. Regression analysis is
done on segments separately to reduce the noise caused by irrelevant expression data. As for
the second problem, we require more domain knowledge to revise our hypothesis about the
association between genes producing transcription factors and those regulated. Besides,
high-order regression analyses may be desirable.
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Figure 1. Synergy of binding sites, co-expression of target genes via a TF and correlation
between a TF and its target genes. PDR3 regulates YBL0O05W, YDL011W and YDR406W,
each of which contains the binding site TCCGYGGA upstream of the gene. The similarity of
their mRNA levels leads to a low PEA value and suggests that the genes are co-regulated via
PDR3. The correlation between PDR3 and its target genes is reflected by the relationship
between YBLOO5W’s mRNA level (which produces PDR3) and those of YDL011W and
YDR406W. The relationship can be modeled by regression analysis and its significance is

measured by F-test.
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Figure 2. A transcription module of PDR3. The circles pointed by an arrow are the target
genes of PDR3. The undirected edge between YBLO0O5W and PDR3 indicates that YBL0O05W
produces PDRS3.
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Figure 3. An illustration of a transcription network. Circles and squares stand for genes and

transcription factors respectively. Undirected edges represent the production relationships
between genes and transcription factors. For example, Gene 1 and 2 produce TF 1. Arrows,
on the other hand, indicate the regulation relationships between transcription factors and

genes. For example, TF 2 regulates gene 5, 7 and 10.
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Figure 4. The effect of PF threshold on selectivity ratio. The decrease of PF threshold caused
the selectivity ratio of GCR1 and PDR3 to increase dramatically. The selectivity ratio of
ABF1 and ADR1 varied between one and two. On the other hand, as PF threshold decreased,
the selectivity ratio of TBP and SWI5 got lower.
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Figure 5. The transcription network of several transcription factors and genes involved in
the yeast cell cycle. This network correctly presents several regulatory relations. For example,
transcription factor SFF directly regulates ACE2, CLB1, CLB2 and SWI5, ACE2 regulates
RMEL, MCML1 regulates SWI4, and SBF regulates CLN1 as well as CLN2. There are also
some other interactions that need to be further studied, e.g., the network shows that SFF
indirectly regulates CDC5 via SWI5.
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Reference Dataset Description Type Experiments
DeRisi et al. 1997 Diauxic shift, Time series, 9
repressor TUP cDNA microarray
deletion, activator
YAP1 overexpression
Eisen et al. 1998; Heat shock, DTT shock, Time series, 14
Lashkari et al. 1997 cold shock cDNA microarray
Chu et al. 1998 Sporulation, Time series, 9
sporulation ndt80 cDNA microarray
knockout
Holstege et al. 1998 Transcription factor Multiple 11
mutant, SAGA chromatin experiments,
modification complex oligonucleotide
mutant chip
Spellman et al. 1998 Cell cycle -facotr Time series, 60
arrest, cell cycle cDNA microarray
elutriation, cdc15
arrest
Cho et al. 1998 cdc28 arrest Time series, 17
oligonucleotide
chip
Jelinsky et al. 1999 Alkylating agents Single experiment, 1
oigonucleotide chip
Total 121

Table 1. Summary of gene expression profiles datasets. The third column indicates the type of
the biochip used and whether the data are time courses collected at various time points or
expression levels obtained from multiple/single transcript experiments.

17



Naive Pattern Search

Regression Analysis (PF=0.03)

PROSPECT (PEA=0.4)

Regulatory o selectivity o selectivity o
element TP P selectivity| TP atio sensitivity | TP atio sensitivity
ABF1 19 2974 0.006389 | 11 1237 1.391907 0.578947 |13 881  2.309696 0.684211
ACE2 1 1861 0.000537| 1 312 5.964744 1.000000 | 1 1410 1.319858 1.000000
ADR1 2 5018 0.000399 | 1 2413 1.039785 0.500000 | 0 784  0.000000 0.000000
BAS1 4 1602 0.002497| 3 760 1.580921 0.750000 | 3 1143 1.051181 0.750000
BAS2 2 5861 0.000341| 1 2779 1.054516 0.500000 | 0 1276 0.000000 0.000000
GAL4 6 349 0.017192| 2 102  1.140523 0.333333 | 6 312  1.118590 1.000000
GCN4 9 6193 0.001453| 5 2477 1.389001 0.555556 | 2 1158 1.188448 0.222222
GCR1 6 6016 0.000997 | 6 2425 2.480825 1.000000 | 6 1122 5.361854 1.000000
HAP1 4 61 0065574| 2 19  1.605263 0.500000 | 4 58  1.051724 1.000000
HSTF 6 5225 0.001148| 5 1758 2.476773 0.833333 | 2 1036 1.681145 0.333333
LEU3 2 37 0.054054| 1 14  1.321429 0.500000 | 1 34  0.544118 0.500000
MATal | 3 2035 0.001474| 1 669 1.013951 0.333333 | 3 1624 1.253079 1.000000
MATa2 7 2178 0.003214| 3 681 1.370673 0.428571 | 7 1794 1.214047 1.000000
MBF 6 1677 0.003578| 4 801 1.395755 0.666667 | 6 1188 1.411616 1.000000
MCM1 | 25 2498 0.010008| 3 441  0.679728 0.120000 |22 1748 1.257574 0.880000
MIG1 7 652 0.010736| 2 281 0.662938 0.285714 | 6 539  1.036841 0.857143
PDR3 7 182 0.038462| 3 49 1591837 0.428571 | 7 167  1.089820 1.000000
PHO4 4 2209 0.001811(1 711 0.776723 0.250000 | 4 1806 1.223145 1.000000
PUT3 1 282 0.003546| 0 146  0.000000 0.000000 | 1 230 1.226087 1.000000
RAP1 15 2035 0.007371|12 964  1.688797 0.800000 |11 1585 0.941535 0.733333
REB1 12 1440 0.008333| 5 635 0.944882 0.416667 |11 1261 1.046788 0.916667

Repressor of| 13 471 0.027601| 8 251  1.154766 0.615385 |11 391  1.019280 0.846154
CAR1
SBF 3 3692 0.000813| 3 1245 2.965462 1.000000 | 2 1011 2.434553 0.666667
SFF 3 761 0.003942| 3 469  1.622601 1.000000 | 2 613 0.827624 0.666667
STE12 4 4790 0.000835| 1 1734 0.690600 0.250000 | 0 959  0.000000 0.000000
SWI5 1 4676 0.000214| 0 534  0.000000 0.000000 | 1 1257 3.719968 1.000000
TBP 16 4944 0.003236 | 5 1629 0.948435 0.312500 | 3 692  1.339595 0.187500

Table 2. Results of naive pattern search, regression analysis and PROSPECT. TP is the
number of true positive regulatory elements in yeast genome. P is the number of elements

predicted.
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Cell Cycle TF Target genes Functions

M/G1, MCM1 CLN3 Cyclin activator of CDC28 in G1.

Early G1 SWI4 DNA binding component of SBF transcription factor.
Important for Start-specific expression of CLN1 and CLN2.

FARI1 CKI specific for CDC28-CLN complexes.

ACE2 RME1 Positive factor in CLN?2 expression.
Negatively regulates early sporulation-specific genes.

SIC1 CKI specific for CDC28-CLB complexes.

SWIS CDC6  Required for DNA replication.
Inhibitor of CLB-CDC28 complexes.
Start SBF CLN1 Cyclin activator of CDC28 at Start .
(late G1) CLN2 Cyclin activator of CDC28 at Start .
MBF CLB5 Cyclin activator of CDC28 at Start .
CLB6 Cyclin activator of CDC28 at Start .
G2 SFE/MCM1 CLBI Cyclin activator of CDC28 at G2/M .

CLB2 Cyclin activator of CDC28 at G2/M .

SWIS Transcription factor important for expression  of SIC1,
CDC6, and RME].

ACE2  Transcriptional activator of SIC1 and RMEL.

CDC5 Protein kinase of the "plol" family.
Activator of the APC.

Table 3. Summary of yeast cell cycle-related transcription factors and genes.
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Using Protein Structural Alphabet to Characterize Local Structure Features

Shih-Yen Ku' and Yuh-Jyh Hu*®
'Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
’MIB Program at Institute of Statistical Science, Academia Sinica, Taipei, Taipei
*Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Abstract - As the number of available 3D protein structures
increases rapidly, a wider variety of studies can be conducted
more efficiently, among which is the design of protein
structural alphabet. With the structural alphabet, not only can
we describe the global folding structure of a protein as a 1D
sequence, but we can also characterize local structures in
proteins. Previously, we applied a combinatorial approach to
protein structural alphabet design. In our previous work, we
verified the usefulness of our structural alphabet by
demonstrating the competitive accuracy in protein alignment,
compared with alphabets. Here we took a further step by
applying motif finding tools to our alphabet with the aim to
characterize protein structure local features. Two structure
domains, TIM and EGF, were used to evaluate the
performance of our structural alphabet. Our method
successfully recovered their sub-domains as common motifs in
our structural alphabet.

Keywords: protein structure, structural alphabet, motifs

Introduction

As all proteins have a certain degree of
structural similarities to other proteins, and they
probably share a common ancestor in evolution.
Based on evolutionary relationships and the
principles governing the 3D structures, a protein
structure hierarchy, SCOP, was constructed
mainly by visual inspection with the assistance of
various automatic tools to compare protein
structures. The original aim of SCOP was to serve
as a tool for understanding protein evolution
through the relationships between sequences and
structures [1].

The conservation in local active sites may
reflect biological meanings, and their Structural
patterns can be used to predict protein functions
[2], e.g., the binding sites for metal-binding proteins [3]. The
conserved local structural features can be
identified in various ways and described in
different representations. For example, some have
attempted to investigate the relationships between
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local sequences and structures by identifying
common structural motifs first, then characterizing
amino acid preferences [4-6]. Others instead have
adopted the inverse approach by examining
structural correlates from recurring sequence
patterns found to obtain sequence-structure motifs
[7.8].

Unlike those works above on correlations
between protein local structures and sequence
patterns, we first convert protein 3D structures
into 1D structural alphabet letters, and then
identify and represent conserved local features as
1D structural alphabet sequence motifs. Besides,
our goal is to mine the protein families for
conserved local characteristics rather than to
predict 3D structures of novel proteins as those
studies mentioned above. There are several
advantages of 1D structural alphabet over 3D
co-ordinates representations. First, 1D
representation of protein structures is more
efficient in comparison and more economical in
storage. Second, many previously designed and
widely used 1D sequence alignment tools can be
directly applied to protein structures as well as
sequences. Third, conserved protein local
structural features can be described as 1D
sequence motifs and be identified by various
well-developed sequence motif-finding tools. Four,
this type of 1D-based approaches can serve as a
pre-processor to filter out remotely related or
irrelevant proteins before we apply other more
accurate but more computationally intensive
structure analysis tool.

Previous analysis of protein structures has
shown the importance of repetitive secondary
structures, in particular, o-helix and p-sheet.
Together with variable coils, they constituted a
basic standard 3-letter structural alphabet. In spite



of the increase in predictive accuracy, the
approximation of 3D structures with only a
3-letter alphabet is apparently too crude for the
more refined 3D reconstruction [9-13]. Various
more complex structural alphabets have been
developed by taking into account the
heterogeneity of backbone protein structures
through sets of small protein fragments frequently
observed in different protein structure databases
[14-21]. Unlike most other works, we developed a
multi-strategy method for structural alphabet
design, which combined self-organizing maps,
minimum spanning tree algorithm and k-means
algorithm [22]. The performance of our alphabet
was demonstrated by the competitive accuracy in
all-alpha protein search within SCOP using the
standard 1D sequence alignment tool, FASTA
[23].

In this paper, we introduced an improved
version of our alphabet design pipeline, to which
we added a substitution matrix self-trainer. The
substitution matrix used in aligning proteins
represented by structural alphabets affects the
accuracy of alignment. In our earlier work, we
applied the identity matrix in the alignment [22].
Though the preliminary results successfully
demonstrated the feasibility of our alphabet, yet a
more appropriate matrix will further improve its
applicability. The substitution matrix is a crucial
factor in the successful application of 1D sequence
alignment tools to search for similar 3D structures.
We thus developed an automatic matrix training
framework that can generate appropriate
substitution matrices for new alphabets when
applied in standard 1D sequence alignment
methods, e.g. FASTA. Based on the alphabet we
constructed, we can transform proteins into 1D
structural alphabet representations. To identify
protein local structure features, we applied the
motif-finding tool MEME [24] to detect the
common motifs. We tested two protein families in
SCOP, TIM and EGF. The results showed our
method successfully recovered their structure
domains.

Materials and Methods

The simplest substitution matrix to use is the
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identity matrix, but it ignores possible acceptable
alphabet letter substitutions, which significantly
limits its applicability. Some authors applied
HMM approach to define the matrix [25], while
others adopted a similar approach in the
development of BLOSUM matrices [26,27]. Most
of these approaches to constructing substitution
matrices required the alignments of known
proteins [27-29]. As the alignments may be
unavailable or even questionable, we took a
self-training strategy to build a substitution matrix
for our new structural alphabet. This training
framework is a flexible and modular design, and it
does not rely on any pre-alignment of protein
sequences or structures. This matrix training
procedure can be applied regardless of how the
alphabet is derived. Different training data or
alignment tools available can be incorporated in
this framework to generate appropriate matrices
under various circumstances.

There are three components in the matrix
training framework, an alignment tool with a
substitution matrix, training data, and a matrix
trainer. We used FASTA as the alignment tool,
and the non-redundant proteins in SCOP1.69 with
sequence similarity less than 40%, excluding the
families of size smaller than 5 proteins, as the
training dataset. We started by using the identity
matrix as the initial substitution matrix where the
score is 1 for a match, O for a mismatch. Each
protein in the training dataset was iteratively used
as a query for FASTA to search the rest of the
dataset for similar proteins. If a protein returned
by FASTA belonged to the same family as the
query, we considered the case as a positive hit;
otherwise, a negative hit. Those proteins not
returned by FASTA but in the same family as the
query were considered as misses. For all positive
hits and misses, we gathered their alignments with
the query produced by FASTA. Based on the
alignments, we computed the log-odd ratios
defined in the same way as in the BLOSUM
matrices [28] to build the positive matrix.
Similarly, with the alignments of negative hits, we
constructed the negative matrix. The matrix
trainer updated the current substitution matrix S®
to S™Y as the following.



st =sOim

M=W, - (P-SY)-W, - (N-sV)]-7

W, = (|positive _ hits|+|misses|) /|training _data|
W, =|negative _hits|/|training _data|

where P and N are the positive and the negative
matrix respectively, 7 is the learning rate (similar
to the learning rate in neural networks), and W,
and W, are the weights. They were defined as the
proportion of the total number of positive hits and
misses to the training data size and the ratio of the
number of negative hits to the training data size,
respectively. We repeated the update process to
train the substitution matrix until there was no
change in the matrix, i.e. the number of both the
positive and the negative hits remain constant. The
converged matrix was our final substitution matrix
which we combined with FASTA as a new
alignment tool to demonstrate the applicability of
our new alphabet and matrix. We compared our
alignment tool with other similar ones on
database-scale search tasks. The results were
detailed in the next section. The matrix training
framework was presented in Figure 1.

Currently, we used the non-redundant proteins
in SCOP1.69 with sequence similarity less than
40% for training. We defined the positive hit rate
of a query as the ratio of the number of positive
hits to the size of the family the query belonged to.
As we iterated over each training protein (as a
query), we refined the matrix till we could no
longer increase the average positive hit rate of all
the proteins. One learning example was presented
in Figure 2. We tried different learning rates from
0.25 to 1.00. The final average positive hit rates
under different learning rates were similar,
between 0.9112 and 0.9153. We selected the
converged matrix with the maximum positive hit
rate when learning rate set 0.50. We named this
matrix TRISUM-169 (TRained Iteratively for
SUbstitution Matrix-SCOP1.69) as shown in
Figure 3.
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Experimental Results

Several protein structure search tools based on
1D alignment algorithms have been developed,
including SA-Search [25], YAKUSA [30],
3D-BLAST [27], but few were evaluated on the
performance of database-scale search. To keep the
consistency, we used the same 50 proteins
selected from SCOP95-1.69 as used in Yang &
Tung’s experiment to compare our alignment tool
with  3D-BLAST, PSI-BLAST, YAKUSA
MAMMOTH and CE in search time, predictive
accuracy and precision. There are some other
search tools, e.g. PBE [31], SA-Search [30],
Vorolign [32] and so on. Because they either
could not be tested on the SCOP database directly
(e.g. only PDB available in SA-Search) or the
version of their databases provided was older (e.g.
ASTRAL in PBE derived from SCOP-1.65,
Vorolign server only scans SCOP40-1.69), these
tools were not chosen for comparison. We
summarized the results in Table 1. It showed that
our tool outperformed the other two BLAST-based
search tools (i.e. 3D-BLAST and PSI-BLAST)
and another structure search tool that also
described structures as 1D sequences (i.e.
YAKUSA) in predictive accuracy and precision.
Compared with the structural alignment tools (i.e.
MAMMOTH and CE), our tool obtained a bit
worse but comparable accuracy as well as
precision. As for search time (using one Intel
Pentium 2.8GHz processor and 512Mbytes of
memory), Table 1 clearly indicated that our
alignment tool was far more efficient than the
structural alignment tools, MAMMOTH and CE.
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Fig 2. An example of the learning curve of matrix training.
The average positive hit rate converged at 0.9153 with the
learning rate set 0.5.

To demonstrate the ability of our structural
alphabet to describe protein local structure
features, we used MEME [24] to detect common
motifs in the top 100 hits found by our alignment
tool. These motifs could be well mapped to the
eight B/a barrel strands of TIM barrel domains.
Figure 4(a) showed the structure of archaeon
pyrococcus woesei  (PDB 1hg3a). In Figure 4(b),
we highlighted the identified motif in PDB 1hg3a,
and Figure 4(c) illustrated the motif structure. The
structural alphabet letter sequence of this motif
and the corresponding amino acids were shown in
Figure 4(d). In addition to TIM barrel structures,
we also used the EGF/EGF-like domain as another
study case. Epidermal growth factor (EGF)
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domains are extracellular protein modules
typically described by 30-40 amino acids
primarily stabilized by three disulfide bonds.
Compared with TIM barrel structures, EGF are
much smaller domains. We used it to evaluate
how well a structural alphabet could define the 3D
structures of small proteins. Many proteins contain
the regions of homology to EGF, and the cysteine
residues at similar positions. The homologies and
available functional data suggest that these
domains share some common functional features.
If we number the cysteine residues as Cysl to
Cys6, where Cysl is the closest to the N-terminus,
the regularity of cysteine spacing defines three
regions, A, B and C. Based on the conservation in
sequence and length of these regions, the
homologies have been classified into three
different categories [33]. We described the 227
proteins in the EGF-type module family of SCOP
1.69 in our alphabet, Yang & Tung’s [27] and de
Brevern et al.’s [15,26,31], respectively. We then
used MEME to identify the common motifs
corresponding to the sub-domains, A, B and C.
According to InterPro [34], 24 of these proteins
were exclusively of EGF Type-1, 74 were of
EGF-like Type-2, and 117 belonged to EGF-like
Type-3 only. We classified the remaining 12
proteins as Others.

ARNDTCQETG GHTILIEKMTFTPSTW
A 5 3 4 3 2 4 4 4 4 3 4433 4 373
R 38 4 4 3 3 5 3 4 -2 4 4 43 3 3 -6 -3
N 4 4 6 3 2 4 3 4 3 3 5 43 4 5 3 8 3
D 3 4 310 3 3 42 3 2 5 4 2 4 6 4 8 2
c23-2-38 33 -3-3-24 433 5 3 8 -2
Q 4 3 4 3 3 8 6 4 4 -1 3 4 4 3 2 3 5 4
E 45 -3 43 6 3 6 -5 67645 6 5-10-3
G 4 3 4 -2 3 4 610 3 2 4 4 4 3 4 3 -7 4
H 4 4 -3 -3 3 4539 24434 4 3 -7T2
I 32 312 16221610 21 1 13 -2
L 4 4 -5 -5 4 3 7 4 4110 4 5 3 3 3 5 5
K 4 4 4 4 4 4 6 4 40 411 4 4 4 3 -6 4
M 3 4 -3 -2 3 4 4 4 3 2 5 410 4 6 4 -10-3
F 3 3 4 4 3 3 5 3 4 -1 3 4 410 3 2 5 3
P 4 3 5 65 2 6 4 4 -1 3 4 6 3 9 2 4 4
§ 3 3 3 4 3 3 %5 3 313342 20 5 4
T -7 6 -% %8 8 5-10-7 -7 3 5 6-105 4 5 3 -§
W 3 3 3 -2 2 4 3 4125 43 3 4 488

Fig 3. Substitution matrix TRISUM-1609.

Despite that the sub-domains are less
conserved in EGF-like Type-3, sub-domain A is
typically composed of five to six residues in



Type-1 and 2, sub-domain B usually contains
10-11 residues in Type-1, but consistently three
residues shorter than in Type-1, sub-domain C is
conserved in length with four or five specific
residues in Type-1 and 2 [33]. We used 8, 10 and
15 respectively as the motif width and ran MEME
to find motifs. A motif found was considered as
corresponding to a sub-domain correctly if more
than half of the residues in the sub-domain were
included in the motif. If any single motif of width
8, 10 or 15 alphabet letters correctly corresponded
to a sub-domain, we claimed this sub-domain was
recovered successfully (i.e. a hit). We summarized
the results of the motifs found in Table 2. It
showed that with our structural alphabet MEME
was able to identify more EGF sub-domains than
using Yang & Tung’s or de Brevern et al.’s
alphabets.

(d)

10 20 30 40 50

1 | | |

(AA) AKLKEPIIAINFKTY IEATGKRALE IAKAAEKVYKETGVT IVVAPQLVDL

(SA) NNEACWNEEEMRQSFRQSFRQTTTTTTTTTTTTTSLKGHNEEEEE ARQPT
51 10 20 30 40 100

| | | | | |
(AA) RMIAESVE IPVFAQHIDP IKPGSHTGHVLPEAVKEAGAVGTLLNHSENRM
(SA) TTTTPSFCWNEEACWNEEEMADWLADHNARQTTTLKGHRCWNADARQSNE

101 10 20 30 40 150

| | | | | |
(AA) ILADLEAAIRRAEEVGLMTMVCSNNPAVSAAVAALNPDYVAVEPPELIGT
(SA) ARQTTTTTTTTTTLKGHNEEEEACARQTTTTTTLKGFCWNEEEARQPPLK
151 10 20 30 40 200

|
(AA) GIPVSKAKPEVITNTVELVKKVNPEVKVLCGAG I STGEDVKKAIELGTVG
(SA) GHFRQLKGQTTTTTTITTTTTTSPPCNNEEMMDDHCARQTTTTTTLKGLR
201 10 20 30 40 250
| | |

| | |
(AA) VLLASGVTKAKDPEKAIWDLVSGI
(SA) DWNARQTTTSFCQPQTTTTTTTPP

Fig. 4. Common motif found by MEME in PDB 1hg3a. (a)
TIM barrel structure of PDB 1hg3a (b) motif highlighted in
green (c) motif structure (d) PDB 1hg3a described in amino
acids (AA) and structural alphabet (SA), respectively, where
motif underlined. (Note. Images are shown in grey scale.)

4 Discussion

The protein structure data we used to build the
alphabet were from the non-redundant PDB
database instead of some specialized databases,
e.g. Pair Database [27] and PDB-SELECT [29],
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with the aim to ensure the generality of our
alphabet. We also proposed an automatic matrix
training framework to construct an appropriate
substitution matrix for the alphabet. This training
strategy did not need any information of known
alignments that most previous works required.
Using different training data and update rules, the
self-training methodology can be applied to
various alphabets.

To demonstrate the performance of our
alignment tool, we systematically compared it
with other search tools. The results showed that
our new tool was very competitive in predictive
accuracy and alignment  efficiency  for
database-scale search. We further evaluated the
potential of using motif-finding tools, e.g. MEME,
to  detect structure  domains/sub-domains
represented in our structural alphabet. Two
examples of different protein classes, TIM in o/p
and EGF in small proteins, have been tested. The
results indicated that the identified motifs mapped
well to the known structure sub-domains.

We can extend the work in several directions.
First, we can use a more complete datasets for
substitution matrix training to increase sensitivity
and selectivity in database search. Second, besides
FASTA, we can combine other alignment tools
with our substitution matrix, and evaluate the
performance of different combinations. Third,
currently we use MEME to detect motifs, and we
have demonstrated it is able to recover some
structure sub-domains described in our structural
alphabet. MEME was originally designed to find
motifs in amino acid and nucleic acid sequences.
To increase the performance in structural motif
detection, we can either modify MEME or develop
a new motif-finding tool specifically for our
structural alphabet. Finally, several structural
alphabets have been developed based on different
protein structural characteristics. It is worthwhile
to conduct a thorough comparative study and
evaluate the feasibility of combining different
alphabets. The combination of structural alphabets
that complement each other will increase their
overall applicability and characterize 3D protein
structures more completely.
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Table 1. Comparison between our alignment tool, 3D-BLAST, PSI-BLAST, YAKUSA, MAMMOTH and CE on 50

proteins selected fromSCOP95-1.69.

Search tool Average time required for a query (sec)  Relative to SA-FAST  Accuracy (%) Average precision (%)
Our Tool 1.15 1.00 96 90.80
3D-BLAST 1.30 1.13 94 85.20
PSI-BLAST 0.48 0.42 84 68.16
YAKUSA 8.88 7.72 90 74.86
MAMMOTH 1834.18 1594.94 100 94.01
CE 22053.32 19176.80 98 90.78
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Table 2. Comparison between our structural alphabet, Yang & Tung’s and de Brevern et al.’s in describing motifs

found by MEME within EGF family.
(@ Number of motifs found by MEME, using different structural alphabets to describe EGF (EGF-like) proteins

Our SA Yang & Tung’s de Brevernetal.’s
Sub-domain
B C A B C A B
Type
EGF
No. | Hits® Cov® Hits Cov Hits Cov | Hits Cov Hits Cov Hits Cov | Hits Cov Hits Cov Hits Cov
proteins
Type 1 24 23 95.8 22 91.7 23 95.8 11 45.8 21 87.5 19 79.2 18 75.0 14 58.3 18 75.0
Type2 74 73 986 71 959 74 1000| 62 838 73 986 60 811 68 91.9 62 83.8 70 94.6
Type3d 117 | 116 991 106 90.6 61 52.1 54 46.2 102 87.2 25 214 109 93.2 112 95.7 48 41.0
Others 12 12 1000 11 91.7 11 91.7 9 75.0 11 91.7 9 75.0 12 100.0 11 91.7 9 75.0
All 227 | 224 986 210 925 169 744 | 136 59.9 207 912 113 498 | 207 91.2 199 87.7 145 63.9

*The number of EGF proteins of a specific type, "We called it a hit for a sub-domain when more than half of the sub-domain residues were
contained in a motif. We presented the count of hits of different types, “Cov(Coverage) was defined as the ratio of the count of hits to the number

of EGF proteins, e.g., if No.=24 and Hits=22, then Cov=22/24=91.7%.

(b) Statistics of EGF (EGF-like

proteins whose sub-domains detected by MEME

Structural Alphabet

EGF proteins Our SA Yang & Tung’s de Brevernetal.’s
Count Percentage| Count Percentage| Count Percentage
Found 3%
151 66.52 79 34.80 104 45.81
Found 2°
74 32.60 78 34.36 116 51.10
Found 1°
2 0.88 63 27.75 7 3.08
Found 0°
0 0.00 7 3.08 0 0.00
Total
227 100.00 227 100.00 227 100.00

*EGF (EGF-like) proteins in which all three sub-domains (A, B and C) were found by MEME, "EGF (EGF-like) proteins in which two out of
three sub-domains were found by MEME, “EGF (EGF-like) proteins in which only one sub-domain was found by MEME, ‘EGF (EGF-like)
proteins in which MEME failed to identify any sub-domain.
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