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1.Introduction (前言與研究目的) 

This study is intended to examine whether and by how much the generalization of the 
prevailing structural credit risk models improves the performance of the default prediction. 
Following the seminal works of Black and Scholes (1973) and Merton (1974), the structural 
credit risk modeling literature has developed into an important area of research. While most of 
the empirical studies try to test the performance of structural models in bond and credit 
derivatives pricing, little results are provided for default prediction. Therefore, in our study, 
we will compare various structural credit risk models for their default prediction capability.  

Credit risk models can be divided into two main categories: credit pricing models, and 
portfolio credit value-at-risk (VaR) models. Credit pricing models can be subdivided into two 
main approaches: structural-form models and reduce-form models. Portfolio credit VaR 
models, developed by banks and consultants, aimed at measuring the potential loss with a 
predetermined confidence interval that a portfolio of credit exposures could suffer within a 
specified time horizon. These models typically employ simpler assumptions and address less 
on the causes of single firm’s default. Reduce-form models typically assume exogenous 
random variable drives default and do not condition default on the value and other structure 
features, such as asset volatility and leverage, of the firm. As a result, there is no way to use 
them to predict bankruptcy of a firm. Therefore, in our empirical study, we limit our empirical 
analysis of default prediction in the single-firm structural models.   

Prior empirical studies of structural models in default prediction and default barrier, even a 
handful, do not seem to come to a consensus. Chen, Hu, and Pan (2006) show that the 
Longstaff and Schwartz model (1995) performs poorly and is statistically no different from 
the flat barrier model without random interest rate assumption. The simpler Black-Cox (1976) 
outperforms the complex Longstaff and Schwartz model and they attribute the better 
performance to the random recovery. Another finding provided by Brockman and Turtle 
(2003) shows that the default flat barriers are significantly positive while Wong and Choi 
(2006) find that default barriers are positive but not significant. It seems that the above 
empirical results are counter intuitive to the evolution of structural credit risk modeling. 
Therefore, it motivates us to empirically test a more comprehensive set of the structural 
models and to uncover the crucial factors of default prediction. 

In our empirical study, we will test various structural credit risk models extended from the 
Merton (1974) model. Succeeding structural models relax the restrictive assumptions 
originally made and seek to incorporate the most critical factors. Although these extensions 
introduce more realism into the model, they increase the analytical complexity and 
implemental difficulty. The goal of this study is, therefore, to empirically test if these 
complexities indeed improve the performance predicting corporate failure. Our focus is 
mainly put on two aspects of these extensions: the bond safety covenant in terms of 
continuous default, and the shareholders’ discretion on the going concern decision in terms of 
endogenous barrier modeling. Using the Merton model as the base case, we can observe the 
performance enhancement, if any, through the introduction of continuous default, bankruptcy 
costs, and tax effect.  

The European option approach by Merton (1974) ignores the possibility of failure prior to 
debt maturity and implicitly models corporate debt and equity as path-independent securities 
of the underlying asset value process. Researchers therefore introduce the default barrier to 
model this deficiency. In barrier models, we test the flat (or constant) default barrier model by 
Brockman and Turtle (2003), and the exponential barrier model of Black-Cox (1976). An 
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arguable assumption of the above barrier models is that the default barrier is exogenously 
determined. As a result, Leland (1994) developed the endogenous barrier model under 
stationary debt structure. Therefore, we will also include endogenous barrier model in our 
empirical test. 

Prior empirical studies indicate that structural models generate poor empirical performances. 
Ericsson and Reneby (2004) argue that the inferior bond pricing performance of structural 
models may come from the estimation approaches traditionally used in the empirical studies. 
As a result, the perceived advantage of reduced-form models is more a result of the estimation 
procedure rather that of the model structure. Therefore, we adopt a better estimation 
methodology, the Maximum Likelihood Estimation method proposed by Duan (1994) and 
Duan et al. (2004), which views the observed equity time series as a transformed data set of 
unobserved firm values with the theoretical equity pricing formula serving as the 
transformation. This method has been evaluated by Ericsson and Reneby (2005) through 
simulation experiments, and their result shows that the efficiency of MLE is superior to the 
commonly adopted volatility restriction approach in the literature. Another reason to employ 
MLE is that the major data required for this method in the context of structural models is the 
common stock prices, which have much less microstructure issues compared with bond 
prices.  

Our paper contributes to existing literature in two aspects: First, in contrast to previous 
research, we adopt the theoretically superior MLE approach and empirically test the default 
prediction capabilities of various models under different default barrier assumptions. Second, 
the role of the default barrier in structural models has long been adopted by researchers in 
literature while its validity is not empirically investigated until the research by Brockman and 
Turtle (2003) and Wong and Choi (2006). One of the advantages of the MLE approach is that 
it can jointly estimate asset volatility and default barrier. Therefore, in addition to the flat 
barrier assumption, we can also explore this issue further to the exponential barrier 
assumptions.   

Our empirical results surprisingly show that the simple Merton model has a similar capability 
in default prediction as that of the Black and Cox model. The Merton model even outperforms 
the Brockman and Turtle model, and the difference of predictive ability is statistically 
significant. The results are held for the in-sample, six-month and one-year out-of-sample tests 
for both the broad definition of bankruptcy as in Brockman and Turtle (2003) as well as the 
similar definition to Chen, Hu, and Pan (2006). In addition, we also find that the inferior 
performance of the Brockman and Turtle model may be the result of its unreasonable 
assumption of the flat barrier. In the one-year out-of-sample test, the Leland model 
outperforms the Merton model in non-financial sector and the results hold for two alternative 
definitions of default. Furthermore, these results are still preserved in our robustness test as 
we use risk-neutral default probabilities instead of physical default probabilities.  

2. Literature Review: Previous Empirical Studies of the Structural Credit Risk Models 

in Default Prediction (文獻探討) 

Brockman and Turtle (2003) investigated the bankruptcy prediction performance under 
down-and-out call (DOC) framework using a large-cross section of industry firms from 1989 
to 1998. Brockman and Turtle (2003) use the proxy approach measuring the market value of a 
firm’s assets as the book value of assets less the book value of shareholders’ equity, plus the 
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market value of equity as reported in Compustat. The asset volatility is measured as the 
square root of four times the quarterly variance measure, where the quarterly variance 
measure is computed by quarterly percentage changes in asset values for each firm in the 
sample with at least ten years of data. The promised debt payment is measured by all 
non-equity liabilities, computed as the total value of assets less the book value of 
shareholders’ equity. Finally, the life span of each firm is set to be ten years, and they argued 
that barrier estimates are not particularly sensitive to lifespan assumption by the robustness 
test. 

The empirical evidence shows that the failure probabilities implied by the DOC framework 
never underperform the well known accounting approach – Altman’s Z-score. In detail, the 
logistic regressions by including single or both of the implied failure probability and Z-score, 
the DOC approach dominants Z-score in predicting the corporate failure percentage of the 
one, three, five year tests as well as their size or book-to-market categorized tests. In addition, 
in the quintile-based test, the failure probability of DOC framework also stratify failure risks 
across firms and years much more effectively than the corresponding Z-score. We should note 
that another empirical finding by Brockman and Turtle (2003) is that implied default barriers 
are statistically significant for a large cross-section of industrial firms. However, Wong and 
Choi (2006) argue that it is the proxy approach of Brockman and Turtle (2003) that leads to 
barrier levels above the value of corporate liabilities. Hence, they adopt the transformed-data 
MLE approach and find that default barriers are positive but not very significant in the 
empirical study of a large sample of industry firms during 1993 to 2002. 

Bharath and Shumway (2004) examine the default predictive ability of the KMV-Merton 
default probability of all the non-financial firms for the period 1980 to 2003. The method they 
use to estimate the KMV expected default frequency (EDF) is the same iterated procedure 
employed by Vassalou and Xing (2004). They compare the KMV-Merton default probability 
with several variables — the naïve probability estimate (without implementing the iterated 
procedure), market equity, and past returns, and find that the KMV-Merton model does not 
produce sufficient statistics for the probability of default. Implied default probabilities form 
the CDSs and corporate bond yield spreads are only weakly correlated with the KMV-Merton 
default probabilities after adjusting for agency ratings, bond characteristics, and their 
alternative predictor. Moreover, they find that the naïve probability they propose, which 
captures both the functional form and the same basic inputs of the KMV-Merton default 
probability, performs slightly better as a predictor in hazard models and in out of sample 
forecasts. They conclude that the KMV-Merton probability is a marginally useful default 
forecaster, but it is not a sufficient statistic for default. 

Recently, Chen, Hu, and Pan (2006) use the volatility restriction method to test five structural 
models including the models of Merton, Brockman and Turtle, Black-Cox, Geske (2 periods), 
and Longstaff-Schwartz as well as the proposed non-parametric model. The default 
companies in the study are those filing Chapter 11 from January 1985 to December 2002 with 
assets greater that $50 million. Their results indicate that the distribution characteristics of 
equity returns and endogenous recovery are two important assumptions. On the other hand, 
random interest rates that play an important role in pricing credit derivatives are not an 
important assumption in predicting default.  

Another study closely related to our study is regarding default probability estimation 
investigated by Leland (2004). Leland (2004) examines the default probabilities predicted by 
the Longstaff and Schwartz (1995) model with the exogenous default boundary, and the 
Leland and Toft (1996) model with endogenous default boundary. Leland uses Moody’s 
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corporate bond default data from 1970 to 2000 in his study and follows a similar calibration 
approach by Huang and Huang (2003). Rather than matching the observed default 
frequencies, Leland instead chooses common inputs across models to observe how well they 
match observed default statistics. The empirical results show that when costs and recovery 
rates are matched, the exogenous and the endogenous default boundary models fit observed 
default frequencies equally. The models predict longer-term default frequencies quite 
accurately, while shorter-term default frequencies tend to be underestimated. Thus, he 
suggests that a jump component should be included in asset value dynamics. 

3. Empirical Methodology (研究方法) 

Traditionally, the structural credit risk models are estimated by the volatility restriction 
approach or an even simpler approach such as the proxy approach. However, these two 
approaches and their variants lack the statistical basis, and the empirical results they produce 
are less convincible. Thus, the new estimation method such as the transformed MLE has been 
introduced into the empirical researches of structural models.  

3.1 Maximum Likelihood Estimation Method  

Duan (1994) developed a transformed data MLE approach to estimate continuous time 
models with unobservable variables using derivative prices. The obvious advantages are that 
(1) the resulting estimators are known to be statistically efficient in large samples, and (2) the 
sampling distribution is readily available for computing confidence intervals or for testing 
hypothesis. In the context of structural credit risk models, equity prices are the derivative of 
the underlying asset process and are readily available with large samples.  

Let X be an n-dimensional vector of unobserved variates. Assume that its density 
function, );( θxf , exists and it is continuously twice differentiable in both arguments. A vector 
of observed random variates,Y , results from a data transformation of the unobservable 
vector X . This transform from nR to nR is a function of the unknown parameterθ , and is 
one-to-one for every Θ∈θ , whereΘ is an open subset of kR .    

Denote this transformation by );( θ⋅T , where );( ⋅⋅T is continuously twice differentiable in both 
arguments. Accordingly, );( θXTY = and );(1 θYTX −= . The log-likelihood function of the 
observed dataY is );( θYL . By change of variable, the log-likelihood function for the 
transformed dataY can be expressed by the log-likelihood function of the unobserved random 
vector X , denoted as );( θ⋅XL , and the Jacobian, J , of a given transformation.  

( )11 );(ln));;(();( −− += θθθθ XTJYTLYL X       (1) 

Implementation of the Transformed-data MLE in the Context of Structural Credit Risk 
Models (Duan et al. (2004)): 

Step 1. Assign initial values of the parametersθ , and compute the implied asset value time 
series by )ˆ;()ˆ(ˆ )0(1)0( θθ ihih STV −= , where h is the length of the time period and )(ˆ mθ denotes 
the m-th iteration. Let m=1. 

Step 2. Compute the log-likelihood function 
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to obtain the estimated parameters )(ˆ mθ . 

Step 3. Compute the implied asset value time series by )ˆ;()ˆ(ˆ )(1)( m
ih

m
ih STV θθ −= , and let 

m=m+1, go back to step 2 until the maximization criterion is met.  

Step 4. Use the MLEθ̂  to compute the implied asset value nhV̂ and the corresponding default 
probability.  

3.2 Monte Carlo Experiment 

We follow Duan et al. (2004) and set the following parameter values to perform the 
simulation experiment: interest rate r =0.05, asset drift Vµ =0.1, asset volatility Vσ =0.3, initial 
firm value 0V =1.0, Face value of debt F=1.0, option maturity T=2. The sampling period is set 
to be 252 days a year, and a maturity (2- δi ) years for the i-th data point of the simulated time 
series. Finally, we change the value of the default barrier in order to examine its effect on 
parameter estimation.  

Our results in Table 1 are based on 1,000 simulated samples following the procedure by Duan 
et al. (2004) to mimic the daily sample of observed equity value of a survived firm. We use 
the same numerical optimization algorithm of Nelder-Mead (in Matlab software package) as 
that in Wong and Choi (2006), and the initial value of the barrier is set as 0.5. Our experiment 
results in Table 1 clearly show the strength and the limitation of the MLE method. The MLE 
method can jointly estimate and uncover the true asset volatility and default barrier well when 
the barrier hitting probability of the asset value process is not too low. However, as the true 
default barrier is under 0.5 in our experiment, the barrier estimates are seriously biased.  

Although the default barrier estimates are biased when barrier the hitting probability of asset 
value process is low, this is what the statistical theory precisely predicts since the value of 
likelihood function is flat and not sensitive to the change of the barrier level. A low barrier 
relative to the firm value (or the low hitting probability of the barrier) obviously implies that 
the barrier is immaterial. In other words, where it is exactly located doesn't materially affect 
equity values. Thus, one cannot expect to pin down the barrier using the equity time series.  

One important consequence regarding the estimate of the barrier parameter is that the testable 
hypothesis proposed by Brockman and Turtle (2003) should not be carried out by the 
estimates of the barriers. Brockman and Turtle (2003) use the nested concept of standard call 
option and down-and-out barrier option model to argue that when the default is zero, the 
down-and-out option collapses to the standard European call option. However, due to the 
nature of the likelihood function of down-and-out option framework, one cannot expect to pin 
down the barrier when the barrier is low relative to the asset value, i.e., the default probability 
is low. When the default probability is low, the low barrier estimate can vary for a wide range 
since it does not affect likelihood function and equity pricing results. 

Fortunately, for default prediction of our empirical studies, this should present no practical 
difficulties. The biased nature for low barrier cases could hardly affect the default 
probabilities of sampling firms, even when the barrier estimates vary for a wide range. 
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Furthermore, a formal test should be carried out by the performance of default prediction 
capability using alternative statistical test. In our study, we adopt the Receiver Operating 
Characteristic Curve and Accuracy Ratio for this issue and we will discuss them in the 
following section.  

3.3 Measuring Capability of Predicting Financial Distress — Receiver Operating 
Characteristic Curve and Accuracy Ratio  

To analyze the capability of predicting financial distress, we adopt the method by accuracy 
ratio (AR) and Receiver Operating Characteristic (ROC) proposed by Moody’s, which is also 
used by Vassalou and Xing (2004) and Chen, Hu, and Pan (2006). Stein (2002, 2005) argues 
that the power of a default model to predict defaults is its ability to detect “True Default,” and 
the capability of a default model to calibrate to the data is its ability to detect “True Survival.”  

The ROC curve in the context of bankruptcy prediction is a plot of cumulative probability of 
the survival group against the cumulative probability of the default group. Assuming a firm 
default when its default probability is less than a cut-off threshold, the survival sample 
contains true survivals and false defaults, and the default sample contains true defaults and 
false survivals. Thus, the probabilities within the survival (default) group of true survive 
(default) and false default (survival) sum to unity.  

The key statistic in the ROC methodology, known as the Cumulative Accuracy Profile (CAP), 
is the Accuracy Ratio (AR). AR is defined as the ratio of the area of tested model A to the area 
of perfect model PA , i.e., PAAAR /=  where 10 ≤≤ AR . Hence, the higher the AR is, the 
more powerful is the model.  

In our study, we modified the approach by Chen, Hu, and Pan (2006) as follows: 

1. Rank all default probabilities ( defP ) from the largest to smallest. 

2. Compute the 100 percentiles of default probabilities ( defP ). 

3. Divide the sample into default and survival groups.  

4. In the default group, compute the cumulative probability greater than each percentile of 
default probabilities. This will be plotted on the y axis. 

5. In the survival group, compute the cumulative probability greater than each percentile of 
default probabilities. This will be plotted on the x axis. 

6. Plot the ROC curve. 

7. For each model, repeat step 1 to step 6 and calculate the AR.  

8. Compute the test statistic z by the method of comparing the areas under ROC curves 
derived form the same cases by Hanley and McNeil (1983).  
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4. Empirical Tests and Results (研究結果與討論) 
4.1 The Models 

In our empirical study, we will test three barrier structural credit risk models extended from 
the Merton (1974) model. We will focus on two aspects of these extensions: the bond safety 
covenant in terms of continuous monitoring and default (Brockman and Turtle, 2003; 
Black-Cox, 1976); the shareholders’ discretion on the going concern decision in terms of 
endogenous barrier modeling under the stationary debt structure assumption (Leland, 1994).  

4.2 Data 

Reviewers In our empirical test, the equity prices are collected from CRSP (the Center for 
Research in Security Prices) and the financial statement information is retrieved from 
Compustat. The sampling period of the firms is from January 1986 to December 2005, while 
the quarterly accounting information is from 1984 to 2005 since some firms under financial 
distress stop filing financial reports a long time before they are delisted from the stock 
exchanges. The accounting information we use in our study is quarterly reports from 
CRSP/Compustat Merged (CCM) Database. This is to obtain the most updated debt level and 
payout information, especially for those defaulted firms. In our empirical test, we consider 
only ordinary common shares (first digit of CRSP share type codes 1) and exclude 
certificates, American trust components, and ADRs. Our final sample covers 20-year period 
from 1986 to 2005 and includes 15,607 companies. 

In our empirical test, we adopt two different definitions of default: 

Definition I The broad definition of bankruptcy by Brockman and Turtle (2003) — this 
includes firms that are delisted because of bankruptcy, liquidation, or poor performance. A 
firm is considered performance delisted, named by Brockman and Turtle, if it is given a CRSP 
delisting code of 400, or 550 to 585. Note that there are still other delisted firms due to 
merges, exchanges, or being dropped by the exchange for other reasons, and they are 
considered as survival firms. 

Definition II The definition of bankruptcy similar to that adopted by Chen, Hu, and Pan 
(2006) — default firms are collected from the BankruptcyData.com database, which includes 
over 2,500 public and major company filings dating back to 1986. We next match the 
performance delisted samples with those companies collected from BankruptcyData.com, and 
add back the liquidated firms (with delisting code 400) to be our default group. All of the 
remaining firms are classified as survival firms. Note that a difference between our 
classification and Chen, Hu, and Pan (2006) is that some of the companies filed bankruptcy 
petitions but were later acquired by (merged with) other companies (Delisting code: 200) are 
classified into survival group. 

We first describe our sample selection criteria. First, companies with more than one share 
classes are excluded in our test. Second, since we also need accounting information in order 
to empirically test these models, firms without accounting information within two quarters 
going backward from the end of the estimation period are excluded. Thirdly, active firms 
(delisting code 100) during our sampling period while being delisted in 2006 are excluded. 
This is to ensure survival firms with delisting code 100 are financially healthy companies. 
Finally, to ensure adequate sample size for the MLE approach, we consider only those 
companies with over 252 days common share prices available.  



 8

In the end of this section, we present our key inputs for the structural models. Determining the 
amount of debt for our empirical study is not an obvious matter. As opposed to the simplest 
approach, for example by Brockman and Turtle (2003), to set the face value of debt equal to 
the total liabilities, we adopt the rough formula provided by Moody’s KMV — the value of 
current liabilities including short-term debt, plus half of the long-term debt. This formula is 
also adopted by some researchers such as Vassalou and Xing (2004). 

Secondly, the payout rate g captures the payouts in the form of dividends, share repurchase, 
and bond coupons to stock holders and bondholders. To estimate the payout rate, we adopt the 
weighted average method similar to those by Eom, Helwege, and Huang (2004) and Ericsson, 
Reneby, and Wang (2006) as 

)1()()( LeverageratioPayoutEquityLeveragesLiabilitieTotalExpensesInterest −×+×  
where )( ValueEquityMarketsLiabilitieTotalsLiabilitieTotalLeverage +=   

For the market equity value, we chose the number of shares outstanding times market price 
per share closest to the financial statement date. The equity payout rate is estimated as the 
total equity payout, which is the sum of cash dividends, preferred dividends, and purchase of 
common and preferred stock, dividend by the total equity payout plus market equity value.  

Thirdly, since four models in our study assume constant interest rate, one needs to feed in the 
appropriate interest rate for the model estimation. The three month T-bill rate from the Federal 
Reserve website is chosen as the risk-free rate. However, the three month T-bill rate fluctuated 
from the highest 9.45% in March 1989, dropped to the lowest 0.81% in June 2003, and went 
back to 4.08% in the end of December 2005. Therefore, to assure the proper discount rate for 
each firm across a long 20-year sampling period, interest rates are estimated as the average of 
252 daily 3-month Constant Maturity Treasury (CMT) rates for each firm during the sampling 
period. 

Finally, the Leland model needs debt coupons and we follow Ericsson, Reneby and Wang 
(2006) to set the average coupon as risk-free rate times total liabilities: 

RateRiskfreesLiabilitieTotalCoupon ×= . In addition, the Leland model considers tax 
deductibility as well as bankruptcy cost. We follow Eom, Helwege, and Huang (2004) and set 
the tax rate to 35% and financial distress cost as 51.31%. Furthermore, we also follow Leland 
(1998) and Ericsson, Reneby and Wang (2006) and set the tax rate to 20% as an alternative 
setting. This is to reflect personal tax advantages to equity returns which reduce the advantage 
of debt. 

4.3 Empirical Results 

In our empirical test, we use the same numerical optimization algorithm of Nelder-Mead (in 
Matlab software package) as that adopted by Wong and Choi (2006). The inputs of parameters 
for debt level, asset payouts, interest rates, coupons, tax rate, and financial distress cost are as 
described in Section 4.1, and the option time to maturity is two years. The original Merton, 
Brockman and Turtle, and Leland models do not assume the asset payout rate, but they can be 
easily added into the models. For comparison purposes, we choose to estimate default 
barriers, FH α= , instead of discount rates,γ , of each firms in the Black and Cox model, and 
the discount rates are assumed to be the average risk-free rates for those firms during the 
equity time series sampling period.  
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The delisting date of a delisted firm is simply the very last security trading day, while the 
delisting date of an active firm (delisting code 100) is set as the last trading day in year 2005. 
The inputs of equity time series of the in-sample estimation use equity values ending on the 
delisting date and traveling back 252 trading days. The six-month (one-year) out-of-sample 
estimation uses equity time series from 377 to 126 (503 to 252) trading days before delisting 
date. The sample sizes of the in-sample, six-month out-of-sample, and one-year out-of-sample 
tests are 15,607, 14,775, and 13,750, respectively. The differences of the sample sizes come 
from the availability of equity trading data. As we push the estimation period backward in 
time, we lose some firms due to the relatively shorter lives of these companies. After 
numerical optimization, final samples of the in-sample test, six-month out-of-sample, and 
one-year out-of-sample tests include 15,598, 14,765, and 13,744 firms.  

4.3.1 Testing Results of Default Definition I 

We next present in Figure 1 the in-sample ROC curves of the tested models. The 
out-of-sample (six-month) and out-of-sample (one-year) are similar and thus are omits in this 
report to save the space. Formal statistical tests are carried out by the Accuracy Ratios (ARs) 
and the z statistics. Z statistics, compared with the Merton model, for the tested models are 
reported in the parentheses in Table 2. We find that in accordance with the results in the 
decile-based analysis, the Brockman and Turtle model is clearly inferior to the Merton and the 
Black and Cox models. The Leland model of in-sample test in both tax rate settings also 
underperforms the Merton model.  

Our empirical result shows that the simple Merton model surprisingly outperforms the flat 
barrier model in default prediction. Furthermore, the performance of the Merton model is also 
similar to that of the Black and Cox model in all tests. The Black and Cox model has slightly 
higher ARs than those of Merton’s model, however, the differences are not statistically 
significant based on the z test. Moreover, Merton’s model also performs significantly better 
than the Leland model of the in-sample test.  

The results of z test indicate that the difference of prediction capability between the Merton 
and the flat barrier models is statistically significant and the results hold for both in-sample 
and out-of-sample tests. Although theoretically the down-and-out option framework should 
nest the standard call option model, practically it may not perform better in the default 
prediction. Several possible reasons may explain our empirical results. 

One of the possible explanations is that the continuous monitoring assumption of the flat 
barrier model makes it possible to default before the debt maturity, and thus increases the 
estimated default probabilities of the survival firms. One may argue that the implied default 
probabilities of the default firms increase as well. However, the magnitude of the increments 
may not be the same, and we do observe this issue in our empirical results.  

For example, Alfacell Corporation, a survival firm, (CRSP permanent company number 35) 
clearly reflects this issue as shown in Figure 2. Alfacell experienced a drastic downfall of 
share prices in year 2005. However, it still survived through the end of 2006. In Figure 2, we 
present the one-year market equity, the estimated firm value of the Merton model, the 
estimated firm value of the Brockman and Turtle model, the implied barrier, and the debt level 
of the KMV formula, respectively. Both models generate reasonable firm value estimates 
based on the corresponding model assumptions. The estimated firm values of the flat barrier 
model are higher than those of the Merton model due to the existence of the claims of the 
bondholders modeled as the down-and-in option. The implied default probability of Alfacell 
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Corporation is merely 0.04% by the Merton model while the default probability of the flat 
barrier model is as high as 61.21%. The gigantic difference comes from the implied default 
barrier. The debt level by the KMV formula is $1.75 million, but the implied barrier from the 
Brockman and Turtle model is $31.37 million! Such a high implied barrier leads to a high 
default probability of the flat barrier model. In contrast, default in Merton’s model is only 
related to the debt level at debt maturity and thus the default probability is very low. Note that 
to prevent from the local optimum problem of the barrier estimate, we also use another 
optimization routine, the fmincon function in Matlab, to re-estimate the Alfacell case but still 
obtain the same implied default barrier.  

One may argue that imposing constraints on the default barrier can solve this issue. However, 
the high implied default barrier is a result of the return distribution of the equity value 
process. Imposing constraints clearly violates the fundamental of the maximum likelihood 
estimation method and hinders the MLE method from searching global optimum. In the case 
of Alfacell Corporation, the likelihood function of the Brockman and Turtle model and the 
Merton model are 566.397 and 562.288, respectively. This indicates that the introduction of 
the barrier does improve the fitting of the return distribution of the equity value process. 
Furthermore, the equity pricing function of the flat barrier model in Equation (A.3) does not 
pre-specify the location of the barrier as well. The flat default barrier can be higher than the 
debt level as assumed in the Brockman and Turtle model. Accordingly, the fundamental issue 
is that the flat barrier assumption itself might be unreasonable and unrealistic. Finally, we 
should note that the extraordinarily high implied default barrier cannot happen in the 
Black-Cox model since it assumes that the default barrier is lower than the debt level. As a 
result, the implied default probability of Alfacell Corporation is only 0.06% by the Black and 
Cox model. 

Another possible explanation is from our measure of the default prediction capability. The AR 
only preserves the ranking information of the default probabilities in our empirical test. The 
flat barrier model may generate the default probability distribution closer to the true default 
probability distribution compared with that of the Merton model. It is the tails of the default 
probability distributions of survival and default groups that truly determine the ARs.  

Finally, we cannot completely rule out the local optimum possibility, since it is well known 
that high dimensional optimization may not uncover the global optimum. The superior default 
prediction capability of the Merton model may come from the better estimates of the model 
parameters due to its simpler likelihood function and lower dimension in the optimization 
procedure.  

We next turn to the sub-sample analysis by financial (Table 3) versus non-financial (Table 4) 
firms. Financial companies have industry-specific high leverage ratios and thus cannot be 
modeled well in finance literature. Consistent with the findings by Chen, Hu, and Pan (2006), 
we find that the Brockman and Turtle model perform much better in finance sector than in the 
industry sector, while the Merton and the Black and Cox models perform better in the industry 
sector. Accordingly, the difference of default prediction power of the flat barrier and the 
Merton model in finance sector is no longer significant.  

Another important finding is that the Leland model outperforms Merton’s model in the 
Non-financial sector, and the differences are significant in the six-month and one-year 
out-of-sample tests. The Leland model shows large differences of default predictability 
between financial and non-financial sectors. This difference leads to its superior power of 
prediction in non-financial sector.  
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4.3.2 Testing Results of Default Definition II 

In this section, we regroup our survival and default group using the definition of bankruptcy 
similar to that adopted by Chen, Hu, and Pan (2006). Following their approach, we collect 
default firms from the BankruptcyData.com database, which includes over 2,500 public and 
major company filings dating back to 1986. Next, we match the performance delisted samples 
with those companies collected from BankruptcyData.com, and add back the liquidated firms 
(with delisting code 400) to be our default group. All of the remaining firms are classified as 
survival firms. Note that a difference between our classification and Chen, Hu, and Pan 
(2006) is that some of the companies filed bankruptcy petitions but were later acquired by 
(merged with) other companies (Delisting code: 200) are classified into survival group. The 
numbers of default firms following this approach greatly reduce from 4,871 to 1,325 for the 
in-sample test and from 4,533 to 1,260 (4,107 to 1,183) of the six-month (one-year) 
out-of-sample tests. The accuracy ratios and z statistics are reported in Table 5.  

From Table 5, our results still show that the Merton model outperforms the flat barrier model, 
and the difference of default prediction capability is statistically significant as that in Section 
5.3.1. The prediction capabilities of the Merton and the Black and Cox model are similar as 
well. In addition, one can observe that all these models perform slightly worse than the broad 
definition of bankruptcy. The differences are around 2% across different models and tests. The 
reason may be the uncertainty of bankruptcy filings of companies been delisted from the stock 
exchange. One can use the MLE approach to capture information from the market equity 
values of those poorly performed and delisted firms, and obtain default probabilities of these 
firms. However, if those firms will eventually file bankruptcy may be subject to a lot of 
firm-specific human and company potential issues. These issues may not easily be captured 
just by the dynamics of the firms’ market equity values.  

In Table 6 and Table 7, the financial versus non-financial sector analysis are reported. The 
performances among models are also similar to those of the broad definition of bankruptcy in 
Section 4.2.1. Unlike the performances in broad definition of default, not only the Brockman 
and Turtle model performs much better in the finance sector, but the Merton, the Black and 
Cox, as well as the Leland models also perform better in the financial sector. However, the 
accuracy ratios of the flat barrier are even higher than those of the Merton and the Black and 
Cox models in the finance sector, although the differences are not statistically significant. In 
the non-financial sector, the Leland model still performs better than Merton’s model, but a 
difference is that the Leland model no longer significantly outperforms the Merton model in 
six-month out-of-sample test.  

5. Summary and Conclusions (結論與建議) 

Our empirical results surprisingly show that the simple Merton model has a similar capability 
in default prediction as that of the Black and Cox model. The Merton model even outperforms 
the Brockman and Turtle model, and the difference of predictive ability is statistically 
significant. The results are held for the in-sample, six-month and one-year out-of-sample tests 
for both the broad definition of bankruptcy as in Brockman and Turtle (2003) as well as the 
similar definition to Chen, Hu, and Pan (2006). In addition, we also find that the inferior 
performance of the Brockman and Turtle model may be the result of its unreasonable 
assumption that the flat barrier itself can be over the face value of debt. In the one-year 
out-of-sample test, the Leland model outperforms the Merton model in non-financial sector 
and the results hold for two alternative definitions of default. These results are still preserved 
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in our robustness test as we use risk-neutral default probabilities instead of physical default 
probabilities.  

In addition, in terms of the differences of default probabilities between barrier models and 
Merton’s model, our results indicate that the introduction of default barriers has little 
influence on default probabilities for a large portion of the survival firms and as many as 30% 
of the firms in default group. This is consistent with the results by Wong and Choi (2006) and 
does not support the finding by Brockman and Turtle (2003) that default barriers are 
significantly positive. We should note that the models investigated in our study incorporate 
only net-worth covenant, and firms default only when the market value of its assets fall below 
a certain boundary. A recent empirical study by Davydenko (2005) finds a much more 
complex picture of financial distress. Default of distressed firms may be triggered by either 
low asset value or liquidity shortage, and the importance of liquidity varies cross-sectionally 
depending on costs of external financing. Moreover, there are many low-value and 
low-liquidity firms that are able to avoid default. 

In summary, our empirical results indicate that exogenous default barriers, flat or exponential, 
are not crucial in default prediction. In contrast, endogenous barrier modeling has significant 
improvement in long term prediction for non-financial firms. However, we should note that 
the performance of the Leland model compared to the Merton model is weakened as the 
default prediction horizon shortened. 
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Table 1 A Monte Carlo Study of the MLE Method for 

the Brockman and Turtle (2003) Model 
  Model Parameters F=1 T=2 

  Vµ Vσ H (Barrier) Barrier 
 Hitting Probability 

True Value 0.1 0.3 0.9 67.746936% 
Mean 0.36377 0.30211 0.89479  
Median 0.34914 0.29857 0.89837  
Standard Deviation 0.21523 0.04856 0.07941  

True Value 0.1 0.3 0.8 39.585685% 
Mean 0.24807 0.29789 0.79156  
Median 0.22296 0.29490 0.80203  
Standard Deviation 0.21503 0.04449 0.11039  

True Value 0.1 0.3 0.75 28.074173% 
Mean 0.23082 0.30232 0.69968  
Median 0.17726 0.29878 0.74795  
Standard Deviation 0.24533 0.05624 0.18828  

True Value 0.1 0.3 0.7 18.671759% 
Mean 0.19528 0.29924 0.61289  
Median 0.17426 0.29643 0.69106  
Standard Deviation 0.23842 0.03912 0.22313  

True Value 0.1 0.3 0.6 6.409692% 
Mean 0.11387 0.29343 0.49035  
Median 0.09683 0.29164 0.57849  
Standard Deviation 0.26237 0.03410 0.24217  

True Value 0.1 0.3 0.5 1.347824% 
Mean 0.11484 0.29314 0.41125  
Median 0.11833 0.29224 0.35967  
Standard Deviation 0.28141 0.03252 0.24325  

True Value 0.1 0.3 0.4 0.127036% 
Mean 0.09522 0.29244 0.41637  
Median 0.07599 0.29224 0.35732  
Standard Deviation 0.29297 0.03222 0.24788  

True Value 0.1 0.3 0.0000001 0.000000% 
Mean 0.08946 0.29237 0.40017  
Median 0.08844 0.29143 0.29074  
Standard Deviation 0.29598 0.03291 0.24124   
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Table 2 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition I; All Sample) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9357 0.9253 (-5.8513) 0.9365 (0.7667) 0.9314 (-2.3810) 0.9315 (-2.1933) 

Six Months  
(Out of Sample) 0.8749 0.8531 (-8.5565) 0.8768 (1.5632) 0.8705 (-1.6938) 0.8711 (-1.3984) 

One Year     
(Out of Sample) 0.8422 0.8156 (-8.8537) 0.8433 (0.8055) 0.8442 (0.6621) 0.8449 (0.8316) 

In-Sample One-Week (15,598 firms – 10,727 survival and 4,871 performance delisting firms) 
Out-of-Sample 6-Month (14,765 firms - 10,232 survival and 4,533 performance delisting firms) 
Out-of-Sample 1-Year (13,744 firms - 9,637 survival and 4,107 performance delisting firms) 

 

Table 3 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition I; Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.8939 0.8900 (-0.5698) 0.8926 (-0.3598) 0.8750 (-3.1532) 0.8744 (-3.0896) 

Six Months  
(Out of Sample) 0.8496 0.8539 (0.5305) 0.8520 (0.5858) 0.8209 (-3.9062) 0.8199 (-3.7674) 

One Year     
(Out of Sample) 0.8319 0.8240 (-0.8894) 0.8333 (0.3162) 0.8083 (-2.7714) 0.8097 (-2.6578) 

In-Sample One-Week (2,809 firms – 2,409 survival and 400 performance delisting firms) 
Out-of-Sample 6-Month (2,694 firms – 2,313 survival and 381 performance delisting firms) 
Out-of-Sample 1-Year (2,556 firms – 2,195 survival and 361 performance delisting firms) 
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Table 4 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition I; Non-Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9371 0.9255 (-6.2231) 0.9380 (0.8838) 0.9373 (0.0707) 0.9376 (0.2090) 

Six Months  
(Out of Sample) 0.8714 0.8437 (-10.0585) 0.8729 (1.1717) 0.8777 (2.2951) 0.8786 (2.5352) 

One Year     
(Out of Sample) 0.8379 0.8054 (-9.8963) 0.8385 (0.3975) 0.8543 (5.1790) 0.8555 (5.2588) 

In-Sample One-Week (12,789 firms – 8,318 survival and 4,471 performance delisting firms) 
Out-of-Sample 6-Month (12,071 firms – 7,919 survival and 4,152 performance delisting firms) 
Out-of-Sample 1-Year (11,188 firms – 7,442 survival and 3,746 performance delisting firms) 

 

 

Table 5 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition II; All Sample) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9152 0.9006 (-5.3136)* 0.9121 (-1.5613) 0.9145 (-0.2014) 0.9147 (-0.1159) 

Six Months  
(Out of Sample) 0.8574 0.8278 (-7.5183) 0.8561 (-0.6197) 0.8587 (0.2765) 0.8589 (0.3166) 

One Year     
(Out of Sample) 0.8166 0.7811 (-7.6036) 0.8147 (-0.7825) 0.8242 (1.5007) 0.8243 (1.4354) 

In-Sample One-Week (15,598 firms – 14,273 survival and 1,325 default firms) 
Out-of-Sample 6-Month (14,765 firms – 13,498 survival and 1,267 default firms) 
Out-of-Sample 1-Year (13,744 firms – 12,561 survival and 1,183 default firms) 
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Table 6 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition II; Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.8969 0.8999 (0.3203) 0.8879 (-1.2743) 0.8814 (-.14651) 0.8814 (-1.3993) 

Six Months  
(Out of Sample) 0.8669 0.8712 (0.3806) 0.8695 (0.3352) 0.8523 (-1.2010) 0.8515 (-1.1895) 

One Year     
(Out of Sample) 0.8582 0.8600 (0.1276) 0.8595 (0.1715) 0.8460 (-0.9036) 0.8444 (-0.9682) 

In-Sample One-Week (2,809 firms – 2,698 survival and 111 default firms) 
Out-of-Sample 6-Month (2,694 firms – 2,588 survival and 106 default firms) 
Out-of-Sample 1-Year (2,556 firms – 2,453 survival and 103 default firms) 

 

Table 7 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition II; Non-Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9117 0.8945 (-5.8440) 0.9088 (-1.4072) 0.9133 (0.4425) 0.9137 (0.5129) 

Six Months  
(Out of Sample) 0.8482 0.8128 (-8.2882) 0.8457 (-1.0880) 0.8556 (1.5270) 0.8561 (1.5317) 

One Year     
(Out of Sample) 0.8041 0.7614 (-8.4366) 0.8012 (-1.1194) 0.8209 (3.0848) 0.8215 (3.0167) 

In-Sample One-Week (12,789 firms – 11,575 survival and 1,214 default firms) 
Out-of-Sample 6-Month (12,071 firms - 10,910 survival and 1,161 default firms) 
Out-of-Sample 1-Year (11,188 firms – 10,108 survival and 1,080 default firms) 
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Figure 1 ROC Curves – One Week In-Sample Test (All Sample) 
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Figure 2 An Illustration of the Problem of the Brockman and Turtle Model by Alpacell 
Corporation 
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計畫成果自評 
 
 

本研究符合原計畫進度，並已於 2008/07/03 在國際研討會(Annual Conference on Pacific 

Basin Finance, Economics, Accounting and Management)發表。本研究比較了四個著名的結

構信用風險模型— Merton (1974)、Brockman and Turtle (2003) 、Black and Cox (1976)
與 Leland (1994) 模型在違約預測上的能力。此為現今結構信用風險模型的實證分析中

較缺乏的部份，實證結果指出，相較於 Merton 模型，外生的違約界限假設並非最重要

的因素，相反的，內生的違約界限假設對長期非金融產業公司的違約預測有顯著的改

善，此結果可為之後結構信用風險模型發展之參考。本研究目前正在進行進一步的修

正，增加 robustness test，應可於近期投稿國際學術期刊。 

 

 

 

 

 


