行政院國家科學委員會補助專題研究計畫 皿盛果蚛告

The classification of Willmore spheres and tori in the three dimension sphere

計畫類別：\square 個別型計畫 \square 整合型計畫

計畫編號：NSC 96－2115－M－009－0064
執行期間：96年8月1日至97年7月31日

計畫主持人：許義容
共同主持人：
計畫參與人員：

成果報告類型（依經費核定清單規定繳交）：\square 精簡報告 \square 完整報告

本成果報告包括以下應繳交之附件：
\square 赴國外出差或研習心得報告一份
\square 赴大陸地區出差或研習心得報告一份
\square 出席國際學術會議心得報告及發表之論文各一份
\square 國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫，提升產業技術及人才培育研究計畫，列管計畫及下列情形者外，得立即公開查詢
\square 涉及專利或其他智慧財產權，\square —年 \square 二年後可公開查詢

執行單位：國立交通大學
$\begin{array}{llllllll}\text { 中 } & \text { 華 } & \text { 民 國 } & \text { 年 } & 7 & \text { 月 } & 31 & \text { 日 }\end{array}$

行政院國家科學委員會專題研究計畫成果報告

三維球中 Willmore 球面與環面之分類 The classification of Willmore spheres and tori in the three dimension sphere

計畫編號：NSC 96－2115－M－009－0064
執行期限： 96 年 8 月 1 日至 97 年 7 月 31 日
主持人：許義容
執行機構：國立交通大學應用數學系
E－mail：yjhsu＠math．nctu．edu．tw

摘要

假設 M 為 3 維球面上之緊緻 Willmore 曲面。此報告旨在利用 Minkowski 空間之保角幾何建構出球面之對應的四次微分形與保角變換。

關鍵詞 Willmore 曲面，解析四次微分形

Abstract

In this report，we will construct the holomorpic quartic differential form and the conformal transformation of a Willmore surface in the three dimensional sphere S^{3} Which were constructed by Bryant in the Minkowski space，and study surfaces with constant conformal transformation which is given in this report．

Keywords：Willmore surface，holomorpic quartic differential form

1．Introduction

Let $x: M^{2} \rightarrow S^{3}$ be a compact immersed surface in the 3－dimensional unit sphere S^{3} ． Let $h_{i j}$ be the components of the second fundamental form of M^{2} ，and $H=\sum h_{i i}$ the
mean curvature．The Willmore functional of x is given by

$$
\begin{gathered}
W(X)=\int_{M^{2}} \Phi \\
\text { where } \phi_{i j}=h_{i j}-\frac{H}{2} \delta_{i j} \text { and } \Phi=\sum\left(\phi_{i j}\right)^{2} .
\end{gathered}
$$

The critical points of the Willmore functional are called Willmore surfaces，they satisfy the Euler－Lagrange equation $\Delta H+\Phi H=0$（see ［W］）．Willmore sphere was classified by Bryant，so call Bryant＇s sphere（see［B1］and ［B2］）．

Since minimal surfaces are Willlmore surfaces，it is nature that certain results about minimal surfaces also worked for Willmore surfaces．Indeed if M^{2} is a compact immersed Willmore surface in the 3－dimensional unit sphere，and $0 \leq \Phi \leq 2+\frac{\mathrm{H}^{2}}{4}$ ，then M^{2} is either totally umbilical or the Clifford torus（see［CH1］）． On the other hand，if $2+c \mathrm{H}^{2} \geq \Phi \geq 0$ ，for
some $\frac{1}{2}>c$, on M^{2}, then M^{2} is either a Bryant's sphere with nonnegative Gaussian curvature or the Clifford torus. For the case of pinching constant $c=\frac{1}{2}$, we know that M^{2} is either a Bryant's sphere with nonnegative Gaussian curvature or a flat Willmore torus.

In section 2 of this report we will find the quartic differential form of x in S^{3} that corresponds to the holomorpic quartic differential of x in the Minkowski space constructed by Bryant. In section 3 we relate conformal differential geometry of the Minkowski space L^{5} with geometry of the three dimensional sphere S^{3}, and construct the Willmore dual of x in S^{3}. In section 4 we study the surfaces with constant conformal transformation which is given in section 3

2. The holomorpic quartic differential

Let $x: M^{2} \rightarrow S^{3}$ be an immersed surface. In this section we will find the quartic differential of x in S^{3} that corresponds to the holomorpic quartic differential of x in the Minkowski space constructed by Bryant ([B1]). Palme presented it in the Euclidean space ([P]).

Let (x_{1}, x_{2}) be an isothermal coordinate of $M^{2}, \quad e_{j}=e^{u} \frac{\partial}{\partial x_{j}}, j=1,2$, be an orthonormal frame field, and $\theta_{j}=e^{-u} d x_{j}, j=1,2$, the corresponding dual coframe. Then the Codazzi's equation is given by
$e^{u} \frac{\partial H}{\partial x_{1}}=\frac{\partial}{\partial x_{1}}\left(e^{2 u}\left(h_{11}-h_{22}\right)\right)+2 \frac{\partial}{\partial x_{2}}\left(e^{2 u} h_{12}\right)$, $e^{u} \frac{\partial H}{\partial x_{2}}=-\frac{\partial}{\partial x_{2}}\left(e^{2 u}\left(h_{11}-h_{22}\right)\right)+2 \frac{\partial}{\partial x_{1}}\left(e^{2 u} h_{12}\right)$,
and the Gauss equation is given by
$u_{z \bar{z}}=\frac{1}{16}\left(e^{-2 u}|\varphi|^{2}-e^{2 u}\left(4+H^{2}\right)\right)$,
where $\varphi=e^{2 u} \phi, \quad \phi=\left(h_{11}-h_{22}\right)-2 i h_{12}$ is the Hopf's dfferential. On the set of M^{2} - umbilic locus, let

$$
\begin{aligned}
q & =\frac{1}{4} \varphi^{2}\left(\frac{1}{4} H^{2}+\Delta \log \varphi\right) \\
& =\frac{1}{16} \varphi^{2}\left(H^{2}+4\right)+e^{-2 u} \varphi \varphi_{\bar{z} \bar{z}}-e^{-2 u} \varphi_{z} \varphi_{\bar{z}} .
\end{aligned}
$$

It follows from the equations of Codazzi and Gauss that
$q_{\bar{z}}=e^{4 u}\left(\frac{1}{4} \varphi(\Delta H+\Phi H)_{z}+\left(\varphi u_{z}-\frac{1}{4} \varphi_{z}\right)(\Delta H+\Phi H)\right)$.
Thus if $x: M^{2} \rightarrow S^{3}$ is a Willmore surface then q is holomophic, and hence $\vartheta=q d z^{4}=\frac{1}{4}\left(\left(1+\frac{H^{2}}{4}-2 K\right) \phi^{2}+\phi \Delta \phi-\phi_{k}^{2}\right)\left(\omega_{1}+i \omega_{2}\right)^{4}$ is a holomorpic quartic differential. When ϑ vanishes identically, combining with the Willmore equation, the second derivatives of the mean curvature can be presented in terms of lower order derivatives of the second fundamental form.

3. The Willmore dual surfaces

Let $x: M^{2} \rightarrow S^{3}$ be a Willmore surface. In this section we relate conformal differential geometry of the Minkowski space L^{5} with geometry of the three dimensional sphere S^{3}, and construct the Willmore dual of x in S^{3} 。

Here we use the notions of the moving frame used by Bryant ([B1]) and Chern et al ([CDK]) respectively. We choose a local orthonormal frame field $\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3} in S^{3} so that when restricted to $x\left(M^{2}\right)$ the vectors $\mathrm{E}_{1}, \mathrm{E}_{2}$ are tangent to $x\left(M^{2}\right)$, and E_{3}
is a local field in the normal bundle of $x\left(M^{2}\right) . \operatorname{Let} \theta_{1}, \theta_{2}, \quad \theta_{3}$ be its dual coframes in S^{3}.

Let L^{5} denote the Minkowski space, R^{5} together with the standard Minkowski inner product, orientation and time orientation, and ℓ^{+}denote the space of positive null vectors in L^{5}. Let

$$
e_{0}=(1, x), e_{1}=\left(0, E_{1}\right), e_{2}=\left(0, E_{2}\right), e_{3}=\left(0, E_{3}\right), e_{4}=\frac{1}{2}(1,-x) .
$$

Then $e_{0}, e_{1}, e_{2}, e_{3}, e_{4}$ is a frame field in the first order frame bundle of x, a positively oriented basis, $x=\left[e_{0}\right], \quad e_{4} \in \ell^{+}$, $\left\langle e_{a}, e_{b}\right\rangle=B_{b}^{a}$, where \langle,$\rangle is the Minkowski$ inner product, and

$$
B=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & I & 0 \\
-1 & 0 & 0
\end{array}\right] .
$$

It follows that there exist 1-forms ω_{b}^{a} satisfying

$$
d e_{a}=e_{b} \omega_{a}^{b}, d \omega_{b}^{a}=-\omega_{c}^{a} \Lambda \omega_{b}^{c}
$$

Since $\omega_{0}^{3}=0$, Cartan's Lemma implies that there are $h_{i j}$ such that $\omega_{i}^{3}=h_{i j} \omega_{0}^{j}, h_{i j}=h_{j i}$.

Compare the structure equations of the three dimensional sphere S^{3} with that of the Minkowski space L^{5}, we get

$$
\left[\begin{array}{ccc}
\omega_{0}^{0} & \cdots & \omega_{4}^{0} \\
\vdots & \vdots & \vdots \\
\omega_{0}^{4} & \cdots & \omega_{4}^{4}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & -\frac{1}{2} \theta_{1} & -\frac{1}{2} \theta_{2} & 0 & 0 \\
\theta_{1} & 0 & \theta_{21} & -\sum h_{1 j} \theta_{j} & -\frac{1}{2} \theta_{1} \\
\theta_{2} & \theta_{12} & 0 & -\sum h_{2 j} \theta_{j} & -\frac{1}{2} \theta_{2} \\
0 & \sum h_{11} \theta_{j} & \sum h_{2 j} \theta_{j} & 0 & \\
0 & \theta_{1} & \theta_{2} & 0 & 0
\end{array}\right] .
$$

We note that the second fundamental forms of M^{2} in S^{3} coincide with these $h_{i j}$ in L^{5}.

Since on the first order frame bundle, $\omega_{i}^{3}=h_{i j} \omega_{0}^{j}$, we may define the covariant derivatives of $h_{i j}$ by
$d h_{i j}+h_{i j} \omega_{0}^{0}-h_{k i j} \omega_{i}^{k}-h_{i k} \omega_{j}^{k}+\delta_{i j} \omega_{3}^{0}=h_{i j k} \omega_{0}^{k}$,
$h_{i j k}=h_{i k j}$. It follows that $d H=h_{j} \omega_{0}^{j}$,
where $h_{j}=h_{i j}=H_{j}$.
The first order frame bundle of x is a right principal G-bundle with fibers of the form

$$
g=\left[\begin{array}{ccc}
\frac{1}{r} & p^{t} C & \frac{r}{2}|p|^{2} \\
0 & C & r p \\
0 & 0 & r
\end{array}\right],
$$

where

$$
\begin{aligned}
& r>0, \mathrm{p}=\left[\begin{array}{l}
\mathrm{c}_{1} \\
\mathrm{c}_{2} \\
\mathrm{c}_{3}
\end{array}\right], C=\left[\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right], \\
& A=\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right], c^{2}+s^{2}=1 .
\end{aligned}
$$

We notice that if

$$
\begin{gather*}
g_{i}=\left[\begin{array}{ccc}
\frac{1}{r_{i}} & p_{i}^{t} C_{i} & \frac{r_{i}}{2}\left|p_{i}\right|^{2} \\
0 & C_{i} & r_{i} p_{i} \\
0 & 0 & r_{i}
\end{array}\right], i=1,2, \\
\text { then } g_{1} g_{2}=\left[\begin{array}{ccc}
\frac{1}{r} & p^{t} C & \frac{r}{2}|p|^{2} \\
0 & C & r p \\
0 & 0 & r
\end{array}\right], \tag{*}
\end{gather*}
$$

where
$r=r_{1} r_{2}, \mathrm{~A}=\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{p}=\frac{1}{r_{1}} C_{1} p_{2}+p_{1}$.

To construct the conformal transformation, we follows the procedures of Bryant ([B1]),
(1) $r=1, p=\left[\begin{array}{c}0 \\ 0 \\ \frac{H}{2}\end{array}\right], A=I$.
(2) $r=1, p=0, A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right]$.
(3) $r=\frac{2}{\sqrt{\left(h_{11}-h_{22}\right)^{2}+4 h_{12}^{2}}}, p=0, A=I$
(4) $r=1, p=\left[\begin{array}{c}\frac{H_{1}}{2} \\ -\frac{H_{2}}{2} \\ 0\end{array}\right], A=I$.

Where
$c=\frac{1}{\sqrt{2}} \sqrt{1+\frac{h_{11}-h_{22}}{\sqrt{\left(h_{11}-h_{22}\right)^{2}+4 h_{12}^{2}}}}$,
$s= \pm \frac{1}{\sqrt{2}} \sqrt{1-\frac{h_{11}-h_{22}}{\sqrt{\left(h_{11}-h_{22}\right)^{2}+4 h_{12}^{2}}}}\left(\pm\right.$ depends on the sign of $\left.h_{12}\right)$.
Applying (*) to the procedures, we find

$$
\begin{aligned}
\tilde{e}_{4} & =r\left(\frac{1}{2} p^{t} p e_{0}+\left(e_{1}, e_{2}, e_{3}\right) p+e_{4}\right) \\
& =r\left(\frac{1}{2}\left(p^{t} p+1\right), \frac{1}{2}\left(p^{t} p-1\right) x+c_{1} E_{1}+c_{2} E_{2}+c_{3} E_{3}\right)
\end{aligned}
$$

Thus the conformal transformation \hat{x} in the sense of S^{3} is given by

$$
\begin{aligned}
\hat{x}= & \frac{2}{\frac{|\nabla H|^{2}}{4 r^{2}}+\frac{H^{2}}{4}+1}\left(\frac{1}{2}\left(\frac{|\nabla H|^{2}}{4 r^{2}}+\frac{H^{2}}{4}-1\right) x\right. \\
& \left.-\frac{1}{r}\left(\frac{H_{1}}{2}\left(c E_{1}+s E_{2}\right)-\frac{H_{2}}{2}\left(s E_{1}-c E_{2}\right)\right)+\frac{H}{2} E_{3}\right),
\end{aligned}
$$

where
$r=\frac{2}{\sqrt{\left(h_{11}-h_{22}\right)^{2}+4 h_{12}^{2}}}$,
$c=\frac{1}{\sqrt{2}} \sqrt{1+\frac{h_{11}-h_{22}}{\sqrt{\left(h_{11}-h_{22}\right)^{2}+4 h_{12}^{2}}}}, s= \pm \frac{1}{\sqrt{2}} \sqrt{1-\frac{h_{11}-h_{22}}{\sqrt{\left(h_{11}-h_{22}\right)^{2}+4 h_{12}^{2}}}}$.
The conformal transformation \hat{x} is constant if M^{2} is not totally umbilic and the holomorpic quartic differential ϑ vanishes on M^{2}. In particular that if M^{2} is a topological sphere, then ϑ vanishes identically. Thus M^{2} is either totally umbilic or \hat{x} is constant.

4. Constant conformal transformation

In this section we characterize the surface with constant conformal transformation which is constructed in section 3. Suppose that M^{2} is not totally umbilic. Let \hat{x} be the constant unit vector a, and $f=|\phi|^{2}|\nabla H|^{2}+4 H^{2}$, then

$$
(x, a)=1-\frac{32}{f+16},\left(E_{3}, a\right)=\frac{16 H}{f+16} .
$$

From the structure equations, then we have $\left(E_{j}, a\right)=\frac{32 f_{j}}{(f+16)^{2}}$ for $\mathrm{j}=1,2$, and
$\mathrm{H}\left(E_{3}, a\right)-2(x, a)=\frac{32}{(f+16)^{2}} \Delta f-\frac{64}{(f+16)^{3}}|\nabla f|^{2}$.

It follows that
$1-(x, a)^{2}-\left(E_{3}, a\right)^{2}=\frac{1024}{(f+16)^{4}}|\nabla f|^{2} \quad$ and
$8(f+16)^{2}\left(\mathrm{H}^{2}+4\right)-(f+16)^{3}=16(f+16) \Delta f-\left.32 \nabla \nabla f\right|^{2}$.
Since
$|\nabla f|^{2}=\frac{1}{16}\left((f+16)^{3}-4(f+16)^{2}\left(4+H^{2}\right)\right)$,
we have $\Delta f=\frac{1}{16}(f+16)^{2} \geq 0$.
Since M^{2} is compact, f is constant, and x is a hypersphere which is totally umbilic , a contradiction. Thus M^{2} must be totally umbilic.

References

[Be] L. Bers, Local behaviour of solution of general linear elliptic equations, Comm. Pure Appl. Math., 8(1955), 473-497.
[B1] R. Bryant, A duality theorem for Willmore surfaces, Journal of Differential Geom., 20(1984), 23-53.
[B2] R. Bryant, Surfaces in conformal geometry, Proc. Sympos. Pure Maths. Amer. Math.Soc., 48(1988) 227-240.
[CDK] Chern, S. S; do Carmo, M. and Kobayashi, S.: Minimal submanifold of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 59-75.
[CH] Y. C. Chang and Y. J. Hsu, Willmore surfaces in the unit n -sphere, Taiwanese Journal of Math., 8(2004), no. 3, 467-476.
[P] B. Palmer, Uniqueness theorems for Willmore surfaces with fixed and free boundaries, Indiana Univ. Math. J. 49 (2000). [W] Weiner, J. L.: On a problem of Chen, Willmore et al., Indiana Univ. Math. J. 27(1978), 19-35.

