
3700 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 10, OCTOBER 2007

A Turbo Coding System for
High Speed Communications

Yan-Xiu Zheng, Student Member, IEEE, and Yu T. Su, Senior Member, IEEE

Abstract— This paper presents a new turbo coding scheme
for high data rate applications. It uses a special interleaver
structure that is naturally suited for parallel processing and a
multiple-round early stopping test involving both sign check and
a CRC code. A memory (storage) management mechanism is
included as a critical part of the decoder. The proposed coding
scheme offers new design options and tradeoffs that are not
available to conventional convolutional turbo codes (CTCs). In
particular, it becomes possible for the decoder to employ an
efficient inter-block collaborative decoding algorithm, passing
the information obtained from stopping test proved blocks to
other unproved blocks. It also becomes important to have a
proper decoding schedule. The combined effect is improved
performance and reduction in the average decoding latency. We
show that the memory manager has a modular-like effect in
that additional memory units render enhanced performance due
not only to less forced early stopping but to possible increases
of the interleaving depth. It also provides additional design
tradeoff amongst performance, speed and required memory size.
Depending on the decoding schedule, the degree of parallelism
and other decoding resources available, the proposed scheme
admits a variety of decoder architectures that meet a large range
of speed and performance demands.

Index Terms— Turbo codes, interleaver, inter-block permuta-
tion, parallel decoding, early-stopping.

I. INTRODUCTION

CONVENTIONAL convolutional turbo codes (CTCs) usu-
ally employ a block-oriented interleaving so that the

message-passing process associated with an iterative decoder
is confined to proceed within a block. The performance of
such CTCs improves as the block size increases. This is
in part due to the fact that the range (interleaving size)
of the extrinsic information collected for decoding increases
accordingly. But the interleaving size along with the number of
iterations are the dominant factors that determine the decoding
latency and complexity which, in turn, are often the main
concerns that preclude the adoptability of such codes in high
rate communication or storage applications.

A technique to overcome the dilemma between increasing
the range of message exchange and extrinsic information
collection and limiting the interleaving size is the recently
proposed inter-block permutation interleaver (IBPI) [1] [2].

Manuscript received March 17, 2006; revised August 26, 2006 and Novem-
ber 19, 2006; accepted January 12, 2007. The associate editor coordinating the
review of this paper and approving it for publication was G. Vitetta. This work
is supported by the National Science Council of Taiwan under Contract 92-
2213-E-009-050. Part of this paper was presented at the 15th IEEE PIMRC,
Barcelona, Spain, Sep. 2004.

The authors are with the Department of Communications Engi-
neering, National Chiao Tung University, Hsinchu, Taiwan (email:
ytsu@mail.nctu.edu.tw, non2000.cm88g@nctu.edu.tw).

Digital Object Identifier 10.1109/TWC.2007.060086.

For a turbo code (TC) using an IBPI, the encoder partitions
the incoming data sequence into L-bit blocks upon which the
IBPI performs intra-block and then inter-block permutations.
For example, the IBPI may move contents of a block either
to coordinates within the same block or to its 2S immediate
neighboring blocks so that the IBP-interleaved contents of a
block are spread over a range of 2S +1 blocks centered at the
original block. Such an IBPI is said to have the (left or right)
IBP span S.

An in-depth study on the properties and design of IBPI
and IBP-interleaved turbo code (IBPTC) is presented in [3].
An example is given in subsection 2.2 to demonstrate the
fact that, unlike a conventional CTC decoder that has a
fixed range of message (extrinsic information) passing, the
range of message passing for an IBPTC decoder increases
as it proceeds with more decoding iterations. Moreover, as
explained in Section 3, the corresponding average decoding
latency can be kept at least the same as that of a conventional
CTC with the same block size and the same number of a
posteriori probability (APP) decoders. It suffices to say that,
using a fixed block size L, a well-designed IBPI with a proper
decoding schedule not only increases the minimum distance
of the corresponding IBPTC but also enables an iterative
decoder to collect extrinsic information from a range much
wider than L while maintaining fixed “local” interleaving size
and average decoding delay. Note that an IBPI can be built on
any existing block-wise interleavers. Using one of them for
intra-block permutation, an IBPI has only to add an extra IBP
step.

Besides having an expanding interleaving size, the IBPTC
enjoys the advantage of being parallel decodable (see Sec-
tion 3). To further accelerate an iterative decoder’s decoding
speed, one can introduce an early stopping mechanism, which
also offers the extra benefit of lower the computing power
needed for achieving a given performance. The issue of
(decoders’) stopping criteria has been widely discussed [4]–
[6]. These criteria can be classified into four categories: (i)
cross entropy (CE) stopping criteria, (ii) sign check (SC)
stopping criteria, (iii) soft value (SV) stopping criteria and
(iv) cyclic redundancy check (CRC) stopping criteria. The
last one guarantees the correctness of decoded bits with a
high probability while the others only promise the convergence
of the decoded bit sequence. The SC and the CRC stopping
criteria use the bit operations only while the remaining two
categories operate over the floating-point domain. Moreover,
CE and SV stopping criteria have to optimize threshold for
different channel conditions whence is less robust. On the
other hand, CRC codes have been widely used in the data

1536-1276/07$25.00 c© 2007 IEEE

XIU and SU: A TURBO CODING SYSTEM FOR HIGH SPEED COMMUNICATIONS 3701

link or higher layer as part of the error-control mechanism
and is an indispensable component of a packet-oriented data
communication system. Using CRC codes as a part of the
stopping criterion thus causes little or no extra complexity.

Since an IBPI permutes bits in a block to neighboring
blocks within its span, a block-by-block early stopping scheme
will inevitably result in stopping time variation over different
blocks. On the other hand, the special structure of IBPIs im-
plies that bits in neighboring blocks are algebraically related,
hence the information about bits in terminated blocks can be
used to help decoding bits in unterminated blocks, i.e., one
can actually take advantage of the stopping time variation if
proper statistical information can be extracted from terminated
blocks.

This paper presents a new novel dynamic codec structure
that allows collaborative decoding among different blocks in
the above-mentioned sense. When used in conjunction with a
highly reliable multiple round stopping test using both SC and
a CRC code, the proposed coding scheme yields low latency
(small average decoding iteration number) while achieving
very impressive performance.

We start our presentation in the next section with a de-
scription of the proposed codec system model and related
iterative decoding procedure. Issues related to latency, parallel
decoding and some implementation aspects are addressed in
Section 3. In Section 4, we present the structure of a variable
termination (stopping1) time IBPTC decoder and propose
some multiple-round stopping criteria and tests. The next
section addresses the issue of storage requirement and suggests
a general dynamic memory management algorithm. As an
application example, two re-transmission protocols based on
our coding scheme are presented. Section 6 provides some nu-
merical examples that validate the superiority of the proposed
coding scheme and finally, in Section 7 we summarize our
main results.

In addition to the abbreviations mentioned above, we also
use the following acronyms. DR stands for decoding round,
ADU for an APP decoding unit, and SRID for single-
round interleaving delay. Moreover, we have ST (stopping
test), SC (sign check), MRT (multiple-round test), MRST
(multiple-round stopping test), HST (hybrid stopping test),
VTT (variable termination time), MU (memory unit), ESD
(extended stopping decision) and some combinations of the
above acronyms, e.g., SCST SVST, CRCST, MR-HST, etc.

II. SYSTEM MODEL AND IBP BEHAVIOR

A. System model

Shown in Fig. 1 is a generic block diagram for a commu-
nication system using an IBPTC. The input data sequence X
is partitioned into blocks of the same length, {X1,X2, · · ·},
where Xi is a row vector of length L−KCRC representing the
ith block. They are CRC-encoded into W = {W1,W2, · · ·},
where Wi = {wi0, wi1, · · · , wi(L−1)} is a row vector with
length L. W is formed by padding at the end of each data block
parity bits that are the coefficients of the remainder polynomial
r(x) obtained by dividing a data polynomial associated with

1We will use stopping and termination interchangeably throughout the
paper.

1Z

2Z

3Z

S to p p ing
C o nd itio n

C heck
AP P Deco d er Y

C R C C o d e
Enco d er

C hannel

X Z

)(iΛ)(i
SΛ-

-

IBP
Interleaver

W

C o nvo lutio nal
Enco d er 1

C o nvo lutio nal
Enco d er 2

P arallel
to

S erial

X̂

)(
,

i
VTTeΛ)1(

,
−Λ i
VTTe

Fig. 1. A block diagram for the proposed coding system in which the encoder
uses an IBP interleaver. More than one VTT-APP decoding unit can be used;
the notations denote various extrinsic information for the ith decoding unit.

a data block by a binary generator polynomial g(x) of order
KCRC . Of course, the degree of r(x) is less than KCRC .
The corresponding probability of undetectable error is roughly
equal to 2−KCRC . In other words, longer CRC codes possess
better error detection capability.

The CRC encoder output W and its IBPI-permuted version
W′ = {W′

1,W′
2, · · · , } are then encoded to form the coded

sequence Z = {Z1,Z2,Z3}, where Zi = {Zi
1,Z

i
2, · · ·} and

the superscript i is used to denote the systematic part (i = 1),
the first encoder’s output (parity) sequence (i = 2) and the
second encoder’s output sequence (i = 3). As can be seen,
the only difference between a CTC and an IBPTC encoders
is the interleaver used.

The receiver uses one or multiple ADUs like that shown
in lower part of Fig. 1 to decode the corresponding received
baseband sequence Y = {Y1

1,Y
2
1 ,Y

3
1,Y

1
2 ,Y

2
2 , Y3

2 , · · ·},
where Yi

j is the subsequence corresponding to Zi
j ; other

notations are defined in the next section. An ADU consists
of an APP decoder and a stopping condition checker. It also
performs the corresponding interleaving or de-interleaving and
other related operations but for simplicity we do not show
these operations in the figure.

The stopping condition checker applies CRC check and/or
other forms of STs to verify if the APP decoder output satisfies
the stopping criterion. An affirmative answer leads to the
decision to stop (terminate) decoding the block in question and
this is the only possible early-stopping opportunity for CTCs.
Besides such a regular early-stopping, however, there are two
other early-stopping opportunities for IBPTCs since no matter
whether the decoder output passes the ST, the corresponding
soft output is interleaved or de-interleaved to the neighboring
blocks within the IBP span. The ADU will then examine each
block within the span to see if a block’s content has been
filled with stop-decoding decisions. If such a block is found
the ADU will issue a termination decision accordingly. The
ADU can also run STs on these neighboring blocks and make a
termination decision. We refer to the latter two early-stopping
possibilities as extended (or pre-decoding) early-stoppings.

Note that a decoding iteration consists of two DRs that are
respectively responsible for decoding the pre-permuted (non-
interleaved) Z2

j and post-permuted (interleaved) blocks Z3
j and

CRC check is feasible for pre-permuted blocks only. Hence

3702 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 10, OCTOBER 2007

: CRC Encoder

: Convolutional
 Code Encoder

: Channel Effect
: IBP Interleaver

2
1Z 1

1Z

3
1Z

2
1Y

3
1Y

1
1Y

1X

1W

′
1W

2
2Z 1

2Z

3
2Z

2
2Y

3
2Y

1
2Y

2X

2W

′
2W

2
3Z 1

3Z

3
3Z

2
3Y

3
3Y

1
3Y

3X

3W

′
3W

2
4Z 1

4Z

3
4Z

2
4Y

3
4Y

1
4Y

4X

4W

′
4W

2
5Z 1

5Z

3
5Z

2
5Y

3
5Y

1
5Y

5X

5W

′
5W

(a)

Pre -Pe rmutation

Pos t-Pe rmutation

1 2 3 4

1 2 3 4

b4, 4 b3, 1 b2, 2 b1, 3b2, 4 b1, 1 b4, 2 b3, 3 b3, 4 b4, 1 b1, 2 b2, 3b1, 4 b2, 1 b3, 2 b4, 3

b4, 1 b4, 2 b4, 3 b4, 4b2, 1 b2, 2 b2, 3 b2, 4 b3, 1 b3, 2 b3, 3 b3, 4b1, 1 b1, 2 b1, 3 b1, 4

(b)

Fig. 2. (a) A graph representation for a CRC and IBPTC encoded system
with interleaving span S = 1, (b) An inherent IBP structure can be found in
most practical interleavers.

in the first DR one can perform both regular and extended
early-stopping tests, but in the second DR, only extended
early-stopping is viable unless the ST does not involve a CRC
check. Examples are given in Section 5 to further elaborate
this property of IBPTCs.

B. Graphical representation of an IBPTC

Fig. 2 (a) is a graphical representation for the system of Fig.
1 with a symmetric IBPI of interleaving span S = 1 and an
input data sequence X of five-block duration. The dark, gray,
crossed and blank squares represent respectively the functions
of convolutional encoder, CRC encoder, IBPI and the channel
effect. This extended graph is used to describe the iterated

C TC /IB P TC
Block
Index

AP P
Deco d ing
R o und

1

2

3

4

1 2 3 4 5 6 7

1 5 9 13 17 21 25

2 6 10 14 18 22 26

3 7 11 15 19 23 27

4 8 12 16 20 24 28

1 2

3

6

10

5

9

14

4

8

13

18

7

12

17

22

11

16

21

25

15

20

24

27

19

23

26

28

Fig. 3. A comparison of exemplary decoding schedules for CTC and IBPTC
when decoding 7 blocks with 2 iterations (four DRs). The numbers a/b in the
constituent squares represent the order the APP decoder performs decoding
for CTC/IBPTC. Hence the first block of the CTC is decoded by the first 4
DRs (the left upper numbers in the second leftmost column) but that of the
IBPTC is decoded by the first, third, sixth and tenth DRs (the right lower
numbers in the same column); see subsection 2.3 for detailed discussion.

decoding behavior. As one can see, the content of a given
block, say W2, is interleaved to parts of itself W′

2 and the
two neighboring blocks W′

1 and W′
3 to its immediate left and

right.
At the first DR, the decoder uses Y1

i , Y2
i to decode

block Wi. The extrinsic information of, say W1 and W5,
is interleaved for use in decoding W′

1, W′
2 and W′

4, W′
5 in

the second DR. It is easy to see that, in decoding the third
block W3 at the beginning of the second iteration, the decoder
can use as a priori information some message passed from all
five neighboring blocks. In general, an IBPTC decoder can
exploit information collected from 4SI +1 adjacent blocks in
I iterations while, as will be shown in the ensuing subsection,
the average decoding delay between two output blocks is
kept fixed. This message passing range expansion capability
implies that an IBPI can have an unbounded equivalent inter-
leaving depth (size) that is constrained only by the numbers
of turbo decoding iterations and the data blocks involved in
decoding while keeping the interleaving delay per iteration
bounded by its local interleaving depth.

III. LATENCY, PARALLELISM, AND DECODING SCHEDULE

Latency is perhaps the most important issue in high speed
codec design. We first analyze the encoding and decoding
delays when only one APP decoder is used. The corresponding
decoding delay for a parallel decoder is minimized by using a
proper decoding schedule. But even if only one APP decoder
is used, as we will see shortly, the decoding schedule still
plays a pivotal role in minimizing the decoding delay of an
IBPTC.

A. Encoding and decoding latency

Although the interleaving process of an IBPI is defined by
the composition of the intra- and inter-block permutations, it
can be implemented by a single step. The encoder knows to
which position each bit (or sample) in a given block should
be moved and can do so immediately after it receives each
incoming bit. But to encode a given, say the ith, interleaved

XIU and SU: A TURBO CODING SYSTEM FOR HIGH SPEED COMMUNICATIONS 3703

block U′
i into X2

i , it has to wait until the complete (i + S)th
block is received. The time elapsed between the instant the
encoder receives the first bit of the ith block and the moment
when it receives the last bit of the (i+S)th block and outputs
its first encoded bit of X2

i is simply (1+S)L-bit durations. By
contrast, a CTC with a block size of L bits has an encoding
delay of approximately L bits.

The single-round interleaving (or de-interleaving) delay is
proportional to the encoding delay. But the total decoding
delay is a much more complicated issue. For a decoder that
uses a single ADU, the decoding delay depends mainly on
three variables: the single-round interleaving delay (SRID), the
single-round APP decoding delay, and the number of decoding
iterations. As the SR APP decoding delay (speed) is usually
much less than the SRID, we ignore the APP decoding delay
in the subsequent discussion.

For the first decoding of each incoming block, there can
be zero waiting time, but for later DRs the corresponding
delays depend on, among other things, the decoding schedule
used. With the same block size, the decoding delay of the
first received block for the CTC is definitely shorter than that
for the IBPTC. But if one considers a period that consists of
multiple blocks (otherwise one will not have enough blocks
to perform inter-block permutation) and takes the decoding
schedule into account, then the average decoding latency
difference can be completely eliminated. This is because the
APP decoder (including the interleaver and deinterleaver) will
not stay idle until all blocks within the span of a given
block are received. Instead, the APP decoder will perform
decoding-interleaving or deinterleaving operations for other
blocks according to a predetermined decoding schedule before
it can do so for the given block (and the given DR).

If we define the total decoding delay as the time span
between the instant a decoder receives the first input sample
(from the input buffer) and the moment it outputs its last
decision then it is possible that both the IBP and the classic
approaches yield the same total decoding delay even if only
one APP decoder is used. We use the following example and
Fig. 3 to support our claim; its generalization is straightfor-
ward.

Suppose we receive a total of 7 blocks of samples (in a
packet, say) and want to finish decoding in 2 iterations (4
DRs). One can easily see from Fig. 3 that a CTC decoder
would output the first decoded block in 4 DT cycles, where
DT is the number of cycles needed to perform a single-
block APP decoding plus SRID. The IBPTC decoder, on the
other hand, needs 10 DT cycles to output its first decoded
block. However, if one further examines the decoding delays
associated with the remaining blocks, then one finds they are
8, 12, 16, 20, 24, and 28 DT cycles for the CTC decoder while
those for the IBPTC decoder are 14, 18, 22, 25, 27 and 28
DT cycles, respectively. So in the end, both approaches reach
the final decision at the same time.

It can be shown that, for a decoder with 2N DRs and
S = 1, both decoders result in a constant delay of 2N
DT cycles between two adjacent output blocks, except for
the first block and the last 2N − 1 blocks. For an S = 1
IBPTC, the decoder requires a first-block decoding delay of
N(1 + 2N) DT cycles while that for the CTC is only 2N

3
lo ad

received
samp les

8
AP P d eco d ing

11
p hase end ?

No

10
memo ry release

p ro ced ure 1

7
fo rced ES D and
memo ry release

p ro ced ure 2

9
IBP interleaving o r
d e-interleaving and

ES Ds

6
M F = 0 ?

2
M F < M R ?

4
forced E SD and
m em ory release

procedure 2

Yes

Yes

No

No
ES D

(b)

1
initialize
a p hase

No

Yes

12
s to p a
p hase

5
p ro ceed

to the next
d eco d ing
ro und ?

No

Yes

(a)

 Block
 N umber

A P P
D ecoding
Round

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

a11 b11

b12

c11

c12

c13

d11

d12

d13

d14

a21

a22

a23

a24

a25

b21

b22

b23

b24

b25

b26

c21

c22

c23

c24

c25

c26

d21

d22

d23

d24

d25

d26

a31

a32

a33

a34

a35

a36

10 11 12

b32

b33

d32

b31 c31

c32

d31

d45

c46

c45

b46

b45

c44b44

b43

a46

a45

a44

a43

d36

d35

d34

d33

c36

c35

c34

c33

b36

b35

b34

a42

a56d46

Fig. 4. (a) A multiple zigzag decoding schedule for IBPTCs with an
interleaving span S = 1; (b) A joint memory management and IBPTC
decoding procedure.

DT cycles. The inter-block decoding delays, i.e., decoding
latency between two consecutive output blocks, for the last
2N − 1 output blocks of an IBPTC decoder using a decoding
schedule similar to that shown in Fig. 3 (e.g., the one shown in
Fig. 4 (a)) form a monotonic decreasing arithmetic sequence
{2N − 1, 2N − 2, · · · , 1} (in DT cycles). The inter-block
decoding delay of a CTC decoder remains a constant 2N DT
cycles. On the average, both codes give the same inter-block
decoding delay.

B. Memory contention and decoding schedule for multiple
ADUs

The above assessment on the encoding/decoding delay is
made under the assumptions that both codes use the same
block size L, no early stopping mechanism is applied, and
a single ADU is used. The delay will be shortened if the
latter two assumptions are removed. In particular, the decoding
delay can be reduced significantly by using multiple ADUs for
parallel decoding2. When iterative APP decoding is performed
by multiple ADUs, these ADUs have to access memory via
interleaver (or deinterleaver) for extrinsic information update

2The decoding delay can also be reduced by using a faster APP decoder.
But as mentioned in previous subsection, the APP decoder delay is much less
than SRID hence speeding up APP decoder does not help much in reducing
the total decoding delay.

3704 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 10, OCTOBER 2007

and exchange. To have the maximum delay reduction, the in-
terleaver should also have a parallel structure to avoid memory
access collision. It can be shown that the structure of IBP
interleavers allows flexible degrees of parallelism and highly
parallel memory access. In fact, Theorem 1 of [2] implies
that a good IBPI should possess the local-invariant property
that preserves the relative position within a block during the
IBP process. This property promises contention-free across
the span (parallel-decodable blocks) of the IBPI. Furthermore,
like the contention-free interleaver design presented in [7],
closed-form contention-free IBP rules are available and, more
importantly, as were shown in [2] [3], they guarantee some
good distance properties for the associated IBPTC.

Just the same as the single ADU case, the decoding schedule
for multiple ADUs is a critical design concern. An example
of decoding an IBPTC with multiple APP decoders is given
in Section 5; see Fig. 4 (a). Although both IBPTCs and CTCs
can use multiple decoders for parallel decoding and apply an
early stopping method to shorten the decoding latency, we will
explain in the next section and prove numerically in Section 6
that the former class does derive much more benefit in block
error rate (BER) performance.

C. Block-oriented consideration

Although we have assumed a stream-oriented scenario so
far, our arguments are valid for the conventional block-
oriented consideration as well. It is thus of paramount im-
portance that we recapture the IBP concept from the block-
oriented viewpoint before returning to the main discourse.

For a block-oriented CTC that uses a reasonable good
interleaver of size N , partitioning each N -bit group into
L = �N/W �-bit blocks immediately transforms the inter-
leaving rule into an IBP structure like that shown in Fig.
2(b). Such a structure can also be found in other codes such
as product codes. Consequently, all conventional CTCs and
product codes can be regarded as subclasses of IBPTCs. There
are, however, two major distinctions between CTCs and most
other subclasses of IBPTCs.

Firstly, for a CTC with an interleaving size of W blocks,
encoding within each disjoint group of W consecutive blocks
is continuous across blocks while a product code encodes each
row (column) separately (discontinuously). More specifically,
the product code encoder divides information stream into
multiple blocks and independently encodes each block. In
general, the class of IBPTCs can encode each block either
separately or continuously. Secondly, an interleaver used in a
CTC, after the above virtual regular partition, usually yields
a non-regular local interleaving structure, i.e., the interleaving
relation between a block and other blocks in the same group
does not follow the same permutation rule. In contrast, product
codes and many IBPTCs have much more regular local inter-
leaving structures. An appropriate regular local interleaving
(and deinterleaving) structure makes implementation easier
and, as mentioned before, provides properties that are useful
for parallel decoding, e.g., (memory access) contention-free
and simple routing requirement. Moreover, with or without
parallel decoding, as the following example shows, it also
results in reduced decoding latency.

Consider the example illustrated in Fig. 3. For a CTC
with an interleaving (block) size of 7L bits, the first-block
decoding delay for a 2-iteration single-ADU decoder is 28 DT
cycles. But if one divides this 7L-bit block into 7 subblocks
and uses a special block-oriented interleaver which performs
successive intra-subblock and inter-subblock permutations on
these subblocks, the corresponding (2-iteration single-ADU)
decoding delays in DT cycles for these subblocks are 14,
18, 22, 25, 27 and 28, respectively. Therefore, although both
code structures result in identical total decoding delay the
IBPTC structure is able to supply partial decoded outputs
much earlier. This feature, when combined with proper intra-
(sub)block and inter-(sub)block interleaving rules, multiple
ADUs, optimized decoding schedule and implementation re-
source management, become very beneficial for high speed
applications. More importantly, it can been shown by computer
simulations that a turbo code with such an interleaver does
not yield performance inferior to that of a CTC with a block-
oriented interleaver (e.g., 3GPP interleavers) of the same size.

IV. ITERATIVE DECODER WITH

VARIABLE TERMINATION TIME

A conventional iterative decoder is composed of one or
more APP decoders that will not stop decoding until a fixed
number of decoding iterations have been performed. With
an early-stopping mechanism in place, as shown in Fig. 1,
the decoding procedure can stop (terminate) at the end of
an iteration (two DRs) or at the end of a DR. We refer to
such a decoder as a variable termination time APP (VTT-APP)
decoder or simply a VTT decoder. When a ST is included in
the turbo decoding process, the test results in either a stop-
or a continue-decoding decision. Given the decision, which is
very useful side information, our computation of the extrinsic
information and soft output should be modified accordingly.
The first part of this section presents our modifications while
the second part suggests several highly reliable STs.

Note that all STs, whether they are used in CTCs or
IBPTCs, incur additional computational complexity which is
usually more than compensated for by the reduced average
DRs brought about by the use of a ST.

A. Extrinsic output after a stopping test

Let Λ(w) = log p(w=0)
p(w=1) be the log-likelihood ratio of the

random variable w where p(·) denotes the probability density
function of w. If wjk represents the kth bit of the jth block
and Λ(i)(wjk), Λ(i)

e (wjk) denote the corresponding estimated
log-likelihood ratio and the extrinsic information obtained at
the end of the jth block’s ith DR, we have [4]

Λ(i)
e (wjk) = Λ(i)(wjk) − Λ(i−1)

e (wjk) − Lc · y1
jk, (1)

We assume that Λ(−1)
e (wjk) = 0, ∀ j, k. Lc = 4aEs/N0

represents the channel reliability, where a is the signal am-
plitude which is usually normalized to 1 for additive white
Gaussian noise (AWGN) channel, Es being the signal energy
per symbol while N0 is the noise power spectral density.

For the ith DR of the jth data block, the VTT-APP decoder
in charge uses baseband vectors Y1

j ,Y2
j or Y3

j and the

XIU and SU: A TURBO CODING SYSTEM FOR HIGH SPEED COMMUNICATIONS 3705

a priori information {Λ(i−1)
e (wjk)}k=L−1

k=0 as its input and
outputs {Λ(i)

e (wjk)}k=L−1
k=0 for use in the next DR as a priori

information until i = Dmax, where Dmax is the maximum
allowed APP DRs; see Fig. 1.

A tentative decision ŵi
jk on the kth bit of the jth block at

the end of the ith APP DR can be obtained by

ŵi
jk =

{
0 , Λ(i)(wjk) ≥ 0,

1 , Λ(i)(wjk) < 0.
. (2)

Let Q(Ŵi
j) be the stopping indicator for the tentative

decision vector of the jth block at the ith DR, Ŵi
j =

(ŵi
j0, ŵ

i
j1, · · · , ŵi

j(L−1)), 0 < i ≤ Dmax, i.e.,

Q(Ŵi
j) =

{
1, if Ŵi

j satisfies the ST
0, otherwise

(3)

Given the ST result, the conditional soft value Λ(i)
S (wjk) and

the extrinsic information Λ(i)
e,S(wjk) are given by

Λ
(i)
S (wjk) =

⎧⎨⎩ log
P
[

wjk=0
∣∣Q(

Ŵi
j

)
=1

]
P
[

wjk=1
∣∣Q(

Ŵi
j

)
=1

] , Q(Ŵi
j) = 1

Λ(i)(wjk), Q(Ŵi
j) = 0

(4)

and

Λ(i)
e,S(wjk) = Λ(i)

S (wjk) − Λ(i)(wjk). (5)

The extrinsic information Λ(i)
e,V TT (wjk) of an APP decoder

then becomes

Λ(i)
e,V TT (wjk) = Λ(i)

e,S(wjk) + Λ(i)
e (wjk)

= Λ(i)
S (wjk) − Λ(i−1)

e,V TT (wjk) − Lcyjk. (6)

The resulting VTT-APP decoder is shown in Fig. 1.
To ease the burden of computing the conditional log-

likelihood function that appears in (4), we make the idealized
assumption that the stopping test is perfect, i.e.,

P (ŵi
jk is correct|Q(Ŵ i

j) = 1) = 1, ∀ k

With this perfect stopping decision assumption, (4) becomes

Λ(i)
S (wjk) =

{
Λ(i)(wjk) · ∞, Q(Ŵi

j) = 1
Λ(i)(wjk), Q(Ŵi

j) = 0
, (7)

and (6) is modified accordingly.
The perfect stopping assumption actually makes the com-

putation of extrinsic information or soft output easier as when
the tentative decision vector Ŵ i

j meets the stopping condition,

then Λ(i)
e,V TT (wjk) has only two values ±∞. When the perfect

stopping assumption is approximately true (say, the false stop-
ping probability is less than 10−5), a practical approximation
is to assign a fixed large number to Λ(i)

e,V TT (wjk). However,
it should be noted that, after interleaving or de-interleaving,
the large metric value will be passed to neighboring blocks
and then to the corresponding partial path metric computers,
eliminating other branches which are not associated with these
bits. Hence the passing of the extrinsic information of these
perfect detected bits to neighboring blocks further reduce the
complexity of the associated APP decoder. Moreover, as the
APP decoder selects survivor branches based on the relative
magnitudes of the partial path metrics only, the actual value

S to p p ing
C o nd itio n

C heck

p=m ?

A decoding round
(or iteration)

Initial
i=0;p= 0

p=p+1

p=0

Pass

Fail

N o

Y es

Input

i=D m a x ?

i= i+1
(i= i+2)

Y es

N o

Stopping
D ecision

Fig. 5. Flow chart of a general m-round stopping test.

assigned to Λ(i)
e,V TT (wjk) is immaterial. In fact, it can be

as simple as a binary sign telling the APP decoder which
branches should be eliminated.

All these nice features depend, besides the IBP design, on
the availability of a highly reliable block ST such that the
perfect stopping assumption holds with a probability close
to 1, which is the subject of the following subsection. Note
that although there is no perfect ST and the probability that
a ST gives a wrong block stopping decision is nonzero, the
influence of these wrong indications results in no catastrophic
failure as our numerical results will demonstrate later.

B. Multiple-Round Stopping Tests

[6] summarized various STs for turbo decoders using sign
check, soft values and CRC checks. The sign check stopping
test (SCST) compares the tentative decoded bits from two
successive rounds. A tentative decoded block passes the test
if most or all of them are consistent. The soft value stopping
test (SVST) compares the soft value(s) with a threshold; the
soft values can be the reliability of tentative decoded soft bits,
the average soft value of a block, the extrinsic value of the
least reliable bit etc. The CRC stopping test (CRCST) uses the
CRC result to decide if further decoding of a block is needed.
SCST and CRCST operate over bit level but SVST operates
over the real domain. The performance of SVST is subject
to the choice of the threshold which, in turn, is a function
of the channel condition and code structure. Moreover, the
convergence rate of soft bit values also depends on the above
two factors [6], [8]. In short, the classes of CRCST, SCST or
their variations have the complexity and robustness advantages
over the class of SVST.

3706 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 10, OCTOBER 2007

1) A general algorithm: All early stopping tests are sequen-
tial in nature. They either compare or manipulate some values
corresponding to two consecutive DRs, or just check a single
DR output to make a stop-or-continue decoding decision. In
contrast, our proposed tests make a stop-decoding decision
based on multiple observations and are thus referred to as
multiple-round stopping tests (MRSTs)

It is well known that a statistical decision based on a single
observation is inferior to that based on multiple observa-
tions which, however, require a longer observation time (or
equivalently, larger sample size). The MRST has the distinct
capability of balancing performance (reliability of the test)
and cost (time or sample size needed to make a termination
decision). A dismissal on a decoder output is issued as soon
as it fails a single test but a decision to stop decoding a
block has to wait until the same block is verified by several
rounds of test. Therefore, incorrect tentative decoder outputs
are quickly discarded while any final decision on a block is
prudently made. Since most of the DRs do not lead to the
final decision of a block, an MRST that consists of a series
of simple, short-duration tests spends much less time and
overhead on these intermediate DRs than those required by
a single long-duration test. While the first round of an MRST
provides an initial tentative decision, the additional verification
test rounds greatly reduce the probability of false stopping
and give more robust and reliable decision, avoiding spreading
incorrect information to neighboring blocks. An m-round test
using a short CRC-k code gives a false detection probability
similar to that of using a long CRC-mk code but with only
1/m overhead bits. Moreover, since a correct stopping on a
certain block helps bringing earlier stoppings to its adjacent
blocks, the average decoding latency is shortened as well.

A flow chart of the general MRST is shown in Fig. 5. In
this figure, i is used to denote the ith DR, p represents the
number of times a block has passed a ST and can be regarded
as a quality indicator, m is the required quality condition and
Dmax is the maximum number of DRs allowed. Either p = m
or i = Dmax will force the decoding process to be terminated.
As discussed in subsections 2.1 and 2.2, an ST is performed
at the end of an iteration (even DRs) or the beginning of an
odd DR. For the latter case, an ST means checking if all pre-
permuted blocks within its span have satisfied the stopping
condition. A special case of MRST is the multiple-round
SCST of [6]. It was found that the block error rate (BER)
performance improves as the number of test rounds increases.

As mentioned before, we shall not consider the class of
SVSTs. Multiple-round CRCST, SCST and a hybrid CRC-SC
ST are briefly defined in the following.

2) T1.m: the m-round CRCST: This scheme is based on
an m-round CRC test. A block is said to pass the m-
round CRCST if all m consecutive tentative decision vectors
Ŵi−m+1

j ,Ŵi−m+2
j , · · · ,Ŵi

j succeed in passing the same

CRC test, i.e., ICRC(Ŵl
j) = 1, l = i−m+1, i−m+2, · · · , i

and i ≤ Dmax, where

ICRC(Ŵ) =
{

1, Ŵ passes CRC condition
0, otherwise

. (8)

As the error detection capability of a CRC code is an
increasing function of the code length, one can trade the order

m for the code length.
3) T2.m: the m-round SCST: This ST [6] compares tenta-

tive decoded bits in m (m ≥ 2) consecutive DRs or iterations.
The decoder stops when the nth tentative decision vector,
i ≤ Dmax, are the same with the previous m − 1 tentative
decision vectors, i.e.,

ŵi−m+1
jk = ŵi−m+2

jk = · · · = ŵi
jk,

∀ k, 0 ≤ k < L. (9)

Note that MR-SCST checks the convergence of tentative
decisions, it does not guarantee the convergence to the correct
decisions.

4) T3.m: the m-round hybrid stopping test (MR-HST):
Unlike CTCs, errors in STs for IBPTC will propagate to
different blocks and might lead to a catastrophic consequence.
A highly reliable ST can be obtained by increasing m or it
can be obtained by incorporating multiple criteria in a single
round. A block that passes both CRC and SC tests is more
reliable than one that passes only a single test.

Hence, we suggest the hybrid stopping criterion

ICRC(Ŵ l
j) = 1, ∀ l, i − m < l ≤ i, i ≤ Dmax, (10)

and

ŵi−m+1
jk = ŵi−m+2

jk = · · · = ŵi
jk,

∀ k, 0 ≤ k < L, i ≤ Dmax. (11)

If the CRC-8 is used, the undetect error probability is approx-
imately 2−8 only. The probability that the sign check does not
match the CRC result is of the order 2−16 or 2×10−5. Using
a longer CRC code increases the reliability of a CRC test but
it also implies an increase in the overhead. Additional sign
consistency check is the price we paid for using a short CRC
code to cut down the CRC overhead.

5) Genie stopping test: Genie ST is a hypothetic ideal
test that is capable of verifying the tentative decision vector
without error. The performance of this ideal test is used as the
ultimate bound for reference purpose.

At the first glance, we might expect the hybrid test or
higher-order (larger m) tests to take more DRs since a received
block is less likely to pass both SC and CRC or a higher-
order requirement. But the fact is that a correct block decision,
through the IBP interleaving, will help other blocks to meet
the stopping condition sooner while an incorrect one tends
to has an adverse effect. Our numerical experiment indicates
that the hybrid test not only gives better performance but also
requires less DRs. This is another advantage of IBPTCs that
is not shared by CTCs.

V. VTT DECODER WITH FINITE MEMORY SPACE

A. Decoding schedule and early stopping

In Section 3, we have demonstrated the importance of the
decoding schedule in minimizing the decoding delay. Parallel
decoding is a popular design option to shorten the latency. Fig.
4 (a) shows a multiple expanding-window zigzag scheduling
table for decoding an IBPTC with IBP span S = 1 and
four ADUs, denoted respectively by a, b, c and d. Data
blocks processed in the odd rows are in the original (pre-
permutation) order while those processed in the even rows

XIU and SU: A TURBO CODING SYSTEM FOR HIGH SPEED COMMUNICATIONS 3707

are in the interleaved (post-permutation) order. Each dashed or
dotted zigzag curve represents the schedule for an ADU. The
symbol xmn denotes the nth DR of the mth phase in the ADU
x’s schedule, where a DR represents the APP decoding of a
pre- or post-permuted block and the associated interleaving or
de-interleaving and the mth phase refers to the mth parallel
line associated with an ADU’s decoding schedule. Obviously,
the mth decoding phase of x is followed by the (m + 1)th
decoding phase to its right.

Taking the decoding schedule of ADU c as an example,
its first DR of the first phase c11 corresponds to the first DR
of Block 3 while the first phase’ second DR c12 corresponds
to the second DR of Block 2. c12 can be performed, as the
scheduling table shows, after Blocks 1,2,3 have been decoded
once and the corresponding extrinsic information output has
been inter-block interleaved so that the post-permuted Block 2
has all a priori information needed for a new DR. c finishes its
first phase after c13 is done. It then proceeds with the first DR
of the next phase c21, i.e., the first DR of Block 7. An ADU
can not start a new DR until the DR on its top is completed,
e.g., a2k, k > 2 cannot start unless the DR corresponding to
d12 is finished.

As mentioned at the end of subsection 2.1, an ADU can
make both regular and extended stopping decisions (ESDs)
in odd rows’ DRs only, unless a non-CRC-based ST is used.
For DRs in even rows, however, ESDs are still feasible. For
example, in a23 (c25) we check if block 3 passes the ST and
early stopping on this block becomes effective if affirmative.
ADU a (c) then go on to examine whether a24 (c26) is
necessary by checking whether both c13 and d13 (a25 and b25)
pass the ST as well. When this condition is satisfied, decoding
of block 2 is terminated. On the other hand, in b24 no ST is
performed but after de-interleaving its output we run a ST on
the content of b25, which contains de-interleaved outputs from
d14 and a24. We stop decoding block 2 and b25 is no longer
needed (because of our schedule and the IBP structure, c25

and d25 can not yet be verified although extrinsic information
from b24 will be passed on to them) if the ST result is positive.

B. Memory management

From the above discussion, it is clear that decoding many
blocks at the same time requires no small storage area for
ASIC or DSP implementation. One should therefore try to
make the most of the memory space available. The decoder
needs space to store (I) received samples undergoing decoding,
(II) extrinsic information, (III) decoded bits to be forwarded to
a higher layer for further processing, and (IV) received sam-
ples awaiting decoding. The management of the last category,
assuming no buffer overflow, requires only an indicator signal
to forward a new block of received samples to the part of the
storage area designated for category (I) that was just released
due to a stopping decision.

Category (III) is needed because of the stopping time
variation across blocks. Its management is straightforward and,
besides, it requires much less storage space. As mentioned in
Section 3.1, assigning the extrinsic values for ST-approved bits
a constant large value is equivalent to using a (special) binary-
valued bit to indicate which partial paths should survive in the

APP decoding process. Hence the decoded bits serve the dual
purposes of representing the decoder decisions and bookkeep-
ing the survivor paths. The management of categories (I) and
(II), however, needs more efforts and careful considerations.

As long as the probability of termination-defying blocks
exists, practical latency consideration will force us to set an
upper limit Dmax on the number of DRs. It can be shown that
an unterminated block prevents the decoder from discarding
Y3 associated with those terminated blocks within its span.
When the number of blocks that terminate at or around the
Dmaxth DR is large so will be the memory required. Hardware
constraint thus imposes another threshold Mmax, the maxi-
mum affordable (allowable) memory units (MU) where an MU
refers to the space for storing categories (I) and (II) associated
with a block of data in the decoder. As our sole purpose is to
demonstrate the critical role a memory manager plays in the
VTT-APP decoder, we assume, for simplicity, that the same
number of bits is used to represent the extrinsic information
of a bit and the corresponding received sample. An MU is
thus assumed to contain KL bits, where a K-bit word is used
to store either the extrinsic information or received baseband
sample associated with a transmitted bit.

Because of the stopping time variation nature of our de-
coder, a memory manager has to take into account both thresh-
olds, Dmax and Mmax so as to optimize the performance.
When a block has failed to pass the ST for Dmax times,
it will automatically be discarded and the MUs storing the
corresponding categories (I) and (II) information are released
accordingly. Chances are more than one block that reach the
threshold Dmax simultaneously and it is even more likely
that the decoder runs out of MUs before a block reaches
the threshold Dmax. For both cases, one should then give up
decoding one or some of the unterminated blocks. It is both
reasonable and intuitively-appearing to terminate the most
ancient block, i.e., the one which has failed the ST most
often. To distinguish from the regular and ESDs described
in subsection 2.1, we refer to these memory shortage induced
stopping as forced early stopping.

Fig. 4 (b) shows a finite-memory IBPTC decoding pro-
cedure for one phase of an ADU. The procedure involves
APP decoding, interleaving, deinterleaving, regular and ESDs,
and memory check and release. The last two operations are
collectively called the memory management scheme which is
responsible for verifying if there is enough memory during
the decoding process and make a proper memory-release
decision if there is not enough storage space. As there is no
computation involved at all, the complexity is moderate at
most.

Denote by MF , Md and MR, the numbers of free (unused)
MUs, ADUs, and the required MUs for storing one received
block. It follows that MR = x for a rate R = 1/x turbo
code. The decoder is initialized with MF = Mmax. An ADU
begins a phase by checking if MF < MR (Box 2) where
the additional MU is for storing extrinsic information. If MF

meets the condition, the memory manager determines which
block is to be discarded, makes a forced ESDs, and releases the
related storage space (Box 4). Otherwise, the decoder moves
the received samples of the new block from where they were
saved (in the buffer area) to the corresponding category (I)

3708 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 10, OCTOBER 2007

MUs (Box 3).
Deciding which block is to be given up is simple and clear

since our decoding schedule allows only a single most ancient
block in its left-most active column at any time. When a forced
ESD is made the ADU makes hard decisions on the block to be
discarded and releases the related categories (I) and (II) MUs.
As the discarded block is always the most ancient block and
our decoding schedule is such that all blocks to its left must
have been terminated for one reason or another, we are left
with the problem of dealing with the S adjacent blocks to its
right if they have not been terminated. At least two alternatives
exist for solving this problem. The first solution, which leads
to better performance at the cost of higher complexity, is
to interleave or de-interleave the extrinsic values for use in
decoding the S blocks to its right without further updates.
The second one is to make hard-decisions (stop any further
decoding) on all S blocks within its (right) span, releasing
their category (I) MUs while keeping their category (II) MUs
for use in decoding other related blocks.

At beginning of each DR, we ask the decoder whether the
scheduled DR is needed (Box 5). Unless the decoder has been
notified to by-pass the ensuing DR, we still have to ask if the
space for storing the extrinsic information of the coming DR
is available. When such a space is not available (MF = 0) the
decoder has to find room for the next DR by discarding the
most ancient unterminated block and following the memory
release procedure described above (Box 7). The operations
in Box 9 include those described in the last paragraph of
subsection 2.1. When a regular or extended stopping decision
is made, the memory manager releases the corresponding
category (II) and parts of category (I) memory (Box 10),
memory release procedure 1, and notifies the decoder that
further decodings on these blocks are no longer necessary.

C. Re-transmission Protocols

Another advantage of the proposed IBPTC is that it renders
flexible and efficient ARQ options. It can be used for both
Type-I and Type-II ARQ protocols [9]. We do not intend
to pursue detailed investigation on the ARQ applications of
IBPTCs here. The sole purpose of this subsection is to de-
scribe concrete candidate application examples of the proposed
coding scheme.

Note that our coding scheme requires the partition of the
data stream into blocks of equal length with each block CRC-
encoded and then IBPTC-encoded. A data packet can also
be formatted in a similar manner so that it consists of many
blocks. At the receiving end, the receiver employs a VTT-
APP decoder with a given Dmax. If after Dmax DRs (or if
the decoder runs out of storage space), some blocks still fail to
pass the ST, the receiver then sends a re-transmission request
to the transmitter. The decoding of these failed blocks can be
continued by Chase-combining the re-transmitted blocks with
the original blocks, and with the aid of the neighboring ST-
proven blocks (which is not feasible for a similar CTC-coded
protocol). Such an ARQ protocol is similar to the so-called
type-II hybrid ARQ that requires retransmission of incremen-
tal redundancy only. We can also limit the retransmission part
to be those less reliable bits within those failed blocks (which

0 5 10 15 20 25 30 35 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L=200 S=2
 SNR=0.5dB
 SNR=1.0dB

L=400 S=1
 SNR=0.5dB
 SNR=1.0dB

B
lo

ck
 T

er
m

in
at

io
n

R
at

e

Stopping Time (DR)

Fig. 6. Block termination rate distribution of the stopping test T3.3.

will increase the feedback channel bandwidth requirement).
Another candidate protocol is to insert the failed blocks in a
new packet and re-encode these blocks and their post-IBP-
interleaved blocks so that they are decoded, along with other
new blocks, by the receiver.

Note that both protocols can also be incorporated with a
CTC. But, as has been explained in Section 2, the interleaving
size of the CTC-coded system is equivalent to the block
length, which is only a fraction of the packet length, will
be much smaller than that of its IBPTC counterpart. The
second protocol is not a conventional ARQ protocol, for, with
IBP, it has the flavor of Luby’s LT codes [10]. By contrast,
without IBP, using a CTC in such a protocol is the same as a
conventional ARQ that retransmits the failed block(s).

Shown in Fig. 6 is the block termination rate (i.e., the
percentage of time a block passes the ST at a given DR)
distribution as a function of the stopping time for different
SNRs and block sizes if T3.3 is used as the ST. We find that, at
SNR = 1 dB and 0.5 dB, the cumulated block decoding failure
rate (i.e., the probability a block fails to pass the T3.3 test after
Dmax DRs) for Dmax = 16 (8 iterations), L = 400, S = 1
is about 4.5× 10−4 and 2.1× 10−2, respectively. This failure
rate can be used to estimate the retransmission probability
and is related to the throughput and latency computation of
the proposed IBPTC-based ARQ protocols. Nevertheless, a
detailed treatment on the throughput/latency performance and
fair comparison with CTC-based protocols are beyond the
scope of this paper.

VI. NUMERICAL EXAMPLES

The simulation results reported in this section is based on
the following assumptions and parameters. The component
code of the rate=1/3 TC, G(D) = [1, 1+D2+D3/1+D+D3],
and the CRC-8(= “110011011”) code used are the same as
those specified in the 3GPP standard [11] except that the
component code is tail-biting [12] encoded. The APP decoder
uses the Log-MAP algorithm and the IBP algorithm of [2]

XIU and SU: A TURBO CODING SYSTEM FOR HIGH SPEED COMMUNICATIONS 3709

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1E-4

1E-3

0.01

0.1

1 CTC
L=800 D

max
=30

 Genie

IBPTC
Variable DRs
D

max
=30

 T1.2
 T1.3
 T2.3
 T2.5
 T3.2
 T3.3
 Genie

Fixed DRs
 D

max
=20

 D
max

=30

B
lo

ck
 E

rr
or

 R
at

e

E
b
/N

0
 (dB)

Fig. 7. Bit error rate performance of various stopping tests; no memory
constraint; Dmax = 30 DRs.

0.0 0.2 0.4 0.6 0.8 1.0
5

10

15

20

25

30

Variable DRs
D

max
=30

 T1.2
 T1.3
 T2.3
 T2.5
 T3.2
 T3.3
 Genie

Fixed DRs
 D

max
=20

 D
max

=30

A
ve

ra
ge

 N
um

be
r

of
 A

PP
 D

ec
od

in
g

R
ou

nd
s

E
b
/N

0
 (dB)

Fig. 8. Average APP DR performance of various stopping tests; Dmax = 30
DRs, no memory constraint.

while the interleaving length and IBP span are left as variables;
MR = 3 MUs and N = 1000 per computer run are assumed.
Except for the Genie ST, our simulations do not assume perfect
block termination.

The effects of various STs on the IBPTC VTT-APP decoder
performance for the system with S = 1, L = 400, Dmax = 30
and tail-biting encoding are shown in Figs. 7 ∼ 8. Multiple-
round CRCST, SCST and HST are considered. For compari-
son, we include performance curves of the decoder using the
genie ST, that with fixed 20 and 30 DRs (10 and 15 iterations)
and, for reference purpose, that of the CTC with block length
L = 800 using the genie ST with Dmax = 30.

Block error rate performance improves as the number of
test rounds m increases no matter which ST is used. Fig. 7
shows that T1.3 outperforms T1.2 for Eb/N0 greater than 0.3
dB. Tests using sign-check alone, T2.3 and T2.5, are inferior
to other termination criteria since, as mentioned before, the

0.0 0.2 0.4 0.6 0.8 1.0

1E-4

1E-3

0.01

0.1

1
Infinite Memory
Vairable DRs

 D
max

=200

Fixed DRs
 D

max
=20 84 MUs

 D
max

=30 124 MUs

Finite Memory
D

max
=30

 50 MUs
 60 MUs
 80 MUs
 100 MUs

100 MUs
 D

max
=50

 D
max

=100

B
lo

ck
 E

rr
or

 R
at

e

E
b
/N

0
 (dB)

Fig. 9. The effect of memory constraint and management on the bit error rate
performance. Curves labelled with infinite memory are obtained by assuming
no memory constraint; “fixed DRs” implies that no early-stopping test is
involved.

0.0 0.2 0.4 0.6 0.8 1.0
5

10

15

20

25

30

35

40
Infinite Memory
Vairable DRs

 D
max

=200
Fixed DRs

 D
max

=20 84 MUs
 D

max
=30 124 MUs

Finite Memory
D

max
=30

 50 MUs
 60 MUs
 80 MUs
 100 MUs

100 MUs
 D

max
=50

 D
max

=100

A
ve

ra
ge

 N
um

be
r

of
 A

PP
 D

ec
od

in
g

R
ou

nd
s

E
b
/N

0
 (dB)

Fig. 10. Average APP DR performance for various decoding schemes and
conditions. Curves labelled with infinite memory are obtained by assuming
no memory constraint; “fixed DRs” means no early-stopping condition is
imposed.

class of sign-check tests check if decoded bits converge but
can not guarantee the quality of the tentative decoded vectors.
Incorrect stopping decisions will spread false information to
the neighboring blocks through interleaving and result in
degraded performance. T1.3, T3.2, T3.3 and the one with fixed
30 DRs yield the best performance and they are almost as good
as the genie ST. Using T3.2 for early stopping, the IBPTC has
0.4 ∼ 0.6 dB gain against the CTC for BER=10−3 ∼ 10−4

although the average decoding delay per DR for both codes
are about the same.

Fig. 8 shows the average DR performance of various STs.
Except for the two sign-check tests, all STs require less than
20 or 10 APP DRs (10 or 5 iterations) when Eb/N0 is greater

3710 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 10, OCTOBER 2007

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1E-5

1E-4

1E-3

0.01

0.1

1
 Genie

T1.1
 CRC-8
 CRC-12
 CRC-16
 CRC-24

T1.m CRC-8
 T1.2
 T1.3

T2.m
 T2.3
 T2.5

T3.m CRC-8
 T3.2
 T3.3

B
lo

ck
 E

rr
or

 R
at

e

E
b
/N

0
 (dB)

Fig. 11. Bit error rate performance of a CTC using various STs; L = 800
bits and Dmax = 30 DRs.

than 0.2 or 0.6 dB . Considering both block error rate and
average latency performance, we conclude that, among the
STs we have examined, T3.2 is the best choice for ESDs.

The numerical results presented so far assume no memory
constraint. Figs. 9 and 10 reveal the impact of finite memory
size for the system that employs a T3.2-aided VTT-APP de-
coder and the memory management algorithm of the previous
section with block length L = 400, interleaving span S = 1
and Md = 1. Fig. 9 shows block error rate performance for
different memory constraints. For convenience of comparison,
we also present three cases without memory constraint, one
with Dmax = 200, the other two with fixed DRs. It is reason-
able to find that larger memory sizes give better performance.
At higher Eb/N0(> 0.8 dB), all performance curves converge
to the same one since all VTT-APP decoders finish decoding
after only a few DRs (see also Fig. 10) and memory size is
no longer a problem. The fact that the cases Dmax = 100
with 100 MUs, and Dmax = 30 with 100 MUs give almost
identical performance indicates that increasing Dmax beyond
a certain number (30 in this case) can not improve block error
rate performance and the memory size becomes the dominant
factor. Performance for the decoder with Dmax = 200 and no
memory constraint (it can be shown that 804 MUs is sufficient
for this case, which is at least eight times larger than that
required by other decoders) is clearly better than the other
decoders when Eb/N0 < 0.6 dB but this edge is gradually
diminished after 0.6 dB.

The average DR performance is given in Fig. 10. For
Eb/N0 ≥ 0.5 dB, all VTT-APP decoders need less than or
equal to 10 DRs (5 iterations). But when Eb/N0 < 0.3 dB,
the performance curves are distinctly different–if we do not
impose a memory constraint, the average DR will increase
significantly as Eb/N0 decreases. Most of the computation
effort will be wasted, so is the memory. In other words, at the
low Eb/N0 region, ST can not offer early stopping decision.
Imposing a memory constraint and invoking a proper memory
management algorithm provide a solution that forces early

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
2

6

10

14

18

22

26
 Genie

T1.1
 CRC-8
 CRC-12
 CRC-16
 CRC-24

T1.m CRC-8
 T1.2
 T1.3

T2.m
 T2.3
 T2.5

T3.m CRC-8
 T3.2
 T3.3

A
ve

ra
ge

 N
um

be
r

of
 A

PP
 D

ec
od

in
g

R
ou

nd
s

E
b
/N

0
 (dB)

Fig. 12. The effect of various STs on the average APP DR performance of
a CTC with L = 800 and Dmax = 30 DRs.

stoppings, saving computing power and memory at the cost
of a small performance loss. Finally, we find that, comparing
with our proposed schemes, the two decoders with fixed DRs
(20 and 30) usually need much more memory and DRs.

The effectiveness of various STs on the performance of a
CTC with L = 800 are shown in Fig. 11 and Fig. 12 where
Dmax = 30 DRs and tail-biting encoding are assumed. The
performance of T1.1 with CRC-24 is worse than those of T1.2
and T3.2 with CRC-8. Using CRC-8, T2.3 provides error rate
performance similar to that of T3.2 but at the cost of one
more DR. Both tests yield performance very close to that of
the genie ST. In summary, these two figures show that (i)
the proposed MRSTs can also be used in CTC-coded systems
and (ii) using a proper MRST has the benefits of reduced CRC
overhead and DRs (decoding latency) without compromising
the performance. The latter conclusion implies that a multiple-
round test with a short CRC code is better than a single-
round test with a much longer CRC code. Of course, the same
advantages are shared by IBPTC-coded systems as well.

VII. CONCLUSION

We present a powerful IBPTC-based coding scheme and
propose the associated decoder architecture and algorithms for
high speed communications. Using an MRST and a dynamic
memory management scheme, our decoder yields performance
achievable by a conventional turbo coded system with higher
Eb/N0 and much larger average decoding latency. The highly
reliable STs require only a short CRC code and binary sign
checks. The memory management scheme makes efficient use
of the storage space while maintaining low average decoding
latency even at low SNR region. The decoder structure is such
that expanding the decoder memory size increases the dynamic
range of the memory manager or the interleaving size. Both
lead to improved performance.

The new coding scheme offers a variety of design options
that are not available to CTCs. It also provides increased
degrees of freedom for the same design option. For the same

XIU and SU: A TURBO CODING SYSTEM FOR HIGH SPEED COMMUNICATIONS 3711

number of ADUs, much more flexible decoding schedules
are available. Its decoding is amenable for highly dynamic
decoding schedules that are both distributive and coopera-
tive: sharing all modularized decoding resources-the ADUs,
interleavers/deinterleavers, memory-while passing information
amongst component decoders.

System performance can be improved by using a proper
decoding schedule, increasing the block size, the IBP period,
the number of decoding iterations, the memory space, and
the number of blocks involved in decoding. The design al-
lows tradeoffs amongst performance, latency, computing and
hardware complexities, e.g., the block size can be traded
for other parameters without performance loss and lower
memory requirement and higher degrees of parallelism (in-
cluding memory access) are feasible by shortening the block
size and using more flexible decoding resource management
scheme. Multiple data sequences can be decoded in parallel
and throughput is limited only by the degree of parallelism
bestowed in the design. Finally, we want to remark that, since
any existing block-wise interleaver can be regarded as an IBPI
with S = 1, the associated APP decoders are reusable and, in
a sense, our proposal is backward compatible, which makes
the evolution from existing standard CTCs easy and natural.

REFERENCES

[1] Y.-X. Zheng and Y. T. Su, “A new interleaver design and its application
to turbo codes,” in Proc. VTC2002Fall, vol. 3, pp. 1437-1441, Sept.
2002.

[2] Y.-X. Zheng and Y. T. Su, “On inter-block permutation and turbo codes,”
in Proc. International Symp. Turbo Codes and Related Topics, Sept.
2003.

[3] Y.-X. Zheng and Y. T. Su, “On inter-block permuted turbo codes,”
http://arxiv.org/abs/cs.IT/0602020.

[4] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp.
429-445, Mar. 1996.

[5] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two simple stopping criteria
for turbo decoding,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1117-
1120, Aug. 1999.

[6] A. Matache, S. Dolinar, and F. Pollara, “Stopping rules for turbo
decoders,” TMO Progress Report 42-142, 15 Aug. 2000.

[7] O. Y. Takeshita, “On maximum contention-free interleavers and permu-
tation polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 52,
no. 3, pp. 1249-1253, Mar. 2006.

[8] D. Agrawal and A. Vardy, “The turbo decoding algorithm and its phase
trajectories,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 699-722, Feb.
2001.

[9] S. B. Wicker, Error Control Systems for Disgital Communication and
Storage 2nd. Prentice Hall International, Inc., 1995.

[10] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symp. Foundations
of Computer Science, pp. 271-280, 2002.

[11] TS 25.222 V3.1.1 multiplexing and channel coding (TDD), 3GPP TSG
RAN WG1, Dec. 1999.

[12] C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding
of parallel concatenated tail-biting codes,” IEEE Trans. Inf. Theory, vol.
47, no. 1, pp. 366-386, Jan. 2001.

Yan-Xiu Zheng was born in Taipei, Taiwan. He
received B.S. degree in Electrical Engineering from
National Tsing Hua University, Hsinchu, Taiwan in
1997 and the M.S. and Ph.D. degrees in Communi-
cations Engineering from the Department of Com-
munications Engineering, National Chiao Tung Uni-
versity, Hsinchu, Taiwan, in 1999 and 2007, respec-
tively. He was a visiting student at the Institute for
Communications Engineering (LNT), TU München,
Germany, during 2002-2003. In January 2006, he
joined the Integrated B3G Project of the Information

and Communications Laboratories, Industrial Technology Research Institute
(ITRI), Chutung, Taiwan. His research interests include communication theory
and coding theory.

Yu T. Su received the B.S. and Ph.D. degrees
in electrical engineering from Tatung Institute of
Technology, Taipei, Taiwan and the University of
Southern California, Los Angeles, USA, in 1974
and 1983, respectively. From 1983 to 1989, he
was with LinCom Corporation, Los Angeles, USA,
where he was a Corporate Scientist involved in the
design of various measurement and digital satellite
communication systems. Since September 1989, he
has been with the National Chiao Tung University,
Hsinchu, Taiwan, where he is Associative Dean of

the College of Electrical and Computer Engineering and was the Head of
the Communications Engineering Department from 2001 to 2003. He is also
affiliated with the Microelectronic and Information Systems Research Center
of the same university and served as a Deputy Director from 1997 to 2000. In
2005, he was appointed as the Area Coordinator of National Science Council’s
Telecommunications Programme. His main research interests include commu-
nication theory and statistical signal processing.

