
Analysing inaccurate artifact usages in workflow
specifications

C.-L. Hsu and F.-J. Wang

Abstract: Although many workflow models have been proposed, analyses on artifacts are seldom
discussed. A workflow application with well structured and adequate resources may still fail or
yield unexpected results in execution due to inaccurate artifact manipulation, for example, incon-
sistency between data flow and control flow, or contradictions between artifact operations. Thus,
artifact analysis is very important since activities cannot be executed properly without accurate
information. This paper presents a three-layer workflow model for designing a workflow and
characterises the behaviour of an artifact by its state transition diagram. By abstracting common
usages of artifacts, six types of inaccurate artifact usage affecting workflow execution are identified
and a set of algorithms to detect these inaccurate usages in workflow specifications is presented.
An example is demonstrated and then related works are compared.
1 Introduction

Workflow can be viewed as a set of tasks that is systema-
tised to achieve certain business goals by completing each
task in a particular order under automatic control [1].
Resources are required for workflow implementation and
to support process execution. Resource allocation and
resource constraint analysis [2–6] are popular workflow
research topics. However, data flow within workflow is
seldom addressed [7, 8].
Artifact is an abstraction of a data instance within a work-

flow. Introducing analysis of artifact usage into
control-oriented workflow designs helps maintain consist-
ency between execution order and data transition, as well
as prevents the exceptions resulting from contradiction
between data flow and control flow. In contrast to structural
correctness, accuracy in artifact manipulation can help
determine whether the execution result of a workflow is
meaningful and desirable.
This work proposes an editing model for designing a

workflow and addresses six types of artifact inaccuracy.
An artifact usage analysis procedure associated with the
model is applied before deploying the workflow schema.
Reports of consistency checking between data flow and
control flow and information of manipulating artifacts are
automatically provided to designers when they edit or
adjust workflow specification. The model is based on a
component-based design technique [9, 10] and is compati-
ble with existing control-oriented workflow design
models. It provides an easier way to extract knowledge of
artifact operations in a workflow. In our earlier work [11,
12], we have introduced the artifact usage analysis into
workflow design phase and six types of inaccurate artifact
usages affecting workflow execution have been identified.

The Institution of Engineering and Technology 2007

doi:10.1049/iet-sen:20070002

Paper first received 4th January and in revised form 28th June 2007

The authors are with the Department of Computer Science, National Chiao
Tung University, Room 510, EC Building, 1001 Ta-Hsueh Road, Hsinchu
City, Taiwan, People’s Republic of China

E-mail: fjwang@cs.nctu.edu.tw
188
In this paper, the artifact usages are formularised and the
concrete algorithms to discover the inaccurate usages in
workflow specifications are proposed. In addition, an
example to demonstrate the contribution of our work and
a comparison among related works are presented.
The remainder of this paper is organised as follows.

Section 2 presents the research background and related
work. Section 3 presents our system architecture, including
the workflow design methods and design criteria. Section 4
then defines certain properties of artifacts, introduces a tech-
nique of artifact state diagram to describe artifact state tran-
sition, and discusses six types of artifact inaccuracy. Section
5 presents algorithms for constructing artifact state dia-
grams. Section 6 proposes a set of algorithms to detect arti-
fact accuracy in a workflow schema. Section 7 demonstrates
the algorithms through an example. Section 8 compares our
approach with related works. Conclusions are finally drawn
in Section 9, along with recommendations for future work.

2 Related work

A workflow can be deemed as a collection of cooperating
and coordinated activities designed to carry out a
well-defined complex process, such as a trip planning,
conference registration procedure, or business process in
an enterprise. A workflow model is used to describe a work-
flow in terms of various elements, such as roles and
resources, tools and applications, activities and data,
which represent different perspectives of a workflow
[13, 14]. Roles and resource elements represent organis-
ational perspective that describes where and by whom
tasks are performed and available resource tasks can be uti-
lised in the organisation. Tools and application elements
represent operational perspectives by specifying what
tools and applications are used to execute a particular
task. Activity elements are defined with two perspectives:
(1) functional, what tasks a workflow performs; and (2)
behavioural, when and how tasks are performed. Data
elements represent the informational perspective, that is,
what information entities are produced or manipulated in
the corresponding activities in a workflow.
IET Softw., 2007, 1, (5), pp. 188–205

A well-defined workflow model leads to the efficient
development of an effective and reliable workflow appli-
cation. The correctness issues in a workflow might be classi-
fied into three dimensions: control flow, resource and data
flow. Generally, the analyses in control-flow dimension
are focused on correctness issues of control structure in a
workflow. The common control-flow anomalies include
deadlock, livelock (infinite loop), lack of synchronisation
and dangling reference [15–19]. A deadlock anomaly
occurs if it is no longer possible to make any progress for
a workflow instance, for example, synchronisation on two
mutually exclusive alternative paths. A livelock anomaly
indicates an infinite loop, such as an iteration without a
possible exit condition, which causes a workflow to make
continuous progress, however, without progressing
towards successful completion. A lack of synchronisation
anomaly represents the case of more than one incoming
node merging into an OR-JOIN node. Activities without
termination or without activation are two common cases
of dangling reference anomaly.
Activities belonging to different workflows or parallel

activities in the same workflow might access the same
resources. A resource conflict occurs when these activities
execute over the same time interval. Thus, the analyses in
resource dimension include the identification of resource
conflicts under resource allocation constraints and/or
under the temporal and/or causality constraints [2–6]. On
the other hand, missing, redundancy and conflict use of
data are common anomalies in data-flow dimension [7, 8].
A missing data anomaly occurs when an artifact is accessed
before it is initialised. A redundant data anomaly occurs
when an activity produces an intermediate data output that
is not required by any succeeding activity. A conflicting
data anomaly represents the existence of different versions
of the same artifact.
Current workflow modelling and paradigm analysis are

mainly focused on the soundness of control logic: in the
control-flow dimension, including process model analysis
[17–20], workflow patterns [21–23] and automatic
control of workflow process [24]. Aalst and ter Hofstede
[17] proposed a WorkFlow net (WF-net), based on Petri
nets, to model a workflow: transitions representing activi-
ties, places representing conditions, tokens representing
cases and directed arcs connecting transitions and places.
Furthermore, control-flow anomalies, such as deadlock,
livelock and dangling reference (activities without termin-
ation or activation) have been identified through Petri net
modelling and analysis. Son [25] defined a well-formed
workflow based on the concepts of closure and control
block. He claimed that a well-formed workflow is free
from structural errors and that complex control flows can
be made with nested control blocks. Son [25] and Chang
[26] identified and extracted the workflow critical path
from the context of the workflow schema. They proposed
extraction procedures from various non-sequential control
structures to sequential paths, thus obtaining appropriate
sub-critical paths in non-sequential control structures.
Sadiq and Orlowska [20] proposed a visual verification
approach and algorithm with a set of graph reduction
rules to discover structural conflicts in process models for
given workflow modelling languages.
There are several research topics discussed in resource

dimension, including resource allocation constraints [2, 3],
resource availability [4], resource management [5] and
resource modelling [6]. Senkul [2] developed an architec-
ture to model and schedule workflow with resource allo-
cation constraints and traditional temporal/causality
constraints. Li [3] concluded that a correct workflow
IET Softw., Vol. 1, No. 5, October 2007
specification should have resource consistence. His algor-
ithms can verify resource consistency and detect the poten-
tial resource conflicts for workflow specifications. Both
Pinar and Hongchen extended workflow specifications
with constraint descriptions. Liu [4] proposed a three-level
bottom-up workflow design method to effectively incorpor-
ate confirmation and compensation in case of failure. In
Liu’s model, data resources are modelled as resource
classes, and the only interface to a data resource is via a
set of operations.
The above approaches do not put emphasis on the data-

flow dimension. The analysis in data-flow dimension is
very important since activities cannot be executed properly
without sufficient information. However, the researches
related to analysis in data-flow dimension of a workflow
are seldom. In the literature, there are two significant
works found in data-flow dimension. Sadiq et al. [7] pre-
sented data-flow validation issues in workflow modelling,
including identifying requirements of data modeling and
seven basic data validation problems: redundant data, lost
data, missing data, mismatched data, inconsistent data, mis-
directed data and insufficient data. However, no concrete
verification procedures have been suggested. Sun et al. [8]
presented a data-flow analysis framework for detecting
data-flow anomalies such as missing, redundant data and
potential conflicts of data. In addition, concrete analysis
algorithms are also provided in their works. However,
only read and first-initial-write operations of an artifact
are considered.

3 Proposed workflow model: TLWM

The proposed model for workflow design processes is
named the Three-Layer Workflow Model (TLWM) and is
illustrated in Fig. 1. A workflow development, excluding
the role and other software, can generally be distinctly inter-
preted in TLWM with the following three layers.

1. Workflow Design Layer describes the logistical control
or execution order between activities, such as the sequence,
choice, synchronisation and iteration.
2. Activity Design Layer arranges the artifact operations to
be performed in an activity and the conditions to be tested at
the initialisation and completion of the activity.
3. Artifact Design Layer defines the classes of artifacts and
all valid methods/operations of each artifact class.

3.1 Workflow design layer

The Workflow Design Layer adopts a model to describe a
schema based on the concept of well-formed workflows
[25]. The product of this layer is a specification that is
designed to describe the dependency between activities,
that is, the execution order of activities in a workflow,
which is determined by Control structures. The four primi-
tive control structures defined in [1] are ‘sequential’, ‘paral-
lel’, ‘conditional branch’ and ‘iterative structure’.
This work describes a workflow specification based on

these structures. The basic unit of work is an activity,
which has pre-conditions (entry criteria), post-conditions
(exit criteria) and actions with artifact operations and
resource manipulation. The Control structures have paired
nodes. This work defines eight primitive control nodes
(four pairs). (1) START-NODE (SN) and END-NODE
(EN) are special control nodes that represent the start and
the end of a workflow, respectively. (2) AND-SPLIT
189

Fig. 1 Three layer workflow model
(AS) and AND-JOIN (AJ) are control nodes that construct a
parallel structure. (3) XOR-SPLIT (XS) and XOR-JOIN
(XJ) are control nodes that construct a branch structure.
(4) LOOP-START (LS) and LOOP-END (LE) are control
nodes that represent an iteration structure. The latter three
control structures are called control blocks. Control blocks
are self-contained and no two control blocks overlap with
each other. Fig. 2 shows the corresponding notations of
control nodes, activity node and flow.
According to the definitions mentioned above, the pro-

posed primitive workflow schema defines four types of
workflow constructions as follows.

1. Sequential Block: The activities in this block are exe-
cuted in sequence under a single thread. The main charac-
teristic is that the target activity executes after its
preceding activity is completed. In other words, the com-
pletion of a target activity triggers the execution of its suc-
ceeding activity.
2. Iteration Control Block: The activities within the control
block grouped by loop control nodes are executed repeti-
tively until certain conditions are met.
3. AND Control Block: All outflows of an AND-SPLIT
node are executed in parallel and converge synchronously
into an AND-JOIN node. An AND-JOIN node synchronises
all threads from parallel inflows into one thread.

Fig. 2 Notations of primitive workflow schema
190
4. XOR (eXclusive OR) Control Block: An XOR-SPLIT
node decides which branches to take from multiple alterna-
tive outflows (workflow branches). These branches con-
verge to a single XOR-JOIN node. No synchronisation is
required since only one thread is chosen for execution.

Fig. 3 shows four types of workflow construction that can
contribute to a primitive workflow schema. Additionally,
the following sections use the notation ‘(leading node,
ending node)’ to indicate a block, starting from the
leading node and terminating at the ending node.

3.2 Activity design layer

Activity specifications are anticipative products of this
layer. Each activity has its own specification, which
describes the operations associated with artifacts required
to be performed in order to achieve the goal. All operations
must be included in the corresponding specifications.
Additionally, each activity may be designed with pre- and
post-conditions if required. Artifact(s) acted on and/or con-
cerned in pre-/post-condition in this activity are retrieved to
contribute to artifact usage analysis.

Fig. 3 Four types of workflow construction in a primitive work-
flow schema
IET Softw., Vol. 1, No. 5, October 2007

3.3 Artifact design layer

The artifact design layer is the bottom layer and its contents
are artifact specifications. All artifacts participating in a
workflow execution must be pre-defined. The specification
of each artifact contains a set of legal operations for its
internal data. An activity designed to manipulate a
certain artifact can work only with that artifact’s legal
operations.
The main objective of the artifact design layer is to make

the internal design of artifacts independent of the workflow
application. It has the following advantages:

1. An artifact has a set of interfaces to these operations. The
upper layer design need not be altered so long as any modi-
fication to these operations does not affect these interfaces.
2. The artifact manipulations in activities or workflows are
bound in these (designed) interfaces. Illegal or invalid oper-
ations on artifacts are not permitted.
3. An independent design of artifact operations facilitates
the classification and grouping of artifact operations.

4 Artifact usage in TLWM

4.1 Artifact usage

An artifact is an abstract concept describing a type of data
participating in workflow execution. It can be extended by
combining some processing logic, such as e-form in
AgentFlow [27]. In general, an artifact may refer to any
data item participating in workflow execution, such as
workflow control data, workflow relevant data and appli-
cation data [28]. Owing to the complexity of artifact oper-
ations, this work focuses on the study of artifact usage in
workflow specification of TLWM only.
Each artifact is defined as owning at least one of the fol-

lowing five types of usages:

1. Reference (Ri), such as a static variable or a constant in
programming language;
2. Manipulation (Mi): processed data, such as an input,
output, or processed results of an activity;
3. Deterministic (Di): the key condition result evaluated for
the control;
4. Composite (Ci): a composition of sub-artifacts;
5. Property (Pi): utilised to control process or workflow
execution, and not accessible during application design.
For example, state information about each workflow
instance, dynamic state of workflow system, execution dur-
ation or resource constraints.

An artifact may be utilised in more than one type of
usage, thus the classification of artifacts with usage types
is neither absolute nor exclusive. Since our analysis works
on design specification, we are concerned with the first
four artifact-usage types.
An artifact in TLWM is characterised by its attributes,

states, operations and state transition rules. Artifact attri-
butes define the data model of the workflow application
handled in a process. An artifact has its own life cycle
characterised by states. An artifact state contains a state
condition that is a logic expression defined by one or
more attributes. An artifact operation manipulates the arti-
fact by changing its state. A state transition rule of an arti-
fact defines the transition from a permissible state to the
next. Consequently, the state transition rules characterise
the allowable sequences of operations in the lifetime of
IET Softw., Vol. 1, No. 5, October 2007
the artifact. The operations with identical effects on the
state transitions are categorised into an operation type.
Thus, a finite state machine of an artifact is proposed to

characterise its behaviour over its lifecycle and is defined
as a 6-tuple kO, T, S, I, R, Fl as follows:

† O is a finite and non-empty set of operations.
† T is a finite and non-empty set of operation types.

Operation types are mutual exclusive, finite, and
non-empty set of operations. The union of elements
(operation types) in T equals O.

† S is a finite and non-empty set of states.
† I is a set of initial states, I#S.
† R is a transition rule function S � T ! S.
† F is a set of final states, F # S.

In TLWM, common artifact operations are categorised
into five primitive operation types: Specify, Read,
Write, Revise and Destroy.

1. Specify: type of a definition operation, for example,
‘fill in’, ‘create’, and ‘define’ operations.
2. Read: type of a reference operation, for example, ‘use’,
‘fetch’, ‘select’, and ‘retrieve’ operations.
3. Write: type of a modification operation, for example,
‘write’, ‘change’, and ‘update’ operations.
4. Revise: type of addition or deletion of a sub-artifact,
for example, ‘merge’, ‘combine’, and ‘divide’
operations.
5. Destroy: type of deletion of an artifact, for example,
‘remove’, ‘erase’, ‘cancel’, and ‘discard’
operations.

In general, Specify is the default operation type when
an artifact appears in workflow execution. Read and
Write are then used to access the artifact. Revise is an
operation for merging two artifacts into one, or splitting a
smaller artifact out of an existing one. Destroy is a final
operation to delete the artifact. Destroy is necessary for
temporary artifacts created during in workflow execution,
but not strict for all artifacts.
Based on the above observation, the common behaviour

of an artifact in TLWM can be modelled as follows.

† O ¼ f‘fill in’, ‘create’, ‘define’, ‘use’, ‘fetch’,
‘select’, ‘retrieve’, ‘write’, ‘change’,
‘update’, ‘merge’, ‘combine’, ‘divide’,
‘remove’, ‘erase’, ‘cancel’, ‘discard’g

† T ¼ fSpecify, Read, Write, Revise, Destroyg
† S ¼ f‘Start’, ‘End’, ‘Specified’, ‘Written’,

‘Revised’g
† I ¼ f‘Start’g
† R ¼ f‘Start’ � Specify ! ‘Specified’,

f‘Specified’,
‘Revised’g � Write ! ‘Written’,
f‘Specified’,
‘Written’g � Revise ! ‘Revised’,
(‘Specified’,‘Written’,
‘Revised’) � Read ! (‘Specified’,
‘Written’, ‘Revised’),
f‘Specified’,‘Written’,
‘Revised’g � Destroy ! ‘End’g

† F ¼ f‘End’g

The common artifact behaviour comprises five states:
‘Start’, ‘End’, ‘Specified’, ‘Written’ and
‘Revised’. ‘Start’ represents the initial state and
191

‘End’ represents the final state. ‘Specified’, ‘Written’
and ‘Revised’ represent the states that result from
Specify, Write and Revise operations, respectively.
Specify is the only allowable type of operation immedi-
ately after the initial state and Destroy is the only final
operation type allowed immediaely before the final state.
Unlike other operation types, Read does not change the
artifact’s state. In addition, only parallel Read-type oper-
ations are allowed. Fig. 4 shows the state diagram, a
graph representation corresponding to the artifact’s finite
state machine.

4.2 Artifact inaccuracy

Based on the common artifact behaviour identified in the
previous section, six inaccurate usages are identified as
follows.

1. No Producer: ‘No Producer’ usage, which is a
warning, indicates that an artifact has a different operation
before Specify. This workflow might fail due to retrieval
error or an exception. The exception might occur when an
artifact is constructed from an invoked application or
outside the system. Fig. 5a–d are examples of the ‘No
Producer’ problem while e is correct.
2. No Consumer: ‘No Consumer’ defect implies that
no activity exists to request the artifact after its modifi-
cation, that is, Specify, Write or Revise. This
defect might occur when the artifact is prepared for access
by the external system, or when it is redundant and has no
succeeding activity to access it.
3. Redundant Specification: A Redundant
Specification defect indicates that another ‘specified’
state exists after a ‘specified’ state. It leads to the con-
fusion in maintaining artifacts and making exceptions in
execution.
4. Contradiction: A Contradiction defect describes a
situation where the current artifact state does not conform
to the in-state specified in the pre-condition of a succeeding
activity. In an activity specification, the pre- and post-
conditions provide a mechanism to specify the in-state
before, and the out-state after, the execution of an activity.
Increasing the number of state constraints specified in the
pre- and post-conditions improves the precision of state-
matching. Fig. 6 illustrates a simple example of the
Contradiction problem.
5. Parallel Hazard: A Parallel Hazard
problem occurs due to conflict interleaving of concurrent
artifact operations, and is recognised if multiple concurrent
subflows operate on the same artifact. Two examples of
state-mapping competition are multiple state choices of
incoming flow to an AND control block and multiple

Fig. 4 State diagram for the common artifact behaviour in
TLWM
192
produced states of an AND control block. Such a state-
mapping competition is a prerequisite for a potential
Parallel Hazard. Among the primitive operations,
only the concurrent Read operation does not cause a
Parallel Hazard. Fig. 7 shows an example of a
Parallel Hazard.
6. Branch Hazard: A Branch Hazard may be pro-
duced from an XOR control block because the branch sub-
flows that contain operations on artifacts have been
selected. A Branch Hazard may also be caused by
inconsistency between the condition testing in the
XOR-SPLIT node and the branch subflows, that is a
losing out-state or insufficient in-state occurs between the
current XOR control block and outside it. Fig. 8a is a
partial workflow schema, containing an XOR control
block and two activities A7, A9. Fig. 8b is the Branch
Hazard of the condition mismatch and Fig. 8c of insuffi-
cient in-state/losing out-state.

Sun et al. [8] claim that seven types of data-flow
anomalies proposed by Sadiq et al. [7] can be represented
by their three basic data-flow anomalies, or are not a
problem at the conceptual level. Thus, we discuss the
mapping of the anomalies between Sadiq et al. and our
work as follows.

† The Redundant data anomaly occurs when an activity
produces an intermediate data output but this data is not

Fig. 5 No producer problem (part a–d)

Fig. 6 Contradiction problem
IET Softw., Vol. 1, No. 5, October 2007

Fig. 7 Parallel hazard
required by any succeeding activity. This anomaly is classi-
fied as No Consumer in our approach.
† Lost data is an anomaly that occurs when parallel activities
perform non-read operations on an artifact. This anomaly is
classified as Parallel Hazard in our approach.
IET Softw., Vol. 1, No. 5, October 2007
† The Missing data anomaly occurs when an artifact is
accessed before it is initialised. This anomaly is classified
as No Producer in our approach.
† Mismatched data is an anomaly that occurs when the
structure of the data produced by the source is incompatible
Fig. 8 Branch hazard
193

with the structure required by the activity that uses the
artifact. This anomaly is classified as Contradiction
in our approach.
† Inconsistent data is an anomaly that occurs when an
initial input artifact of a workflow is updated externally
during the execution time of the workflow. As stated by
Sun et al., this anomaly is not a problem at the conceptual
level.
† Misdirected data anomaly occurs when a data-flow direc-
tion conflicts with the control flow in a workflow schema.
This anomaly is classified as Branch Hazard in our
approach.
† Insufficient data is an anomaly that occurs when data
specified are not sufficient to complete an activity
successfully. In our approach, this anomaly results from
ill-designed activity and can be classified as No
Producer at the semantic level.

Table 1 summarises the mapping of anomalies among
Sadiq’s et al., Sun et al. and our work.

5 Constructing state transition diagrams for
each flow structure and detecting inaccurate usage

The artifact state diagram and state transition criteria help in
tracing and recording manipulation of artifacts in a workflow.
This section presents approaches for detecting artifact inac-
curacies in a TLWM specification. The proposed approach
to analysing artifact usage is based on workflow construction
reduction, state tracing on artifacts and error detection.
Since a well-formed workflow schema consists of a

sequence of activity node and/or top-level control blocks,
an entire workflow can be deemed as a sequential block if a
control block is viewed as a composite activity. The same per-
spective can be applied to split flows of a control block. Thus,
for an input workflow schema, the proposed reduction algor-
ithm begins by sequentially traversing the main flow enclosed
by the Start Node and End Node. A partial artifact state
diagram is constructed for each node during traversal, which
are then connected according to the relative positions of
their corresponding nodes. The corresponding artifact state
diagram of a single activity is constructed according to its spe-
cification by the reduction algorithm of a composite activity
(control block) being applied to each split flow of the block.
These state diagrams are then combined according to the
characteristic of the block. Meanwhile, artifact state tran-
sitions are analysed to detect inaccuracies. The reduction
algorithm is recursively applied until every activity and
control block in the current level is processed.
To simplify the explanation, the proposed algorithm is

divided into several sub-algorithms, each focused on one
artifact at a time. This section presents the algorithms that

Table 1: Mapping of anomalies

Sadiq et al. Sun et al. Our approach

redundant data redundant data no consumer

lost data conflicting data parallel hazard

missing data missing data no producer

mismatched data redundant data

and missing data

contradiction

inconsistent data not a problem at

conceptual level

not a problem at

conceptual level

misdirected data missing data branch hazard

insufficient data missing data no producer
194
are applied to construct an artifact state transition diagram
for each well-formed workflow structures. These algorithms
are integrated with the traverse algorithms presented in the
next section to analyse artifact inaccuracies of a workflow
schema.

5.1 Representations for artifact state diagrams in
a workflow

Fig. 9 displays the data representations utilised in the algor-
ithms. PartialFlowASDT is a structure denoting the arti-
fact state diagram ASD of artifact A corresponding to a partial
workflow, a segment from node HeadNode to node
TailNode in the input workflow schema. An artifact state
diagram is mainly represented as a linked list of
StateContainer structures. Two pointers, InState
and OutState, are employed to point to the first and last
StateContainer, respectively. InState contains state
conditions required to enter the corresponding partial work-
flow, and OutState contains state conditions achieved for
effects at the end of the partial workflow. For a partial work-
flow corresponding to an AND or XOR block, the state con-
ditions to be required/achieved are accumulated from those
of each subflow of the block. Additionally, two counters,
SpecifyCounter and NonReadCounter, are intro-
duced to count Specify operations and non-Read oper-
ations, respectively. SpecifyCounter helps detect
redundant specification problems, and NonReadCounter
helps detect Parallel Hazard errors.
A StateContainer is associated with a node in the

workflow scheme and contains Conditions, which is a
set of artifact state names required or achieved on that

Fig. 9 Data structures
IET Softw., Vol. 1, No. 5, October 2007

node. A StateContainer also includes a set of
Transitions. A Transition links two
StateContainers, and represents a change in artifact
state resulting from an artifact operation performed on an
activity node or on a joint action of a control block.

5.2 Algorithm to construct ASD for an activity

The algorithm ConstructActivityASD demonstrates
the steps required to construct a partial state diagram of
an artifact Ai on an activity node Ni. The main steps are
described as follows:

1. Extract the set of state conditions of Ai to be required
(InStateSet) according to the PreCondition of the
activity.
2. Extract the set of state conditions of Ai to be achieved
(OutStateSet) according to the PostCondition of
the activity.
3. Extract the ordered set of operations being performed on
the artifact Ai (OPSet) according to the Action of the
activity.
4. If the three sets from these steps are all empty, then the
activity does not contain any conditions or operations
associated with the artifact. Return NULL in this case.
5. Create an InState containing Conditions (to be
required) equivalent to InStateSet.
6. Create an OutState containing Conditions (to be
achieved) equivalent to OutStateSet.
7. Starting from the InState in step 5, for each operation
in OPSet, repeat the following:
i. For a Read operation, create a Transition to link
the current StateContainer with itself.
ii. For a Specify operation, increment
SpecifyCounter. If SpecifyCounter is greater
than one, report ‘Redundant Specification’.
iii. For a non-Read operation, increment
NonReadCounter. Then, create a new
StateContainer according to the operation, and
create a Transition to link the current
StateContainer to the new StateContainer.
Move to the new StateContainer.

8. If the Conditions set of OutState is not empty,
and is not equivalent to the Conditions set of the last
state node after the previous step, then report an internal
specification inconsistency (Fig. 10).

5.3 Constructing ASD for control blocks

5.3.1 ASD for a sequential block: For a sequential
block in the workflow scheme, the artifact state diagram
is constructed by sequentially connecting artifact state dia-
grams corresponding to each node in the block. Algorithm
ASD_SEQU_JOIN shows the steps for connecting two
partial artifact state diagrams corresponding to two adjacent
nodes. The main steps are as follows:

1. If one of the two ASDs is NULL, return the other as the
result in this case.
2. Let PreOutStateSet denote the Conditions set of
the OutState of the former ASD, and let
NextInStateSet be the Conditions set of the
InState of the latter ASD. Compare PreOutStateSet
with NextInStateSet.
i. If PreOutStateSet is not a subset of
NextInStateSet, then report ‘Contradiction’.
IET Softw., Vol. 1, No. 5, October 2007
ii. If the former ASD corresponds to an XOR block, and
PreOutStateSet is not a subset of
NextInStateSet, then report ‘Branch Hazard
(Losing in-state)’.
iii. If the latter ASD corresponds to an XOR block, and
NextInStateSet is not a subset of
PreOutStateSet, then report ‘Branch Hazard
(Insufficient out-state)’.

3. Combine the OutState of the former ASD and
InState of the latter ASD into one
StateContainer (Fig. 11).

Fig. 10 Algorithm to construct ASD for an activity
195

5.3.2 ASD for an iteration block: For an iteration
control block, the artifact state diagram for the loop body
is first constructed using the algorithm for a sequential
block. Then, to simulate the effects of iteration, the artifact
state diagram corresponding to the iteration block is con-
structed by using ASD_SEQU_Join to connect the ASD
of the loop body with its copy.

5.3.3 ASD for an AND/XOR Block: Algorithm
ASD_BLOCK_JOIN demonstrates how to construct an arti-
fact state diagram corresponding to an AND/XOR block by
combining artifact state diagrams for subflows of the block.
The inputs are the starting and ending nodes of an AND/
XOR control block, and a set of sub-artifact state diagrams
of its subflows. The main construction steps are as follows:

1. Combine each InState of sub-ASDs into a new
InState with its Conditions set equivalent to the
union of Conditions set of each InState.
2. Link each OutState of sub-ASDs into a new
OutState with its Conditions set equivalent to the
union of Conditions set of each OutState.
3. Calculate SpecifyCounter and
NonReadCounter according to the block type.
i. For an AND block, the resulting value is the sum of the
counters of sub-ASDs.
ii. For a XOR block, the resulting value is the maximum
among the counters of sub-ASDs.

4. For an AND block with more than one sub-ASD, if the
new InState from step 1 contains multiple required

Fig. 11 Algorithm to connect two sequential ASDs
196
conditions, the new OutState from step 2 contains mul-
tiple conditions to be achieved, or multiple sub-ASDs con-
tains non-Read operations, then report ‘Parallel
Hazard’.
5. For a XOR block, if the set of state test conditions on the
XOR-SPLIT node does not match the Conditions of the
new InState from step 1, then report ‘Branch
Hazard’ (Fig. 12).

6 Integrated algorithms to traverse and analysis

6.1 Algorithm for analysing sequential blocks

Algorithm AnalyzeSequence is applied to construct
and analyse the state diagram of artifact Ai corresponding
to the sequential block originated from a starting control
node (START-NODE, LOOP-START, AND-SPLIT or
OR-SPLIT). The algorithm traverses the nodes of the
block until it reaches the corresponding ending control
node (END-NODE, LOOP-END, AND-JOIN or
XOR-JOIN). The algorithm has the following steps:

1. Enter a loop to traverse the nodes in sequential order until
the corresponding ending control node is reached. At each
iteration, the following steps are performed.
Construct the partial state diagram of artifact Ai accord-

ing to the type of current traversed node.
i. When an activity node is encountered, construct the
corresponding artifact state diagram according to the
specification of the activity (using algorithm
ConstructActivityASD described in the previous
section).
ii. When a starting control node of a sub-block is encoun-
tered, construct the artifact state diagram corresponding to
the sub-block (using algorithm AnalyzeBlock described
in the latter sections).
Apply algorithm ASD_SEQU_JOIN to concatenate the

ASD constructed in the previous iteration with the ASD.
Artifact inaccuracies of contradiction and branch hazard
are also detected in Algorithm ASD_SEQU_JOIN.
Continue the traversal by following the current activity

node directly, or following the end of the current sub-block.
2. Pack the starting node, ending node and the correspond-
ing ASD of the sequential block into a
PartialFlowASDT structure and then return it (Fig. 13).

6.2 Algorithm for analysing control blocks

Algorithm AnalyzeBlock constructs the partial state
diagram of artifact Ai corresponding to a control block
and analyses the ASD based on the type of block.

6.2.1 Analysing an iteration control block: For an
iteration control block, proceed as follows:

1. Apply AnalyzeSequence to traverse the loop body
and construct the corresponding ASD of Ai.
2. Construct and analyse the ASD corresponding to the
LOOP-block, simulating the effects of iteration by using
ASD_SEQU_Join to connect and check the ASD of the
loop body with its copy.
3. Pack the starting node, ending node and the correspond-
ing ASD into a PartialFlowASDT structure, and then
return it.
IET Softw., Vol. 1, No. 5, October 2007

6.2.2 Analysing an AND/XOR control block: The
ASD of each subflow and the ASD resulting from the
merger of these ASDs are analysed as follows:

1. Apply AnalyzeSequence to construct and analyse
the ASD of each split flow.
2. Apply ASD_BLOCK_JOIN to merge the ASDs of each
split flow.
3. For AND-block, detect Parallel Hazard by checking
NonReadCounter.
4. For XOR-block, detect Branch Hazard by checking
whether the condition testing on the XOR-SPLIT node is
consistent with InStates of the block.
5. Pack the starting node, ending node and the correspond-
ing ASD of the block into a PartialFlowASDT structure
and then return it Fig. 14.

Fig. 12 Algorithm to construct ASD for AND/XOR blocks
IET Softw., Vol. 1, No. 5, October 2007
6.3 Main algorithm for analysing workflow

AnalyzeWS is the main algorithm for analysing the input
workflow schema. The algorithm utilises
AnalyzeSequence to construct an artifact state
diagram for each artifact appearing in the input workflow.
During the construction, detections for artifact inaccuracies
of Redundant Specification, Contradiction,
Parallel Hazard and Branch Hazard proceed.
The constructed artifact state diagram is then utilised to
detect artifact inaccuracies of No Producer and No
Consumer.
The computational complexity of our analysis algorithms

are now discussed. Our algorithms include three iterations:
(1) the algorithm AnalyzeWS iterates through each arti-
fact, (2) the algorithms AnalyzeSequence and
AnalyzeBlock, are used to iterate through each node
197

and (3) the algorithm ConstructActivityASD iterates
through each operation performed on the artifact at an
activity node. Suppose the input workflow schema has n
nodes and m artifacts and the average number of conditions
and operations for an artifact on each node is c. The
complexity of our algorithms is O(nmc) (Fig. 15).

7 Illustrative example

This section presents an illustrative example of a primitive
workflow schema and the procedure to detect artifact

Fig. 13 Algorithm for analysing sequential blocks
198
inaccuracies, and demonstrate the proposed analysis algor-
ithms. Fig. 16 shows an example of primitive workflow
schema.
Fig. 16 illustrates the three unblocked activity nodes fA1,

A2 and A14g and two top-level control blocks fAND-1
(AS1, AJ1) and XOR-2 (XS2, XJ2)g. The first top-level
control block AND-1 contains iteration control block
LOOP1 (LOOP1_Start, LOOP1_End), control block
AND-2 (AS2, AJ2) and XOR-1(XS1, XJ1) followed by an
activity node A9. The second top-level control block
XOR-2 contains control block AND-3 (AS3, AJ3) and
XOR-3 (XS3, XJ3).
Table 2 displays the usage of an example artifact

extracted from the activity specifications. The blank field
indicates no conditions or no operations on the artifact.
This workflow schema example is then analysed by the pro-
posed artifact analysis algorithms as follows.
In the beginning of the analysis process, algorithm

AnalyzeSequence is employed to sequentially traverse
the main flow enclosed by the Start Node and End
Node. In Fig. 17, first, activity nodes A1 and A2 are succes-
sively processed to construct their corresponding partial

Fig. 15 Main algorithm for analysing workflow
Fig. 14 Algorithm for analysing control blocks
IET Softw., Vol. 1, No. 5, October 2007

Fig. 16 Example of primitive workflow schema
artifact state diagrams using algorithm
ConstructActivityASD. Then, these two partial
state diagrams are concatenated by algorithm
ASD_SEQU_JOIN.
In Fig. 18, algorithm AnalyzeBlock is applied on

AND1 control block. First, AnalyzeBlock utilises algor-
ithm AnalyzeSequence to construct corresponding
partial artifact state diagram for each concurrent subflow
of the block. Then algorithm ASD_BLOCK_JOIN is
employed to merge these partial diagrams into one. The
inner control blocks are processed by the same reduction
procedures. In the third concurrent subflow, a Branch
Hazard is detected because of the loss of the out-state.
In Fig. 19, a Parallel Hazard is detected during joining

concurrent artifact state transitions. Fig. 20 shows the
outcome after AND1 control block has been processed. In
Fig. 21, the succeeding control block XOR2 is processed
by AnalyzeBlock, and its branch subflows are processed
using AnalyzeSequence.
In Fig. 22, the branch subflows of XOR2 are reduced to

node AND3 and node XOR3. Control block XOR2 is

Table 2: Usage of the example artifact

Activity node In-state Operation type Out-state

A1 Specify

A2 Specified Write Written

A3 Written Revise Revised

A4 Revised Write Written

A5 Written Revise Revised

A6

A7 Written Write Written

A8 Written Revise Revised

A9 Written Revise Revised

A10

A11 Revised Write Written

A12 Revised Write Written

A13 Revised Read

A14 Written Revise Revised
IET Softw., Vol. 1, No. 5, October 2007
reduced to node XOR2 in Fig. 23. In Fig. 24, a branch
hazard is then detected because of the loss of out-state
(revised) during sequential joining with activity node
A14. Fig. 25 is the result of artifact usage analysis on this
workflow schema. Additionally, the final artifact state
diagram shows three instances of Artifact Inaccuracy.
The Branch Hazard, detected between control block

XOR1 and activity node A9, exists because one of the out-
states in XOR1 is lost. In the actual execution, the execution
thread selecting the branch subflow (A8,A8) may halt by
contradiction between the current artifact state and the
Pre-condition of activity A9. The Branch Hazard, detected
between the control block XOR2 and activity node A14,
has the same cause.
The Parallel Hazard, detected inside control

block AND1, exists because of a competition
between these three concurrent subflows,
(LOOP1_Start,LOOP1_End), (AS2,AJ2) and
(XS1,A9). The interleaving between the concurrent
subflows may result in Contradiction problems inside the
control block.

8 Comparisons of data-flow analysis approaches

As mentioned in the related work section, current workflow
modelling and analysing paradigms mainly focus on control
flow and resource dimension. The literature reports very
little work in the data-flow dimension. In the literature,
Sadiq et al. [7] and Sun et al. [8] are two significant
works focused on the analysis in data-flow dimension.
Thus, in this section, we compare our work with theirs as
follows and summarises the main points in Table 3.
Sadiq et al. [7] identify and justify the importance of data

modelling in overall workflow design process. In addition,
data-flow validation issues and essential requirements of
data-flow modelling in workflow specifications are ident-
ified. They illustrate and define seven potential data-flow
anomalies in the above table. However, Sadiq’s work is dis-
cussed only at conceptual level and thus, neither concrete
data-flow model nor detecting algorithms are proposed.
Furthermore, operations on data are only classified into
read and write type.
199

Fig. 17 Phase 1
Fig. 18 Phase 2
IET Softw., Vol. 1, No. 5, October 2007200

Fig. 19 Phase 3

Fig. 20 Phase 4
IET Softw., Vol. 1, No. 5, October 2007 201

Fig. 21 Phase 5

Fig. 22 Phase 6
IET Softw., Vol. 1, No. 5, October 2007202

Fig. 23 Phase 7
Sun et al. [8] formulate the data-flow perspective by
means of dependency analysis. The data-flow matrix and
an extension of the unified modelling language (UML)
activity diagram are proposed to specify the data flow in a
business process. Then, three basic types of data-flow
IET Softw., Vol. 1, No. 5, October 2007
anomalies – missing data, redundant data and conflicting
data, are defined. Based on the dependency analysis, algor-
ithms to data-flow analysis for discovering the data-flow
anomalies are presented. However, as Sadiq’s work, no
explicit model is proposed to characterise the behaviours
Fig. 24 Phase 8
203

Fig. 25 Phase 9
204
Table 3: Summary of comparisons

Sadiq et al. Sun et al. This work

workflow model n/a (conceptual level) data-flow matrices and

process data diagram

three layer workflow model

missing data

No producer

redundant data missing data

No consumer

lost data

anomalies Redundant specification

mismatched data redundant data

discussed Contradiction

inconsistent data

Parallel hazard

misdirected data conflicting data

Branch hazard

insufficient data

data behaviour n/a n/a finite state machine

operations Read, Write Read, Initial Write Specify, Read, write, revise

concerned and destroy

detecting method n/a data dependency analysis tracing on artifact state transition

concrete algorithm n/a yes yes
of data. Also, read and initial write operation types are
considered only.
Our approach uses a three-layer workflow model to

describe workflow schemas. The behaviours of an artifact
are explicitly modelled by a finite state machine. Based
on this behaviour model, the classification on the operation
types of an artifact is not limited to read and write.
Designers are free of using any criteria for classification
although the classification can be done based on the seman-
tic meanings of operations on an artifact. Besides, the
common operation types, including Specify, Read,
Write, Revise and Destroy, are identified as examples
in this paper.

9 Conclusion and future work

The main contribution of this work is to introduce an artifact
usage analysis technique into workflow design phase. To
achieve this goal, this work builds a Three-Layer
Workflow Design Methodology. In the methodology,
the behaviours of an artifact are characterised by its
state transition diagram. Among the usages of artifacts,
six types of inaccurate artifact usage affecting workflow
execution are identified and a set of algorithms to
discover these inaccuracies is presented. An example is
demonstrated to validate the usability of the proposed
algorithm.
We are currently continuing our research in several direc-

tions. First, we plan to implement the proposed model and
algorithms on current workflow management systems,
such as Agentflow [27], so that our research results can be
tested in real-world applications. Second, we will continue
the analysis on composite artifacts with more complex
usages using Revise operations. The third is to integrate
resource constraints analysis techniques with our work to
build a practical workflow design methodology.
IET Softw., Vol. 1, No. 5, October 2007

10 References

1 The Workflow Management Coalition: ‘The workflow reference
model’. Document Number TC00-1003, January 1995

2 Senkul, P., and Toroslu, I.H.: ‘An architecture for workflow
scheduling under resource allocation constraints’, Inf. Syst., 2005,
30, (5), pp. 399–422

3 Li, H., Yang, Y., and Chen, T.Y.: ‘Resource constraints analysis of
workflow specifications’, J. Syst. Softw., 2004, 73, (2), pp. 271–285

4 Liu, C., Lin, X., Orlowska, M., and Zhou, X.: ‘Confirmation:
increasing resource availability for transactional workflows’, Inf.
Sci., 2003, 153, (1), pp. 37–53

5 Du, W., and Shan, M.C.: ‘Enterprise workflow resource management’.
Proc. Ninth International Workshop on Research Issues on Data
Engineering: Inf. Technology for Virtual Enterprises, (IEEE
Computer Society), March 1999, pp. 108–115

6 Muehlen, M.Z.: ‘Resource modelling in workflow applications’.
Workflow Management Conf., Münster, Germany, 1999

7 Sadiq, S., Orlowska, M., Sadiq, W., and Foulger, C.: ‘Data flow and
validation in workflow modelling’. Proc. Fifteenth Conf. on
Australasian Database, Australian Computer Society 2004, vol. 27,
pp. 207–214

8 Sun, S.X., Zhao, J.L., Nunamaker, J.F., and Sheng, O.R.L.:
‘Formulating the data flow perspective for business process
management’, Inf. Syst. Res., 2006, 17, (4), pp. 374–391

9 Zhuge, H.: ‘Component-based workflow systems development’,
Decis. Support Syst., 2003, 35, (4), pp. 517–536

10 Hitomi, A.S., and Le, D.: ‘Endeavors and component reuse in
web-driven process workflow’. Proc. California Software
Symposium, Irvine, CA, USA, October 1998, pp. 15–20

11 Hsu, H.-J.: ‘Using state diagrams to validate artifact specifications on
primitive workflow schema’. MS thesis, National Chiao-Tung
University, 2005

12 Wang, F.-J., Hsu, C.-L., and Hsu, H.-J.: ‘Analyzing inaccurate artifact
usages in a workflow schema’, COMPSAC, 2006, 2, pp. 109–114

13 Curtis, B., Kellner, M.I., and Over, J.: ‘Process modelling’, CACM,
1992, 35, (9), pp. 75–90

14 Jablonski, S., and Bussler, C.: ‘Workflow management: modelling
concepts, architecture, and implementation’ (International Thomson
Computer Press, London, UK, 1996)

15 Karamanolis, C., Giannakopoulou, D., Magee, J., and Wheater, S.M.:
‘Model checking of workflow schemas’. Fourth Int. Enterprise
IET Softw., Vol. 1, No. 5, October 2007
Distributed Object Computing Conf. (EDOC000), IEEE Computer
Society, 2000, pp. 170–179

16 van der Aalst, W.M.P.: ‘The application of petri nets to
workflow management’, J. Circuits Syst. Comput., 1998, 8, (1),
pp. 21–66

17 van der Aalst, W.M.P., and ter Hofstede, A.H.M.: ‘Verification of
workflow task structures: a petri-net-based approach’, Inf. Syst.,
2000, 25, (1), pp. 43–69

18 Karamanolis, C., Giannakopoulou, D., Magee, J., and Wheater, S.M.:
‘Formal verification of workflow schemas’. Technical Report, Control
and Coordination of Complex Distributed Services, ESPRIT Long
Term Research Project, 2000

19 Verbeek, H.M.W., Basten, T., and van der Aalst, W.M.P.: ‘Diagnosing
workflow processes using woflan’, Comput. J., 2001, 44, (4),
pp. 246–279

20 Sadiq, W., and Orlowska, M.E.: ‘Analyzing process models using
graph reduction techniques’, Inf. Syst., 2000, 25, (2), pp. 117–134

21 van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B.,
and Barros, A.P.: ‘Workflow patterns’. BETA Working Paper
Series, WP 47’, Eindhoven University of Technology, Eindhoven,
2000

22 van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., and
Barros, A.P.: ‘Advanced workflow patterns’. 7th Int. Conf. on
Cooperative Information Systems (CoopIS 2000), volume 1901 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2000,
pp. 18–29

23 Russell, N., ter Hofstede, A.H.M., Edmond, D., and van der Aalst,
W.M.P.: ‘Workflow data patterns’. QUT Technical report,
FIT-TR-2004-01, Queensland University of Technology, Brisbane, 2004

24 Bae, J., Bae, H., Kang, S.-H., and Kim, Y.: ‘Automatic control of
workflow processes using ECA rules’, IEEE Trans. Knowl. Date
Eng., 2004, 14, (8), pp. 1010–1023

25 Son, J.H., and Kim, M.H.: ‘Extracting the workflow critical path from
the extended well-formed workflow schema’, J. Comp. Syst. Sci.,
2005, 70, (1), pp. 86–106

26 Chang, D.-H., Son, J.H., and Kim, M.H.: ‘Critical path identification
in the context of a workflow’, Inf. Softw. Technol., 2002, 44, (7),
pp. 405–417

27 Flowring Technology Corp., available at: http://www.flowring.com,
(accessed May 2006)

28 The Workflow Management Coalition: ‘Terminology and glossary’,
Document Number WFMC-TC-1011’, February 1999
205

