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以適應性方法探討緊急救援服務的動態車輛派遣問題

摘要

在任何緊急情況下，人命的救援優於一切。當有事件發生時，急救服務必須在最短時
間到達現場。分派與調派模型目的在於把空閒的救護車分佈好以加强以後之派遣，而
哪一輛車應被派遣到現有的需求點則要一個有效的派遣策略。現有一般的救護車派遣
均採用“先到先服務”為原則，但這有可能做成次要受傷的人比有生命危險的先送達醫
院處理的情況發生。事實上救援分流已於一些地方實行，成效也不俗。本研究提出以“
在有限資源及救援分流下，派遣最接近之救護車往最近之需求點不一定是最好”為出發
點，發展出一套更有效率之派遣模型，並延伸已有的派遣要素在救護車派遣問題上。

關鍵字︰ 救護車分派與調派； 動態車輛派遣； 動態規劃； 急救服務； 歷史訊息； 病
人分流

An adaptive approach to the dynamic vehicle dispatching problem
with an application to emergency medical services

Abstract

When there is an incident, emergency service must be provided at the scene as quickly as
possible with minimum delay. In many cities, there is a statutory obligation for the ambulance
service to arrive within a certain limit of time. A current practice of such dispatching is on a
First-Come-First-Served basis. As a result, patients with critical illness who call later may
have to wait whilst less serious cases are taken to hospital first. In this research, we show that
sending the nearest ambulance to the newly arrived request is not efficient under limited
resources, given that patients are prioritized. The problem is formulated as a real-time
dispatching model which is solvable by an adaptive dynamic programming approach. The
results demonstrate that the overall system efficiency can be improved with increasing the
system capacity and reducing the delay.

Keyword: Ambulance location and relocation; Dynamic vehicle dispatching; Dynamic
programming; Emergency service; Historical information; Triage of patients
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INTRODUCTION AND BACKGROUND

In emergency situations, a high priority must be placed on saving life. When there is an
incident, emergency services, comprising police, fire fighters and ambulance services, must
be provided at the scene as quickly as possible. This paper concerns ambulance dispatching.
In many cities, there is a statutory obligation for the ambulance service to arrive on scene
within a certain time limit. For example, the United States Emergency Medical Services Act
requires that in urban areas 95% of requests should be reached within 10 minutes, while those
in rural areas should be served within 30 minutes (see Ball and Lin, 1993). In United
Kingdom, the target set by the London Ambulance Services for immediate life-threatening
calls is 8 minutes (Thakore et al., 2002). In Japan, average time of ambulance arrival on site is
about 6 minutes. To help meet these targets, ambulance location, allocation and relocation
models are necessary. In general, location models determine the server or facility locations
where the ambulances are dispatched from; allocation models decide which vehicle to be
dispatched for a specific call; and relocation models reposition idle vehicles to cover areas
which are unprotected.

Ambulance location and relocation models were studied since 1970’s, and can be broadly
classified into deterministic models and probabilistic models (Brotcorne et al., 2003; Galvao
et al., 2005). Deterministic models are usually used in the planning stage. An early model of
this type is the location set covering model due to Toregas et al. (1971), with the objective of
minimizing the number of ambulances needed to cover all demand points. Their model
considers a set of demand points and a set of potential vehicle locations. Each demand point
represents a geographic area to which service must be provided, and it is to decide the
minimum number of locations that can cover all demand points within a specified distance
and hence response time. A shortcoming of the model is that it ignores the unavailability of
the ambulances when one is dispatched for a request. To rectify this limitation, Church and
ReVelle (1974) suggested an alternative approach. In their maximum covering location model,
the objective is to maximize the sum of demand covered. Since the number of ambulances is
limited, the model may allow some of the demand points not to be covered. To guarantee a
better service with limited resources, Gendreau et al. (1997) suggested a double standard
model. While all demand in the area concerned should be reachable within an acceptable time
or distance, a certain proportion of the area must be reachable within a higher standard. In
contrast, probabilistic models are used at the operational level. Parameters, for example travel
times, the locations of patients, the demand for and the availability of ambulances, are treated
as random variables. One of the first probabilistic models for ambulance location is due to
Daskin (1983), who maximized the expected coverage of the ambulances, each of which has a
probability of being unavailable to answer a call. ReVelle and Hogan (1989) maximized the
demand covered with a given probability.

With the designed positions and dimension of the vehicle fleets, such ambulance or
emergency management system is usually operated with a decision support tool, having two
sub-problems: an allocation problem and a redeployment problem (Gendreau et al., 2001).
The allocation problem, which is sometimes referred to as the dispatch problem, considers
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which ambulance to send to a patient or request. In the literature, heuristic rules are normally
used for the dispatching decision. Assuming all incoming requests are urgent and of the same
priority, an intuitive decision would be to send the nearest or quickest ambulance to the
requests without any delay. Less urgent calls may be held manually or serviced subject to
longer maximum waiting. To help meet the targets of adequate coverage and minimum
service, a redeployment problem is employed to relocate the ambulances when idle.

MODEL FORMULATION AND SPECIFICATION

On the supply side of the emergency medical services, we assume that in the planning stage
the set of vehicle locations or medical centres have already been identified, and there are a
limited number of ambulances associated with each of these medical centres. When a call is
received, the EMS dispatching centre decides which ambulance or ambulances from which
locations to assign to the call (we do not differentiate between the ambulances from a station
or skills of medical crew). Once an ambulance is dispatched for a task it is not available until
it finishes the task and returns to the centre. There is also a schedule of working hours for the
medical crew. Therefore, the number of available ambulances varies over time. The vehicles
may also be redeployed to another centre for improving the backup coverage.

The requests for medical services arrive over a day. Typically, a call arrives at the EMS
dispatching centre, and the status of the patient is evaluated and prioritized for their level of
severity. This triage process is different between countries or authorities. A typical procedure
is to categorize the calls into three levels (Gendreau et al., 2001; Andersson and Varbrand,
2006); urgent and life-threatening calls, less urgent calls which are not life-threatening, and
non-urgent calls. A priority-based dispatch system responds urgent calls immediately,
meeting the coverage target as set out by law. Less urgent calls and non-urgent calls can be
treated with a looser response-time restriction, being revised periodically in practice.

Variable definitions

The dynamic problem is considered in a discrete time fashion over the discrete time instants
 Tt ,...,1,0 , where T is the length of planning horizon and 0 specifies the current stage.

Assume a set of locations Ii where ambulances are dispatched from and a set of potential
demand zones Jj . A task (task and call for service will be used interchangeably) Aa ,
located in Jja  , calls to the EMS dispatching centre requesting a service at a time t . We
can further partition the set of tasks by their time of calling, as AAt  . In the notation of
Dynamic Programming, t is the stage and i is the state of the system. Let
T = the number of periods in the planning horizon
t = discrete time instant, with t = {0,1,…,T}
I = the set of locations where ambulances are dispatched from, indexed by i
A = the set of tasks over the planning horizon, indexed by a
J = the set of potential demand zones, indexed by ja

tA = the set of tasks which arrive at time t, with AAt
Tt
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The decision variables of the model are the flows of vehicles to tasks and vehicle
repositioning to another location or idling in the same location. Movement of vehicles
involves a cost, and rewards are received if a task is served by a vehicle. New resources of
vehicles may become available over time with the work schedule of the day. For each Iki , ,

tAa and Tt  , we define

iatx = the number of ambulances from location i assigned to task a at time t

ikty = the number of empty ambulances from location i repositioned to location k at time t

iat = the service time for an ambulance from i serving task a at time t

ikt = the travel time for an ambulance travelling from location i to location k at time t

iatc = the reward for assigning a vehicle from i to servicing a task a at time t

iktd = the costs of relocating a vehicle from i to k at time t

itR = the number of new ambulances becoming available at location i at time t (i.e.
schedule of workforce)

The value of iatx takes a binary form of  1,0 since we assume that only one vehicle is
needed for each task. This can be relaxed by allowing a task to call for more than one vehicle,
and in that case all vehicles must be originating from a same location. Otherwise we can
model the task as a number of sub-tasks of one vehicle.

A deterministic model

Firstly we will present a deterministic dynamic model which incorporates both current and
future demands. All demands in the first (i.e. the current) period are known, and that all
demands in future time periods are forecast. While the locations of ambulances are associated
with a set of medical centres, it is difficult to model the exact location of each forecast
demand. For modelling purpose, the potential locations of forecast demand are aggregated
into zones. The assignment of ambulances to requests and the reposition of ambulances to
other locations can be captured by an assignment model as follows
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The above model is specified in a simultaneous form. The objective function Eq. (1) is to
maximize the overall benefit or rewards of the job assignment minus costs of vehicle
repositioning with a policy  iktiat yx , over the planning time horizon. Eq. (2) defines the
conservation of vehicles during each time instant, where the number of assigned and relocated
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vehicles in each location should be equal to total available resources, including newly
available vehicles and also those which completed their tasks or relocated from the previous
time periods. It is assumed that a vehicle, once it has finished its task, returns to the centre
from which it is dispatched. Eq. (3) guarantees each task will not be serviced more than once,
and Eq. (4) is the non-negativity constraint of the control variables. The model also allows a
call to be rejected if it is in a lower priority and the number of available ambulances is low.
Since our aim is to determine the assignment policy at t = 0, as the demand for 0t is
forecast, a large T would produce a good enough approximation on a rolling horizon basis. An
example with a horizon of three is illustrated in Fig. 1.

Each of the calls is associated with a priority or level of urgency. From the point of view of
the dispatcher, the prioritization of calls can be weighted with the parameter iatc , which
defines the reward for assigning a vehicle from i for servicing a task a at time t. A typical aim
of a dispatching centre is to minimize the overall delay to all calls, and therefore an intuitive
definition of the reward is a reward for handling a task related to its priority minus a function
of the delay from i to aj .

t = 0 t = 1 t = 2 t = 3

Available ambulance

Relocated ambulance

New request

Held request

Assigning a vehicle for a
task

Relocating a vehicle

Holding a task (non-urgent
call)

Figure 1. A dynamic ambulance allocation and relocation model
Let

aq = the priority of task a,  3,2,1aq

aqr = the reward for handling a task of priority aq

iath = the travel time from location i to location aj to serve task a at time t, converted into
the unit of reward. We have

iatqiat hrc
a
 , Ii , tAa , Tt (5)

Alternatively the model can be formulated as a recursive form, which will facilitate the
analysis later on. Let itS be the total number of vehicles to be available in location i at time t
from all sources, and we have
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Define J to be the expected cost of a dispatching policy. The model can be specified
recursively as follows
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where  IiSS itt  , .

A stochastic model

A stochastic model is also introduced to handle uncertainties in forecast demand. Randomness
in the demand is introduced as probabilistic locations of a call arriving in the future. The
framework takes the recursive form so that the recourse function can be approximated in
various ways in the solution algorithm. Please refer to Wong et al. (2007) for the details.

SOLUTION METHODOLOGY

A possible approach in solving dynamic programming model is to calculate the recourse
function explicitly for each state. However, computational complexity of the presented model
is   TT JSIO  , and solving the model in practice is computational intractable. Algorithms
for an approximate solution are usually used. An algorithm using the gradient approximation
developed above is presented as follows.

Step 0. Set a maximum number of iterations N, Set 0ˆ0, S
itz and 00, S

itz . Set n = 1
and t = 0.

Step 1. Forward pass. For the current n and t, solve the allocation and relocation
problem:
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1
Ii

iatx , tAa (13)

0, iktiat yx Iki , , tAa (14)

Step 2. Once the iatx and ikty in Step 1 is determined, update 1tS ; if t < T, then t = t
+ 1 and go back to Step 1. If t = T, go to Step 3.

Step 3. Backward calculation of gradients. For the current n and t, we update nS
itz ,̂

with    21
, ,,ˆ cSCcSCz tt
nS

it  , where  cSC t , is the maximum total rewards
of vehicle assignment, for given vehicle repositioning from the previous
iteration and tS for the current iteration. We can obtain left or right gradient at
the point of solution with 1c and 2c settings, which are vectors in the form of

 Iicc i  , . If there are no vehicles repositioned to location i at time t-1, i.e.

01, 



Ik

tkiy , nS
itz ,̂ stands for the additional benefit of having an extra vehicle

in location i at time t, and we have  0,,1,,01 c with 1 for the ith element

and 0 otherwise, and  0,,02 c . If 01, 
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tkiy , nS
itz ,̂ is computed as the

negative consequences of removing a repositioned vehicle, by letting
 0,,01 c and  0,,1,,02  c with -1 for the ith element and 0

otherwise.  cSC t , is obtained by solving the maximization problem:

  
 


Ii Aa

iatiat
x

t
t

iat

xccSC max, (15)

subject to

iit
Aa

iat cSx
t




, Ii (16)

1
Ii

iatx , tAa (17)

0iatx Ii , tAa (18)

Step 4. Smoothing. Set   1,,, 1ˆ  nS
it

nnS
it

nnS
it zzz  .

Step 5. If t > 0, then t = t - 1 and go back to Step 3.
Step 6. Terminate if n = N; otherwise set n = n + 1 and go to Step 1.

In Step 3 above, we can see that the value of nS
itz ,̂ will be large when the certain region or

whole of the system is busy in the next time period. However, nS
itz ,̂ is not larger than the

maximum setting of iatc in any case, because an actual call is more important than a predicted
one of the same priority in the future. On the other hand, if the system is not busy and there
are plenty of vehicles idle, the value of nS

itz ,̂ is diminishing. Step 4 adopts a stepsize

smoothing function n in smoothing the approximation. It is a quantity between 0 and 1, and
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is referred to as the smoothing constant. A typical choice of the stepsize is n/1 , a declining
function with the iteration number.

EXPERIMENTAL RESULTS

To demonstrate the relative performance of the proposed methodology, a simulation model is
setup to test against different scenarios. We will test the model against deterministic as well as
stochastic settings of the problem. To capture the spatial manner of the ambulance dispatching,
a network is created, in which nine potential demand zones and four medical centres are
located in the network. Once there is a call to the dispatching centre, the dispatcher will assign
ambulances from one of the medical centres for the call (or reject it). Travel time on each of
the links is assumed to be one unit (5 minutes here), and therefore all potential locations are
covered by a quickest response of 5 minutes. The corners are subject to less (but acceptable)
coverage than those on the boundary or in the centre of the network. For the details of the
setting of the problem, please see Wong et al. (2007).

Deterministic runs

We first perform experiments on deterministic datasets. The dispatcher solves the whole
period problem using forecast demand which is assumed to be deterministic. The gradients
used in the adaptive algorithm are estimated from 50 training iterations. To eliminate the
variation due to randomness, the evaluation of the solution in this section is computed from an
average of 20 runs. Fig. 2 shows the total reward received in a simulation period against
different demand intensity for myopic and adaptive strategies. Since the optimal solution is
unknown to us, the reward is expressed as a percentage against the maximum possible reward
received if no requests are rejected. The maximum possible reward is about linear to the
number of requests. Both myopic and adaptive strategies reach 100%, i.e., the optimal
solution, at a number of calls of 50. As the number of requests increases, the system is
overloaded and not able to take up all the calls, and therefore the percentage of gain decreases,
in which the rate of drop for the myopic strategy is steeper than that for the adaptive strategy.
The adaptive strategy outperforms the myopic one by improving the overall efficiency. It is
shown in Fig. 3 that the adaptive algorithm can consistently service more calls compared to
myopic. This is probably due to the relocation of ambulances, which can save the travel times
in the future operations. Table 2 displays the quality of services for Urgent calls, represented
by a target of waiting period for the both strategies tested. We can roughly estimate the
capacity of the medical system as 320 calls, which is an overestimation of 40 vehicles each
taking maximum 8 tasks in 4 hours without idling. At the demand level of 300, 96.5% and
98.8% of Urgent calls can be reached within 5 minutes and 10 minutes respectively with the
adaptive strategy. These percentages are 80.9% and 96.1% with the myopic algorithm. When
the demand is increased to 600, with the adaptive strategy the percentage for urgent calls
dropped slightly to 92.9% and 97.9%, in contrast to the heavy decline to 56.1% and 66.7% for
the myopic one. This confirms the purpose of our dynamic model that suggests holding
resources for future critical instances, without sacrificing too much the benefit of the current
events.



9

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

Number of calls

P
er

ce
n

ta
g

e
o

f
m

ax
im

u
m

p
os

si
bl

e
re

w
ar

d
re

ce
iv

ed Myopic
Adaptive

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

Number of calls

P
er

ce
nt

ag
e

o
f

to
ta

lc
al

ls
se

rv
ed

Myopic
Adaptive

Table 2. Target of waiting period of 5 minutes and 10 minutes for Urgent calls: Deterministic
cases

Number of

calls

Myopic,

5 mins

Myopic,

10 mins

Adaptive,

5 mins

Adaptive, 10

mins

50 100 100 100 100

100 97.5 97.5 97.5 97.5

150 92.2 94.0 95.3 97.1

200 83.7 93.3 95.5 98.7

250 83.1 94.9 95.8 98.9

300 80.9 96.1 96.5 98.8

350 78.1 93.6 94.4 99.4

400 72.7 89.8 93.7 99.6

450 68.2 85.5 93.3 99.0

500 63.2 75.5 92.3 98.5

550 58.3 71.7 93.1 98.4

600 56.1 66.7 92.9 97.9

650 52.4 61.6 92.2 97.8

700 49.4 58.3 92.4 98.0

Stochastic Runs

We have also performed the numerical tests for Stochastic Runs in which there is uncertainty
in the demand forecast. The sets of future tasks are given in probability and therefore
unknown to the dispatcher at the time of making decisions. Due to the limit of spaces, the
details on the the capability of the model in stochastic environment is discussed in Wong et al.
(2007).

CONCLUSIONS AND SELF EVALUATION

Prioritization of requests is becoming a standard procedure in practice, and this paper is one
of the first in trying to incorporate this component into the ambulance dispatch problem. In

Figure 2. Percentage of maximum possible reward received

against the demand intensity: Deterministic cases

Figure 3. Percentage of total calls served against the demand

intensity: Deterministic cases
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the near-capacity situation, it is suggested that keeping or relocating vehicles to strategic
locations could benefit the demand in the future. We formulate the problem with the objective
of maximizing the reward gained for serving a request, showed as equivalent to minimizing
the total delay incurred. The problem is formulated in a dynamic programming context, which
suffers from the “curse of dimensionality” in applications of practical size. We propose a
dynamic adaptive algorithm for solving the problem, approximating the gradient of the
recursive subproblem in a linear form. Deterministic and stochastic settings of the problem
are experimented with.Our model provides a guideline for accepting or not a current call with
the computation of values of resources currently and in the future. Of course, rejected calls
which are lower in priority would be kept track of by the operators for possible upgrading if
needed. This model is particular useful in near-capacity conditions of dispatching, in which
the tactical locations of medical centres and fleet of ambulances are already fixed.
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