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中文摘要 
關鍵詞（keywords）: 虛擬藥物篩選, 篩選後分析, QSAR, Pharmacophore model, Binding site 
prediction, GEMDOCK, iGEMDOCK, 套膜蛋白 , 四環黴素類分子 , Structural alphabet, 
Neuraminidase  

在本計畫在三年中，我們發表了八篇國際期刊論文，獲得 2007 國家新創獎，在三年中共

有 6 位碩士畢業生，並達成數項具體成果。我們將三年計畫執行成果分為四個部分：一、虛

擬藥物篩選；二、藥效基團辨識；三、藥物篩選後分析，以及四、親和力(binding affinity)預測

與 QSAR 分析。在本計畫中，我們以自行發展的分子鉗合軟體(GEMDOCK)為基礎，發展了一

個圖形介面的藥物篩選工具(iGMEDOCK)，並且配合已發展的藥效基團之新計分函數進行虛

擬藥物篩選。篩選後之結果經由群集歸納分析後，我們可以從每群中取得代表配體進入生物

實驗，提升分析與實驗效率。針對這些代表配體，我們發展了兩個新的方法 GemAffinity 及

GEMQSAR 預測其親和力，提升尋得候選藥物的準確率。此四部分的密切結合，可以構成一

有效率的藥物開發平台，並於未來投入重要疾病藥物開發。 

以下針對本計畫四部分做一說明： 

一、虛擬藥物篩選：我們為虛擬藥物篩選工具(GEMDOCK)加上圖形介面，使之成為一個

便利使用的成熟預測軟體，並提供免費下載與推廣(http://gemdock.life.nctu.edu.tw/dock/)。此外

GEMDOCK 也實際應用到登革熱病毒結構套膜蛋白之藥物篩選，並篩檢出有效抑制登革熱病

毒之小分子抑制劑。經過 BHK-21 哺乳類動物細胞實驗證實其病毒抑制能力分別為 67.1 uM 與

55.6 uM (IC50 值)。針對胜肽藥物，我們也發展了預測平台之雛形。該平台主要概念是利用將

3D 胜肽骨幹結構轉換為序列化，並提供一個快速的大量相似蛋白質結構之搜尋，提供未來胜

肽藥物開發的基礎。 

二、藥效基團辨識：我們發展了一個藥效基團辨識方法，結合 GEMDOCK，建構出新的計

分函數，提升藥物篩選之準確度。我們利用人類雌激素受體(ER)與 Bissantz 等人發表之資料
1 作為比較。對其 ER 拮抗劑 GEMDOCK 之平均 goodness-of-hit (GH) score 與平均偽陽性率分

別為 83%與 0.13%。對 ER 促進劑其值分別為 48%與 0.75%。 

三、藥物篩選後分析：我們發展了一個群集式分析方法，提升候選配體的分析及實驗效率。

其主要概念是透過同時結合蛋白質－配體交互作用力、物理化學與結構特性以歸納分析候選配

體。此外，我們也發展了一套資料融合(data fusion)技術，用於結合複數以上計分函數，以各

函數間之互補性提升篩選之準確度。 

四、親和力(binding affinity)預測與 QSAR 分析：我們發展了兩個新的方法 GemAffinity 與

GEMQSAR 預測其親和力，提升尋得候選藥物的準確率。GemAffiny 可以用來預測蛋白質與配

體間親和力。GemAffinity 在測試資料之相關係數為 0.58，優於十二種已發表的計分函數。另

一方面，若已有數個已知實驗活性的配體，我們可運用本計畫中所發展之 QSAR 分析工具

(GEMQSAR)建立QSAR模型。此模型更能準確預測配體與對該特定蛋白質之間的結合親和力。 
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英文摘要（Abstract） 
關鍵詞（keywords）: Virtual screening, post-analysis, QSAR, pharmacophore model, binding site 
prediction, GEMDOCK, iGEMDOCK, Envelope Protein, rolitetracycle, structural alphabet, 
3D-BLAST, GEMPLS, GEMQSAR, Neuraminidase 
 

We published eight journal papers and won the 2007 national innovation award. 6 graduated 
master students were supported by this project during 200-2008. We also achieved several important 
results in this project. Our achievements can be divided into four parts: 1) Virtual screening; 2) 
Pharmacophore identification; 3) Post-analysis of virtual screening, and 4) Prediction of binding 
affinity and QSAR analysis. In this project, we developed a graphical-automatic environment, 
iGEMDOCK, based on GEMDOCK. Additionally, we integrated the scoring function of 
GEMDOCK with a new developed pharmacophore-based scoring function for virtual screening. In 
post analysis of virtual screening, we developed a new cluster method for clustering candidate 
compounds and selecting representatives for biological tests. For these representatives, we 
developed two new methods, GemAffiniy and GEMQASR, to measure binding affinities of 
protein-ligand complexes. These four parts construct an efficient and fast platform for drug 
discovery.  

The four parts are listed as follows: 
 

1. Virtual screening. We developed a graphical-automatic environment named iGEMDOCK for 
docking, screening, and post-screening analysis. iGemdock is avaliable at 
http://gemdock.life.nctu.edu.tw/dock/. For the application of GEMDOCK, we identified two 
effective novel inhibitors (IC50 : 67.1 uM and 55.6 uM) on the propagation of dengue virus type 
2 against the viral envelope protein. Moreover, for peptide drug prediction, we presented a 
novel protein structure database search tool, 3D-BLAST, that is useful for analyzing novel 
structures and searching peptides that share similar structural motifs. We have combined this 
tool and GEMDOCK to develop a peptide drug prediction tool. 
 

2. Pharmacophore identification. We integrated the scoring function of GEMDOCK with a new 
developed pharmacophore-based scoring function for virtual screening. This tool has been 
applied to molecular docking and post-docking analyses for improving screening accuracy. We 
assessed the accuracy of our approach by using human estrogen receptor (ER) and a ligand 
database from the comparative studies of Bissantz et al.1 While using GEMDOCK, the average 
goodness-of-hit (GH) score was 83% and the average false positive rate was 0.13% for ER 
antagonists, and the average GH score was 48% and the average false positive rate was 0.75% 
for ER agonists.  
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3. Post-analysis of virtual screening. We developed a cluster method for post analysis to 
improve enrichment for virtual screening. The method combined protein-ligand interactions 
derived from GEMDOCK, physical-chemical features, and structures, for generating profiles of 
candidate compounds. Based on these profiles, the method clusters candidate compounds and 
selects representative compounds for biological tests. In addition, we explored consensus 
scoring criteria and provided a consensus scoring procedure for improving the enrichment in 
virtual screening using data fusion. 

4. Prediction of binding affinity and QSAR analysis. We developed two new methods, 
GemAffiniy and GEMQASR, to measure binding affinities of protein-ligand complexes. 
GemAffinity outperforms 12 comparative scoring functions on a public set. Furthermore, if 
several compounds with explerimental affinities are available, GEMQSAR is able to build a 
QSAR model to predict binding affinities more precisely. 
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Overview 

In the past three years, we published eight journal papers, one conference paper, five poster 
papers and won the 2007 national innovation award. Our achievements and work are separated into 
five parts. The relationships of these works are shown as the following figure. 
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Figure 1. The relationships of our research works in this project. 

The core of our works is focused on solving the critical problems in the computer-aided drug 
discovery. For the automatically virtual screening system, we developed a graphical-automatic 
environment named iGEMDOCK for docking, screening, and post-screening analysis. We also built 
a web server for freely downloading at http://gemdock.life.nctu.edu.tw/dock/. For the application of 
virtual screening, we have identified two effective novel inhibitors on the propagation of dengue 
virus type 2 by using virtual screening against the viral envelope protein (DV E protein). Two, 
rolitetracycle and doxycycline, of these compounds reveal significant inhibition on the DV plaque 
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formation. Both these compounds are tetracycline derivatives, with estimated IC50 values of 
67.1 M and 55.6 M, respectively. 　 　 For peptide drug prediction, we present a novel protein 
structure database search tool, 3D-BLAST, that is useful for analyzing novel structures and can 
return a ranked list of alignments. We have combined this tool and our virtual screening tool 
(GEMDOCK) to develop a peptide drug prediction tool. 

For binding site analysis, we developed a new profile method to predict ligand-binding site, 
called homogenized species-based method. We combined volume information and evolutionary 
conservation to predict ligand-binding sites. Our method had a better successful rate (75.2%) than 
Consurf-HSSP (73.1%). A web service for predicting binding sites is served at 
http://gemdock.life.nctu.edu.tw/cavity_web/. 

For pharmacophore identification, we developed a pharmacophore-based evolutionary approach 
for virtual screening. This tool combines GEMDOCK with a new pharmacophore-based scoring 
function. The pharmacophore-based scoring function integrates an empirical-based energy function 
and pharmacological preferences serves as the scoring function for both molecular docking and 
post-docking analyses to improve screening accuracy. We assessed the accuracy of our approach 
using human estrogen receptor (ER) and a ligand database from the comparative studies of Bissantz 
et al.1 Using GEMDOCK, the average goodness-of-hit (GH) score was 0.83 and the average false 
positive rate was 0.13% for ER antagonists, and the average GH score was 0.48 and the average false 
positive rate was 0.75% for ER agonists. 

For post-analysis of virtual screening, we developed a cluster method for post analysis to 
improve enrichment for virtual screening. The method combines protein-ligand interactions (e.g. 
hydrogen bonds, electrostatic interactions, and van der Waals), which are generated by our 
well-developed docking tool (i.e. GEMDOCK), and physical-chemical features and structures for 
each compound candidate selected by GEMDOCK. For each cluster, this method selected a 
representative compounds for biological tests and improved the enrichment of virtual screening.  

For QSAR analysis, we developed a QSAR methodology associating molecular docking and 
feature selection with PLS, named GEMPLS. GEMPLS served as feature selection and model 
building in QSAR analysis. Potential features for contributing inhibition would be selected by 
evolutionary strategy and built regression by PLS. Due to the low correlation of binding affinity and 
current scoring functions, we have developed a scoring function, namely GemAffinity, to predict 
binding affinities of protein-ligand complexes. GemAffinity consists of 5 descriptors including 
protein-ligand interactions, structural and physicochemical descriptors of ligands, protein properties, 
metal-ligand bonding, and water effects. The correlation between predicted binding affinities and 
experimental values is 0.58 and the GemAffinity outperforms 12 comparative scoring functions on 
this set. GemAffinity will be added into our QSAR method (termed GEMQSAR) to improve the 
prediction abilities and accuracy. 
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 The overview of achievements in this project is listed as following. We published 8 journal 
papers, 1 conference paper and 5 posters. The tools developed in this project are also provided web 
services. Our automatically virtual screening tool, iGEMDOCK also won the prize of 2007 National 
Innovation Award. Eight masters were supported by this research project. 
Research publications 
Journal papers: 
1. Y.-Y. Chiu, J.-K. Hwang, J.-M. Yang*, "Soft energy function and generic evolutionary method 

for discriminating native from non-native protein conformations," Journal of Computational 
Chemistry, vol. 29, pp. 1364-1373, 2008 (SCI, IF: 4.89)  

2. M.-C. Yang, H.-H. Guan, M.-Y. Liu, Y.-H. Lin, J.-M. Yang, W.-L. Chen, C.-J. Chen, and Simon 
J. T. Mao*, "Crystal structure of a secondary vitamin D3 binding site of milk ß-lactoglobulin," 
Proteins: Structure, Function, and Bioinformatics, vol. 71, pp. 1197-1210, 2008. (SCI, IF: 3.73) 

3. Y.Y. Yao, K.L. Shrestha, Y.J. Wu, H.J. Tasi, C.C. Chen, J.-M. Yang, A. Ando, C.Y. Cheng, Y.K. 
Li*, "Structural simulation and protein engineering to convert an endo-chitosanase to an 
exo-chitosanase," Protein Engineering, Design & Selection, 2008, in press. (SCI, IF: 3.0)  

4. C.-H. Tung, J.-W. Huang and J.-M. Yang*, "Kappa-alpha plot derived structural alphabet and 
BLOSUM-like substitution matrix for fast protein structure database search," Genome Biology, 
vol. 8, pp. R31.1~R31.16, 2007. (SCI, IF: 7.17) 

5. C.-H. Tung and J.-M. Yang*, "fastSCOP: a fast web server for recognizing protein structural 
domains and SCOP superfamilies," Nucleic Acids Research, pp. W438-W443, 2007. (SCI, IF: 
6.31) 

6. J.-M. Yang, Y.-F. Chen, Y.-Y. Tu, K.-R. Yen, and Y.-L. Yang*, “Combinatorial computation 
approaches identifying tetracycline derivates as flaviviruses inhibitors,” PLoS ONE, pp. e428.1- 
e428.12, 2007.  

7. J.-M. Yang* and T.-W. Shen, "A pharmacophore-based evolutionary approach for screening 
selective estrogen receptor modulators," Proteins: Structure, Function, and Bioinformatics, vol. 
59, pp. 205-220, 2005. (Times Cited: 13) 

8. J.-M. Yang* Y.-F. Chen, T.-W. Shen, B. S. Kristal, and D. F. Hsu, "Consensus Scoring Criteria 
for Improving Enrichment in Virtual Screening," Journal of Chemical Information and 
Modeling, vol. 45, pp. 1134-1146, 2005. (Times Cited: 25) 

Conferences Papers: 
1. K-C Hsu, Y-F Chen, and J-M Yang*, "Binding affinity analysis of protein-ligand complexes," 

2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 167-171, 
2008.  

Posters 
1. Y.-F. Chen, L.-J. Chang, J.-M. Yang*, "Integrating GEMDOCK with GEM-PLS and GEM-kNN 

for QSAR modeling of huAChE and AGHO," in 15th Annual International Conference on 
Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference on 
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Computational Biology (ECCB), Vienna, Austria, 2007. 
2. C.-H. Tung, T.-K. Yang, and J.-M. Yang*, "Structural Binding Pocket Clustering and 

Protein-Ligand Interaction Analysis for ATP-binding Proteins," in 15th Annual International 
Conference on Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference 
on Computational Biology (ECCB), Vienna, Austria, 2007. 

3. J.-M. Yang, Y.-F. Chen, C.-Y. Chen and Y.-L. Yang, "Identifying Two Tetracycline-Derivates as 
Effective Novel Inhibitors on the Propagation of Dengue Virus Type 2 Using Virtual Screening 
against the Envelope Protein", in Annual Conference on Biotechnology, Hsinchu, Taiwan, 2006 

4. C.-N. Ko, Y.-F. Chen, Y.-J Chen and J.-M. Yang, "Cluster analysis of Structure-based Virtual 
Screening by Using Protein-ligand Interactions and Compound Structures", in Annual 
Conference on Biotechnology, Hsinchu, Taiwan, 2007 

5. Y.-T. Chen and J.-M. Yang,"A New Profile Method for Predicting Protein-ligand Binding Site", 
in 2008 Annual Conference on Biotechnology, Hsinchu, Taiwan, 2008 

 
Databases and web-based services 

GEMDOCK: http://gemdock.life.nctu.edu.tw/dock/ 
Binding site analysis: http://gemdock.life.nctu.edu.tw/cavity_web/ 
3D-BLAST: http://3d-blast.life.nctu.edu.tw/ 

 
Awards in the past three years 
Table 1. The awards of principal investigators during 2005-2008 

Name of PI Date Prize 

J.-M. Yang 2006 獲得國立交通大學 2006 年傑出人士榮譽獎勵 

J.-M. Yang 2007 國家新創獎 

J.-M. Yang 2007~ 生物資訊協會理事 

J.-M. Yang 2005 指導研究生獲資訊學會碩博士論文獎佳作獎 
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Table 2. The awards of graduate students joined in this project 

Student Professor Date Prize 

陳佑德 J.-M. Yang 2008 
交通大學生物科技學院 2008 生物科技

學術壁報競賽優等 
陳彥甫 
陳右儒 J.-M. Yang 2007 國家新創獎第三名 

陳彥甫 J.-M. Yang 2007 
2007 年生物科技學術研討會暨壁報比

賽（優等） 

董其樺 J.-M. Yang 2007 
2007 年生物科技學術研討會暨壁報比

賽（優等） 

董其樺 J.-M. Yang 2006 
2006 年生物科技學術研討會暨壁報比

賽（優等） 

陳彥甫 J.-M. Yang 2006 
2006 年生物科技學術研討會暨壁報比

賽（佳作） 

黃章維 J.-M. Yang 2006 
2006 年生物科技學術研討會暨壁報比

賽（佳作） 
董其樺 J.-M. Yang 2005 資訊學會最佳碩博士論文 

 
Accomplishments on education 

In the past three years, 8 masters were supported by this research project.  
 
Table 3. Summary of conferences that our students have joined during 2005-2008 

Student Professor Date Conference 

許凱程 J.-M. Yang 2008/05 
The 2nd International Conference on Bioinformatics and 
Biomedical Engineering (iCBBE2008) 

董其樺 J.-M. Yang 2007/08 The 15th Annual International Conference on Intelligent Systems 
for Molecular Biology (ISMB) 

陳彥甫 J.-M. Yang 2007/08 The 15th Annual International Conference on Intelligent Systems 
for Molecular Biology (ISMB) 
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 Chapter 1 Virtual Screening 
The core of our works is focused on solving the critical problems in the computer-aided drug 

discovery. For the automatically virtual screening system, we developed a graphical-automatic 
environment named iGEMDOCK for docking, screening, and post-screening analysis. We also built 
a web server for freely downloading at http://gemdock.life.nctu.edu.tw/dock/. For the application of 
virtual screening, we have identified two effective novel inhibitors on the propagation of dengue 
virus type 2 by using virtual screening against the viral envelope protein (DV E protein). Two, 
rolitetracycle and doxycycline, of these compounds reveal significant inhibition on the DV plaque 
formation. Both these compounds are tetracycline derivatives, with estimated IC50 values of 
67.1 M and 55.6 M, respectively. 　 　 For peptide drug prediction, we present a novel protein 
structure database search tool, 3D-BLAST, that is useful for analyzing novel structures and can 
return a ranked list of alignments. We have combined this tool and our virtual screening tool 
(GEMDOCK) to develop a peptide drug prediction tool. 

In this section, our works have published four journal papers, two post papers and won one prize. 
The detail lists as below. 
Awards: 
1. 2007 National Innovation Award, Yen-Fu Chen, Yu-Ju Chen, and Jinn-Moon Yang, 

"GEMDOCK: An Integrated Environment for Computer-aided Drug Design and Its 
Applications", Taiwan 

Journal papers: 
1. Y.-Y. Chiu, J.-K. Hwang, J.-M. Yang*, "Soft energy function and generic evolutionary method 

for discriminating native from non-native protein conformations," Journal of Computational 
Chemistry, vol. 29, pp. 1364-1373, 2008 (SCI, IF: 4.89)  

2. M.-C. Yang, H.-H. Guan, M.-Y. Liu, Y.-H. Lin, J.-M. Yang, W.-L. Chen, C.-J. Chen, and Simon 
J. T. Mao*, "Crystal structure of a secondary vitamin D3 binding site of milk ß-lactoglobulin," 
Proteins: Structure, Function, and Bioinformatics, vol. 71, pp. 1197-1210, 2008. (SCI, IF: 3.73) 

3. Y.Y. Yao, K.L. Shrestha, Y.J. Wu, H.J. Tasi, C.C. Chen, J.-M. Yang, A. Ando, C.Y. Cheng, Y.K. 
Li*, "Structural simulation and protein engineering to convert an endo-chitosanase to an 
exo-chitosanase," Protein Engineering, Design & Selection, 2008, in press. (SCI, IF: 3.0)  

4. J.-M. Yang, Y.-F. Chen, Y.-Y. Tu, K.-R. Yen, and Y.-L. Yang*, “Combinatorial computation 
approaches identifying tetracycline derivates as flaviviruses inhibitors,” PLoS ONE, pp. e428.1- 
e428.12, 2007.  

Posters 
1. C.-H. Tung, T.-K. Yang, and J.-M. Yang*, "Structural Binding Pocket Clustering and 

Protein-Ligand Interaction Analysis for ATP-binding Proteins," in 15th Annual International 
Conference on Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference 
on Computational Biology (ECCB), Vienna, Austria, 2007. 
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2. J.-M. Yang, Y.-F. Chen, C.-Y. Chen and Y.-L. Yang, "Identifying Two Tetracycline-Derivates as 
Effective Novel Inhibitors on the Propagation of Dengue Virus Type 2 Using Virtual Screening 
against the Envelope Protein", in Annual Conference on Biotechnology, Hsinchu, Taiwan, 2006 

1.1 iGEMDOCK: A Graphical-Automatic System for Virtual Screening and Post-Screening 
Analysis 

1.1.1 Introduction  

As significantly increasing in the number of protein crystal structures, molecular docking and 
virtual screening (VS) are emergency issues for structural-based drug design (SBDD). Many tools 
(e.g. GEMDOCK 2, DOCK 3, Autodock 4, GOLD 5 ) have been developed for VS and successfully 
applied to identify lead compounds for target proteins from thousands of compounds. However, the 
inaccuracy of their scoring methods, that is, inadequately predicting the true binding affinity of a 
ligand for a receptor, is probably the major weakness for VS. To improve the hit rate, some methods 
have utilized compound structure similarity 6 and protein-ligand interactions 7; 8 for post-screening 
analysis. 

We have developed a docking/screening tool (GEMDOCK) which achieved high accuracy on 
some benchmarks 2; 9; 10 and successfully identified novel substrates or inhibitors for some targets 11; 

12. The GEMDOCK used a soft energy function and a generic evolutionary method for flexible 
docking. In general, a docking tool for VS consists of four steps: the preparations of the binding site 
and ligand; molecular docking; and post-screening analysis. For preparations of the binding site, 
most of docking tools need to add hydrogen atoms (e.g. GOLD, Autodock, and DOCK) and grid (e.g. 
Autodock and DOCK) the binding site via a command mode. In addition, users require other tools to 
analyze docked complexes to enrich the hit rate in manual for the post-analysis. These procedures are 
often time consumed and a high wall for the entry-level end-users. Therefore, some docking 
programs provided a graphic user interface (GUI), such as ADT of Autodock and GoldMine of 
GOLD, to reduce the ill effects. The ADT analyzes many docked conformations of a compound and 
the GoldMine executed post-analysis using docked scores (e.g. van der Waals and hydrogen bonding) 
of screened compounds. However, these tools do not consider compound structures and 
protein-ligand interactions for post-screening analysis. 

Here, we developed a GUI environment, named iGEMDOCK, by integrating docking and virtual 
screening tool (GEMDOCK), post-screening analysis methods, and visualization tool (RasMol 13). 
For post-screening analysis, we developed two modules (i.e. mod_ac and mod_kc) to cluster large 
docked complexes using compound structure properties and protein-compound interactions. The 
iGEMDOCK keeps the following advantages: (1) a friendly GUI for preparing the binding site 
(mod_cav), selecting compounds (mod_lig), and docking parameters; (2) grouping the docked 
compounds; (3) visualizing a docked complex or similar complexes of a group. 
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 (A) (C)

(B) (D)

 

Figure 1.1.1. The framework of the iGEMDOCK. (A) The interface of the docking/screening 
consists of three parts: preparing binding sites and screening compounds; docking parameters; and 
the progress of working procedure. (B) The interface of the binding site preparation provides users to 
set the binding site and visualize protein and ligand structures. (C) The interface of the 
post-screening analysis shows energies of docked compounds and provides the compound groups. (D) 
The visualization interface indicates a docked pose or similar docked poses in a group. 
1.1.2 Descriptions 

The iGEMDOCK is an automatic and easy-to-used screening GUI environment for molecular 
docking and post-screening analysis (Figure 1.1.1).  To describe iGEMDOCK’s functions, we 
employed herpes simplex virus type 1 thymidine kinase (TK) complex 14 as the target protein and 10 
screening compounds, including five TK  inhibitors and five estrogen receptor (ER) agonists 
(Figure 1.1.2). The main parts of iGEMDOCK for molecular docking/VS includes binding site 
preparation module (mod_cav); compound selection module (mod_lig); docked parameters; and 
screening progress status (Figure 1.1.1A). The iGEMDOCK provides a straightforward method to 
derive the binding sites and bounded ligands from protein structures in Protein Data Bank (PDB) 15. 
For the target TK, the PDB code is 1kim and bounded ligand is aciclovir (Figure 1.1.1B). Please note 
that the iGEMDOCK automatically considers the effect of hydrogen atoms. Users are able to 
visualize both the ligand and binding site structures to select or refine the suitable binding site based 
on their requirements. The iGEMDOCK also provides an interactive interface to select compounds 
for docking/screening. When the binding site and compounds are preparations, the iGEMDOCK can 
suggest docking parameters (i.e. population size and number of generations) of the GEMDOCK and 
display the progress of screening status.  
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For post-screening analysis, the iGEMDOCK used compound structures (i.e. atom composition) 
and protein-ligand interactions to analyze numerous docked poses generated by GEMDOCK. The 
post-analysis module (Figure 1.1.3) of iGEMDOCK facilitates users for several tasks: clustering 
compounds; mining common structures and interactions; visualizing docked clustering results. The 
module sorts the compounds based on docked energy terms (e.g. hydrogen bonding interactions, 
electrostatic energy, van der Waals contact energy, or total energy) (Figure 1.1.1C). It also identifies 
similar poses and compounds by using k-means and hierarchical clustering methods according to 
properties of protein-ligand interactions and atomic compositions. Atomic composition, which is 
similar to the amino acid composition of a protein sequence, is a new concept for measuring 
compound similarity (Table 1.1.1). For the TK screening, the post-analysis module clusters 10 
screening compounds into two groups (i.e. ER and TK groups) using both docked poses and 
compound structures (Figures 1.1.4 and 1.1.5 in supporting material, respectively). According to 
protein-ligand interactions (Figure 1.1.4), the interactions between ER and TK compounds are 
significantly different on six residues: H58, Y101, Q125, Y132, R222, and R225. These clusters let 
user easily observe docked poses of the individual protein-ligand complex or similar complexes in a 
group (Figure 1.1.1D). In addition, users can directly download the properties of protein-ligand 
interactions and atomic compositions for post-screening analysis.  

Table 1.1.1. Ten atom types of the atom composition for describing a compound structure 

Atom Types Descriptions 
C.ring Number of Carbon on the ring 
C.other Number of Carbon not on the ring  
N.ring Number of Nitrogen on the ring 
N.other Number of Nitrogen not on the ring 
O.ring Number of Oxygen on the ring 
O.other Number of Oxygen not on the ring 
P Number of Phosphorous 
S.ring Number Sulfur  
X Number of other atoms 
Ring# Number of chemical ring 
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Figure 1.1.2.  Ten compound structures consist of five thymidine kinase (TK) inhibitors (TK01, 
TK02, TK02, TK04, and TK05) and five estrogen receptor (ER) agonists (ESA01, ESA02, ESA03, 
ESA04, and ESA05). 
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Figure 1.1.3.  The architecture of the post-screening analysis of the iGEMDOCK 
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Figure 1.1.4. (A) The docked poses and (B) protein-ligand interactions of 10 compounds (Figure 
1.2.3) docked into the herpes simplex virus type 1 thymidine kinase (TK) complex. The docked 
poses of TK and ER compounds are colored as red and cyan, respectively. The TK and ER are 
clustered into 2 groups based on protein-ligand interactions. The interactions between ER and TK 
compounds are significantly different on six residues: H58, Y101, Q125, Y132, R222, and R225.  
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#Compound C.ring C.other N.ring N.other O.ring O.other P S X #.of.Ring
ESA05 17 1 0 0 0 3 0 0 0 4
ESA04 12 6 0 0 0 2 0 0 0 2
ESA03 15 0 0 0 1 4 0 0 0 3
ESA02 18 4 0 0 0 2 0 0 0 4
ESA01 17 1 0 0 0 2 0 0 0 4
TK05 5 4 4 1 0 4 0 0 0 2
TK04 4 5 2 0 0 4 0 0 0 1
TK03 8 4 4 0 0 5 0 0 0 2
TK02 4 4 2 0 0 3 0 0 0 1
TK01 10 2 2 0 0 4 0 0 0 3

C.ring C.other N.ring N.other O.ring O.other P S X #.of.Ring

A

B

 
Figure 1.1.5. (A) The values of 10 properties and (B) cluster results of 10 compounds (Figure 1.1.2) 
of atomic compositions. The TK and ER are clustered into 2 groups based on protein-ligand the 
properties of the atomic compositions. 

 
1.1.3 Results 

The iGEMDOCK was evaluated and compared with other methods on CCDC/Astex set (i.e. 305 
protein-ligand complexes 16) and two targets (i.e. TK and ER 17) for the docking and VS, respectively. 
Experimental results reveal that iGEMDOCK is robust and comparative to several programs (i.e. 
GOLD, DOCK, and FlexX) on these sets (Tables 1.1.2 and 1.1.3). For 305 complexes, the successful 
rates (i.e. the RMSD between a docked pose and the ligand structure is less than 2.0 Å) of 
iGEMDOCK and GOLD are 78% and 68%, respectively. For two screening targets, iGEMDOCK is 
also better than DOCK, GOLD and FlexX. In summary, the iGEMDOCK is a useful 
graphical-automatic environment for docking, screening, and post-screening analysis. It provides 
post-screening analysis tools by utilizing protein-ligand interactions and compound structures. We 
believe that iGEMDOCK is useful for structure-based drug design. 
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Table 1.1.2. Comparing GEMDOCK with GOLD on the CCDC/Astex set using the success rate. For 
each complex, GEMDOCK and GOLD generated 10 docked poses and the one with the lowest 
energy is selected as the docked solution.   

  iGEMDOCK GOLD a 

RMSD All entries 
b 

Clean list 
c 

Clean list 
with 
R<2.5Å c

Clean list 
with 
R<2.0 Å c

All 
entries 

Clean list 
c 

Clean list 
with 
R<2.5 Å c 

Clean list 
with 
R<2.0 Å c

<0.5 Å 14 % 16 % 17 % 22 % 14 % 17 % 19 % 19 % 
<1.0 Å 51 % 55 % 55 % 57 % 44 % 50 % 51 % 56 % 
<1.5 Å 71 % 73 % 73 % 75 % 59 % 65 % 66 % 72 % 
<2.0 Å 78 % 82 % 83 % 83 % 68 % 72 % 73 % 78 % 
<2.5 Å 84 % 86 % 86 % 87 % 75 % 78 % 80 % 85 % 
<3.0 Å 86 % 89 % 89 % 89 % 80 % 82 % 83 % 88 % 

a The results of the GOLD directly summarized from Nissink et al 16.  
b The CCDC/Astex consists of 305 complexes.  
c The clean list is divided into three subsets: all clean complexes (224 complexes), the complexes 
(180 complexes) with resolution < 2.5 Å, and the complexes (92 complexes) with resolution < 2.0 Å. 

 
Table 1.1.3. Comparing GEMDOCK with other methods on screening the ER antagonists and TK 
inhibitors by false positive rates (%) 

Target 
protein 

True 
positive (%) 

iGEMDOCK DOCK a FlexX a GOLD a 

ER- 
antagonists 

80 1.72 (17/990) b 13.3 57.8 5.3 

 90 2.32 (22/990) 17.4 70.9 8.3 
 100 5.15 (48/990) 18.9 - c 23.4 
Thymidine 
kinase 

80 4.75 (51/990) 23.4 8.8 8.3 

 90 8.89 (54/990) 25.5 13.3 9.1 
 100 9.7 (97/990) 27.0 19.4 9.3 

a Directly summarized from 18.  
b The false positive rate from 990 random ligands. 
c FlexX could not calculate the docked solution for EST09. 
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1.2 Identifying Two Novel Inhibitors on the Propagation of Dengue Virus Type 2 Using 

Virtual Screening against the Envelope Protein 

1.2.1 Introduction 

Dengue virus (DV) belongs to the Flavivirus family, and has become a serious global threat to 
public health, especially in tropical and subtropical regions because of the rising population density 
and changes in the environment. DV has four serotypes, all of which are transmitted by Aedes 
mosquitoes and threatens around 2.5 billion people worldwide. Other well-known members of the 
flavivirus family include the yellow fever, Japanese encephalitis, West Nile and Murray Valley 
encephalitis viruses19. Patients with DV infection show various clinical symptoms, ranging from no 
significant illness, through mild fever to life-threatening dengue hemorrhagic fever and dengue 
shock syndrome. Currently, only supportive treatment is available for DV, and although considerable 
research has been directed towards the development of a safe, effective DV vaccine over the past 50 
years, no approved commercial product is presently available 20. Therefore, one approach to 
combating the disease is to develop novel strategies for the discovery of leads of antiviral agents for 
both prevention and treatment. 

The DV genome contains a single positive-stranded RNA that encodes a single polyprotein.  
After processed by proteases encoded by DV and the host, the polyprotein produces three structural 
proteins, namely caspid, membrane protein (M) and envelope (E) protein, and seven nonstructural 
proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS521. The nonstructural proteins are needed 
for replication, but little is known about their functions. The structural proteins form the basic 
physical organization of the virion, which includes a viral genome, and is covered by an envelope 
membrane. 

The DV E protein, which is 495 amino acids in length, forms oligomers, and along with the M 
protein, forms most of the accessible virion surface on the envelope membrane. The E protein 
initiates the “membrane fusion” process, which is the central molecular event during the entry of 
enveloped viruses into host cells. The dengue virus enters a host cell when the E protein binds to the 
receptor on the cellular surface, and subsequently responds by conformational rearrangement, 
transforming the dimeric prefusion form to change into the trimeric postfusion state. This irreversible 
conformational change induces fusion of viral and host cell membranes 22, and enables the entry to 
be completed. 

The crystal structures of the E protein of DV type 2 in both the presence (prefusion) and the 
absence (postfusion) of ligand binding are published in the Protein Data Bank (PDB codes 1oke 20 
and 1ok8 22, respectively). The critical differences between these two structures are a local 
rearrangement of the “kl” β-hairpin (residues 268-280), and the concomitant opening up a 
hydrophobic pocket for ligand binding, for instance, by a detergent molecule of 



 
 

16

n-octyl-β-D-glucoside (BOG). Mutations affecting the pH threshold for membrane fusion also map 
to the hydrophobic pocket 23; 24. Hence, Modis et al. have concluded that the threshold is a hinge 
point in the fusion-activating conformational change, and have suggested that this detergent binding 
pocket could be the target for developing small-molecule fusion inhibitors 20; 22 by disrupting or even 
blocking the conformational changes that are needed for DV entry. This concept has opened the 
possibility of adopting structure-based virtual screening (VS) to identify inhibitors of DV E proteins. 

VS is an emerging and promising strategy for discovering novel lead compounds against viral 
proteins with known structures 25; 26; 27. Given the structure of the vicinity around the active site of a 
target protein and a potential small ligand database, VS predicts the binding mode and the binding 
affinity for each ligand and ranks a series of candidates. The procedure of VS generally has four 
phases, including target protein preparation, compound database preparation, molecular docking and 
post-docking analysis 25. In the preparation phase, the structural data of the protein and the 
compounds are formatted into acceptable formats for a docking program. Molecular docking is then 
adopted to screen the compound library for potential leads that can dock onto the target protein, 
while post-docking analysis is used to improve the hit rate. The VS method helps to reduce the 
burden of high-throughput screening by decreasing the number of compounds requiring processing 
in an activity assay. 

To our knowledge, no drug target site on DV E protein was defined until Modis et al. 20; 22 
proposed the BOG binding site, which is a hydrophobic pocket, as the putative molecular target. This 
study adopts a well-developed docking tool, GEMDOCK 2; 9, to screen the Comprehensive 
Medicinal Chemistry (CMC) database for substances whose structures could dock into this 
hydrophobic pocket of E proteins 20. In summary, ten compounds were then selectively tested for the 
inhibitory effect on DV propagation. The derivatives of a compound showing inhibitory effects are 
also tested for the activities. Two tetracycline derivatives (Table 1.2.1) whose presence in cell 
cultures exhibited a strong inhibitory effect on the propagation of the DV type 2 PL046 strain were 
successfully identified. A potential model for the inhibitory action on the DV E protein based on the 
docked conformations of both active and inactive compounds, which may provide the future 
direction for the lead optimization, is presented. 
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Table 1.2.1. Chemical structures and IC50 for the tetracycline derivatives  

Compound Structure Name IC50 

1 

 

Rolitetracycline 67.1μM 

2 

 

Doxycycline 55.6μM 

3 

 

Tetracycline not applied 

4 

 

Oxytetracycline not applied 

 

1.2.2 Materials and Methods 
Preparations of the target protein and screening set 

The compound set was prepared by selecting them from the CMC database in May 2004 based 
on two criteria: (1) molecular weight ranging between 200 and 800, and (2) no compounds with 
multiple components. A set comprising 5,331 compounds was eventually obtained.  

The structure of the BOG binding pocket on DV E protein was isolated and prepared for the 
GEMDOCK. The structure of the binding pocket in the BOG-bounded conformation (PDB code 
1oke 20, Figure 1.2.1A), including amino acids enclosed within a 10 Å radius sphere centered on the 
bound ligand, was used (Figure 1.2.1B). The coordinates of protein atoms were taken from the PDB 
for the screening processing. GEMDOCK docked each compound in the screening set against this 
binding cavity, and ranked each compound by docked energy of the docked conformation. 
According to the ranking, compound structures and interactions between compounds and residues in 
the binding site, ten compounds were chosen for in vivo biological activity tests to validate their 
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inhibitory activities. 

Docking method and scoring function 

Our previous works 2; 9 have showed that the docking accuracy of GEMDOCK was better than 
some well-known docking tools, such as GOLD 5 and FlexX 3, on a diverse data set of 100 
protein-ligand complexes proposed by Jones et al.5 The screening accuracy of GEMDOCK were also 
better than GOLD, FlexX, and DOCK on screening the ligand database from Bissantz et al. (2000) 
for the thymidine kinase 28 and the estrogen receptor 9. In this study, GEMDOCK parameters in the 
flexible docking included the initial step sizes (σ=0.8 and ψ=0.2), family competition length (L = 2), 
population size (N = 300), and recombination probability (pc = 0.3). For each ligand screened, 
GEMDOCK optimization stopped either when the convergence was below a certain threshold value 
or the iterations exceeded the maximal preset value of 60. For the latter case, GEMDOCK will 
produce 800 solutions in one generation and terminated after it exhausted 48,000 solutions for each 
compound in the screening set. 

The screening quality of docking methods using energy-based scoring functions alone is often 
influenced by the structure of the ligand being screened (e.g., the numbers of charged and polar 
atoms). These methods are often biased toward charged polar compounds due to the pair-atom 
potentials of the electrostatic energy and hydrogen-bonding energy. In order to reduce this ill effect, 
GEMDOCK could evolve the pharmacological preferences from a number of known active ligands 
or from domain knowledge to take advantage of the similarity of a putative ligand to those that are 
known to bind to a protein’s active site, thereby guiding the docking of the putative ligand 9. 
GEMDOCK could use either a purely empirical scoring function 2 or pharmacophore-based scoring 
function 9. When GEMDOCK used a pharmacophore-based scoring function, some known active 
ligands (more than two) or domain knowledge are required for evolving the pharmacological 
consensus according to our previous results. The empirical-binding energy (Ebind) is the sum of the 
intermolecular (Einter) and intramolecular energies (Eintra), respectively 2. The pharmacophore-based 
energy function 9 is the sum of three energy items, including the empirical binding energy (Ebind), the 
energy of binding site pharmacophores (Epharma), and a penalty value (Eligpre) if a ligand does not 
satisfy the ligand preferences. Epharma and Eligpre are especially useful in selecting active compounds 
from hundreds of thousands of non-active compounds by excluding ligands that violate the 
characteristics of known active ligands (or domain knowledge).  

Plaque formation assay for the inhibitory effects of compounds on DV2 propagation 

A local DV type 2 strain, PL046, was used to infect the mosquito C6/36 cells for the production 
of DV type 2 virions. Mammalian BHK-21 host cells were cultured at 37℃ with 5% CO2 in MEM 
medium (Gibco) supplemented with 0.22% of sodium bicarbonate and 10% of fetal bovine serum 
(FBS) (Gibco). C6/36 cells were grown at 28℃ in MEM medium (Gibco) supplemented with 0.11% 
of sodium bicarbonate and 10% of FBS 29. BHK-21 were passaged at 4 × 105 cells per well in 6-well 
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plates and incubated at 37℃ with 5% CO2 for 48 hours. Different dilutions of drug compounds were 
added to the 6-well plates followed by 0.5 ml of medium containing DV type 2 PL046 strain in the 
amount of 80 to 200 plaque forming unit (pfu) per well. The mixtures were mixed gently and then 
incubated at 37℃ with 5% CO2 for 1 hour.  After aspiring the supernatant, 1 : 1 mixture of MEM 
medium and 2% methylcellulose were added to the well and incubated further at 37℃ with 5% CO2 
for 7 days. The medium was aspired before the cells were fixed with 3.7% formadehyde. After 30 
minutes, the fixing solution was removed and the cells were stained with 1% crystal violet in 3.7% 
formadehyde. The plates were washed with 3.7% formadehyde before the plaque numbers was 
scored 29. 

1.2.3 Results and Discussion 
Virtual screening for the inhibitors of E protein 

The docking accuracy of GEMDOCK for the DV E protein was first evaluated by docking the 
BOG into the binding site (Figure 1.2.1). The docked conformation of the BOG (Figure 1.2.2A) with 
the lowest scoring value was compared with the crystal structure of the BOG based on the 
root-mean-square deviation (RMSD) of heavy atoms. The average RMSD of ten independent runs 
was less than 1.20 Å. The molecular recognition on the E protein was also studied to determine the 
preferred ligand constraints and pharmacophores in the virtual screening. This detergent binding 
pocket, located between the joint of domains I and II of the E protein, was hydrophobic in the cave 
and hydrophilic at both sides on the protein surface, while the binding site favored wide range of 
high-molecular weight and hydrophilic compounds. 

GEMDOCK was then adopted to perform virtual screening on the DV E protein on a screening 
set including 5,331 molecules chosen from the CMC database. Because the binding site of the DV E 
protein was a hydrophobic pocket, we set the electrostatic constraint, based on the upper bound of 
the number of charged atoms to 0, and the hydrophilic constraint, based on the upper bound of the 
fraction of polar atoms, to 0.3, to reduce the undesired effect of the bias in GEMDOCK toward 
charged polar compounds. The ligand preference acted as a hydrophilic filter, and gave a penalty to 
highly hydrophilic compounds. The scoring values of both the empirical and pharmacophore-based 
scoring functions were adopted as ranking conditions to identify the inhibitor candidates. 
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Figure 1.2.1. Prefusion (PDB code 1oke) and Postfusion (PDB code 1ok8) conformations of Dengue 
E protein and the ligand-binding pocket for virtual screening. (A) Dengue E protein structures with 
prefusion (gray) and postfusion (blue) and the position of the binding regions (black representing D, 
k, l in prefusion state, colored representing postfusion state)). (B) The interactions of four 
compounds docked inside the binding areas: doxycycline (green), rolitetracycline (blue), tetracycline 
(orange), and oxytetracycline (red). The volumes of the binding site in the prefusion and postfusion 
forms are significantly different. The critical difference between the two structures is a local 
rearrangement of the Do segment and the kl hairpin, of which ko and lo are the prefusion 
conformations, while Dc, kc and lc are the postfusion conformations. The prefusion conformation is 
regarded as the bind site for screening. The inhibitory compounds consistently occupy the positions 
of significant residues in postfusion. The secondary and higher-order structures, and domains I, II 
and III, correspond to those defined by Modis et al 20. 
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Figure 1.2.2. Docked conformations and screening results against dengue E protein using 
GEMDOCK. The residues affecting the pH threshold of fusion, and those forming the hydrogen 
bonds (dash with green line), are indicated. (A) The crystal conformation is in CPK model (i.e., 
oxygen atoms are red, nitrogens are blue, carbons are gray), and docked conformation (yellow) of the 
BOG compound: The RMSD of the conformations is 1.20 Å, and both conformations form hydrogen 
bonds with Glu 49 and Gln 271. (B) The docked conformations of the 10 selected compounds: the 
four tetracycline derivatives are colored (doxycycline (green), rolitetracycline (blue), tetracycline 
(orange), and oxytetracycline (red)), and other compounds are shown in the CPK model. The 
inhibitory compounds (doxycycline and rolitetracycline) are docked in the vicinity of these resides 
(Thr48, Glu49, Ala50, Lys51 and Gln52), in which the prefusion and postfusion conformations are 
significantly different. Residues affecting the pH threshold of fusion are marked. 

 

The top ranking 3% compounds (150 compounds) were selected for post analysis to enhance the 
hit rate after GEMDOCK has screened 5,331 molecules. These selected compounds were clustered 
by a hierarchical cluster method based on two-dimensional compound structures 30 and 
protein-ligand interactions, as in Jain 18. The atom environments 30 were adopted as a 
two-dimensional compound structural representation to measure compound similarities, and the 
protein-ligand interactions were used to identify the docked poses and hot spots. According to the 
structural similarity, docked poses, protein-ligand interactions and the limitation of commercial 
availability, ten compounds (Figure 1.2.3) were selected for in vivo plaque formation assay for their 
inhibitory effects on DV propagation in cultured cells. Figure 1.2.2B illustrates docked 
conformations of these selected compounds, and the two candidates of tetracycline derivates (Table 
1.2.1) along with two other derivates are marked as blue (rolitetracycline), green (doxycycline), 
orange (tetracycline), and red (oxytetracycline). 
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Figure 1.2.3. Eleven selected compounds for competitive blocking assay. Compounds 1 to 4 are 
shown in Table 1.2.1 and compounds 1, 2 and 3 have inhibitory activities.  

 

In vivo plaque formation assay 

To assess whether those individual compounds obtained by screening can affect the biological 
function of E proteins as predicted, different concentrations of the compounds were added separately 
to the BHK-21 cell culture, followed immediately by addition of DV type 2 PL046 strain in fixed 
plaque forming unit (PFU). If the compounds can bind to the E proteins as predicted by the program, 
then they may interfere with the receptor binding and conformational change necessary for the viral 
entry, thus reducing the frequency of BHK-21 cells infected by the DV virions, and consequently 
reducing the number of the plaque formed. Because each plaque represents one infection event, the 
number of plaques in an assay plate denotes the number of successful infection events. Since the 
fixed PFU was originally added to the culture, the reduction in the number of plaques reflected the 
portion of virion infection inhibited by the presence of that compound. Hence, the relative percentage 
of PFU was calculated, where PFU value from plates with no added compound set to 100%. Among 
the 10 compounds, rolitetracycline and doxytetracycline (Figure 1.2.4) showed dramatic inhibitory 
effects on DV propagation, yielding an experimental hit ratio of 20%. This demonstrates the utility 
and economy of computer-aided drug discovery in searching for new bioactive compounds for a 
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putative molecular target. Additionally, oxethazaine showed a mild inhibitory effect. A 12% 
reduction (down to 88%) in PFU was observed when the concentration of the compound increased 
from 200 M to 500 M. At the beginning, rolit　 　 etracycline showed almost no effect on the DV 
plaque formation at the concentration of 10 M. However, the inhibitory effect on DV propagation 　

rose as the concentration was increased. Compared to the mock treatment, the PFU decreased to only 
20% at 100 M a　 nd about 5% at 300 M, yielding an estimated IC　 50 value of 67.1 M (　 Figure 
1.2.4). Additionally, less than 3% of the PFU remained at a concentration of compound of 500 M 　

or above. Doxycycline retained 87% PFU at 10 M, but the PFU decreased to only 14% at 10　 0 M. 　

Only 1% PFU was left When the concentration of doxycycline reached 500 M, giving an IC　 50 
value of 55.6 M. Notably, neither tetracycline nor oxytetracycline showed any effect on the DV 　

propagation at concentrations from 10 M up to 10mM (data not show　 n), even though they have a 
similar fused ring structure to rolitetracycline and doxycycline. Table 1.2.1 shows the molecular 
structures and IC50 values of the two active leads and the two inactive tetracycline derivatives, which, 
with the exception of doxycycline, showed no cellular toxicity effect within the range of tests judged 
from the cellular morphology and growth. In the case of doxycycline, there was a mild reduction of 
the cell density when the concentration was 300 M or higher.  　  
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Figure 1.2.4. Effect of (A) doxycycline and (B) rolitetracycline on the plaque formation of dengue 
virus type 2 on BHK-21 mammalian cells. The IC50 values of rolitetracycline and doxytetracycline 
are 67.1μM and 55.6 μM. The X axis is the percentage of plaque formation when compared to the 
control. The Y axis denotes the drug concentration. 

 

Analysis of the Inhibitor-E protein interactions 

The docked conformations of the two tetracycline-derivate inhibitors (Table 1.2.1) were 
consistently different from those of the eight non-inhibitory compounds (Figures 1.2.2B, 1.2.5 and 
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1.2.6). The inhibitors, doxytetracycline (green) and rolitetracycline (blue), were docked at the outlet 
of binding pocket and extent into pocket, while the rest (CPK model) were docked inside the pocket. 
The inhibitory compounds docked near a stretch of residues, namely the Thr48, Glu49, Ala50, Lys51, 
and Gln52, in the D′o segment, of which the conformations of the prefusion and postfusion forms 
were significantly different (Figures 1.2.1B and 1.2.6). The compounds docked very close to or at the 
space of Dc, which is part of the same stretch in the postfusion state. The functional groups of those 
compounds may interact with the stretch differently, as well as potentially causes stereo hindrance. 
Residues in this stretch and several others in the vicinity were revealed to affect the pH-dependent 
membrane fusion process. As revealed in Figure 1.2.2A, the BOG was docked into the pocket, and 
was situated in the center between the residues of Gly275, Lys128, Leu277 and Gln52.  

Figure 1.2.5 shows the hydrogen-bond networks and orientations of the four tetracycline 
derivatives in both the prefusion and postfusion forms of E proteins. These derivatives can be 
divided into two groups according to their docked locations. The two with inhibitory effects, namely 
rolitetracycline (Figure 1.2.5A) and doxycycline (Figure 1.2.5B), form hydrogen-bond networks 
mainly with the residues of Do, which are Thr48, Glu49, Ala50, Lys51 and Gln52, and with 
additional residues of Gln271 and Gln200. The compounds docked in the position leaning on and 
interacting with the stretch made up of the residues 48-52. Conversely, the other two compounds, 
tetracycline (Figure 1.2.4C) and oxytetracycline (Figure 1.2.6D), formed hydrogen bonds mainly 
with residues Phe279, Thr280, Gln271 and Gln200, and interacted with stretch 48–52 only at Ala50, 
while leaned away from it. Additionally, the four rings of the two inhibitors were docked at the outlet 
of the binding pocket, whereas, those of the inactive compounds were inside the pocket. Restated, 
the inhibitors bound to the outlet of the binding pocket and extended into pocket, while the 
non-inhibitors bound entirely inside the pocket. GEMDOCK yielded lower binding energies for the 
two inhibitors than for the inactive compounds. The energy minimization process of SYBYL 6.9 also 
indicates that the predicted complexes of the inhibitors had lower energies than the non-inhibitors. 
SYBYL 6.9 computed the energies of rolitetracycline, doxytetracyline, tetracycline and 
oxytetracyclines as −395.2, −398.7, −356.8, and −371.8kcal/mol. 
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Figure 1.2.5. Docked conformations of (A) rolitetracycline, (B) doxycycline, (C) tetracycline, and (D) 
oxytetracycline in the binding site of the E protein. Atoms of the E protein are in yellow, and 
compound ligands are in the CPK model. The hydrogen bonds are represented as the green dash lines. 
Not all residues are displayed for the sake of clarity. The two inhibitors, rolitetracycline (67.1 M) 　

and doxycycline (55.6 M), form hyd　 rogen-bond networks with Thr48, Glu49, Ala50, Lys51 and 
Gln52, but have no hydrogen bonds with Phe289 and Thr280. Conversely, tetracycline and 
oxytetracycline prefer to forms hydrogen bonds with Phe279 and Thr280 than with the other five 
residues. The docked conformations of these two groups are around 180˚ to each other based on the 
positions of the four rings. The Thr48, Glu49, Ala50, Lys51 and Gln52 are in the D0 segment (Figure 
1.2.5B); Gln271 and Phe279 are in the ko and lo segments, respectively. 
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Figure 1.2.6. Docked conformations of (A) rolitetracycline, (B) doxycycline, (C) tetracycline, and (D) 
oxytetracycline in the binding sites in the prefusion (gray) and postfusion (blue) states. Atoms within 
compounds are displayed using the CPK model; i.e., oxygen atoms are in red, nitrogens are in blue 
and carbons are in gray. The side-chains of some residues that overlap with compounds are displayed. 
Most atoms of the two inhibitors, rolitetracycline and doxycycline, collide with Thr48, Glu49, Ala50, 
Lys51 and Gln52. By contrast, tetracycline and oxytetracycline overlap slightly with these five 
residues. The segments D′o, ko and lo belong to the prefusion conformation, while D′c, kc, and lc 
belong to the postfusion conformation. 
 

For the eradication of enveloped virus infections, identification of compounds that can interfere 
with the function of viral envelope proteins to prevent viral entry of host cells has been a long-last 
idea in the field. However, mass high-throughput screening is now considered as costly. Moreover, 
proper target sites are always hard to identify when structure-based virtual screening approaches are 
applied. This study applied the VS method to discover potential lead compounds with an inhibitory 
effect on DV propagation, following the work of Modis et al. 20; 22, in which they revealed the 
structural detail of the DV 2 envelope proteins. Modis et al. concluded that the hydrophobic 
detergent binding pocket on the DV E protein observed in their structural study is suitable as the 
target for developing small-molecule inhibitors blocking the process of viral-host membrane fusion, 
which would interrupt the viral entry and thereby stop the infection. Compounds inserted at this 
position may hinder conformational change of E proteins, thereby interfering with the fusion 
transition 20; 22. Consistently, mutations on DV E protein mapped to this pocket could indeed 
influence the pH threshold of fusion 20; 24; 31; 32; 33; 34; 35 (Figure 1.2.1A). Therefore, this hydrophobic 
BOG binding pocket was selected as the target site to discover novel lead compounds for developing 
DV inhibitors.  

As noted previously, two tetracycline derivatives, rolitetracycline and doxycycline, exhibited an 
inhibitory effect on DV propagation. Rolitetracycline and doxycycline were able to inhibit the 
propagation of dengue virus type 2 among ten selected compounds under the experimental 
conditions. Significantly, only these two out of the four tested tetracycline derivatives exhibited 
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inhibitory activity. Therefore, computational modeling was performed in an attempt to provide an 
explanation of this finding for further investigation. Figures 1.2.5 and 1.2.6 reveal that the docked 
conformations of these two active compounds were significantly different from those of the inactive 
compounds. Moreover, the atomic interaction behaviors of the two active tetracycline derivatives 
were different from those of the other two tetracycline derivatives, even though their structures are 
very similar. 

Tetracycline derivative is a group of broad-spectrum antibiotics, which was first discovered in the 
1940s 36. The action mechanism of antibiotic tetracycline on bacteria inhibits protein synthesis by 
preventing aminoacyl-tRNA from attaching to the ribosomal acceptor (A) site 36; 37; 38. In this study, 
four tetracycline derivatives were selected and subjected to in vivo testing for the inhibitory effects 
on DV propagation. Notably, although tetracycline and oxytetracycline have a similar fused ring 
structure to rolitetracycline and doxycycline, they exhibited no inhibitory effects. A molecule of a 
tetracycline-related compounds comprises a linear fused tetracyclic core to which various functional 
groups are attached 36. Tetracycline is thus the minimum common structure of the four 
tetracycline-related molecules. Therefore, this common structure does not possess the inhibitory 
effect on DV propagation. Rather, the substituted functional group confers the activity. 

To assess the effect of binding tetracycline derivates to DV E proteins, the BOG binding site of 
DV E protein was compared with the tetracycline binding site on the tetracycline repressor (TetR). 
TetR regulates the resistance mechanism against the antibiotic tetracycline in gram-negative bacteria. 
The tetracycline binding site of TetR protein has been defined, and the structures have been 
determined by crystalline 39. This study found that TetR protein has similar characteristics to E 
protein in their binding sites for tetracycline derivates. First, the volumes of the binding areas are 
similar. The volume of the binding sites of TetR ranges from 359Å3 to 495Å3, whereas the binding 
site on the E protein is 481Å3, according to the Q-SiteFinder tool 40 (the first column of Table 1.2.2). 
Therefore, into the binding site there is sufficient space to accommodate tetracycline derivatives. 
Second, in the pockets of both binding sites they exhibit hydrophobic surfaces (Figure 1.2.7). Third, 
a cross-docking test performed for TetR and the four tetracycline derivatives indicated that both the 
hydrophobic binding sites of the DV E and TetR proteins enabled the binding of the four tetracycline 
derivatives. Additionally, the hydrogen bonds between the four tetracycline derivative compounds 
and DV E protein are similar to those between TetR protein and its tetracycline-derived ligand. 
Therefore, tetracycline derivates should bind DV E protein at the BOG pocket reasonably well. 
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Table 1.2.2. Comparisons the hydrogen bonds between five compounds between dengue E protein 
and TetR protein 

a The docked conformation against E protein (PDB entry 1OKE20) 

b Tet-repressor protein, PDB entry 2TRT39 

c Atom of residues, the number denotes the residue number in target protein 
d Atom of ligand, the number denotes the atom number in tetracycline-related compounds 
e Distance of hydrogen bonding 

 

 E protein a TetR proteinb 

 Tetracycline Oxytetracycline Rolitetracycline Doxycycline Chlortetracycline

Total Number of 

HB 
7 9 8 8 6 

Backbone 4 5 6 5 1 

Side chain 3 4 2 3 5 

Ala50O
c
-4N

d
, 3.59

e
 Thr48O-4N, 3.62 Ala50N-1O, 2.77 Thr48O-1O, 3.62 Thr103O-10OH, 3.64 

Phe279O-10OH, 2.61 Ala50N-4αOH, 3.01 Thr48O-2N, 3.17 Ala50N-1O, 2.76  

Phe279O-11O, 3.46 Thr48O-4αOH, 3.14 Ala50O-10OH, 3.49 Ala50N-12OH, 3.20  

Thr48O-12αOH, 2.37 Thr48O-12OH, 2.33 Ala50O-11O, 3.22 Ala50N-12αOH, 3.09  

 Phe279O-11O, 2.62 Ala50O-12OH, 2.97 Thr48O-12αOH, 3.29  

Hydrogen bonding 

to Backbone 

  Ala50N-12O, 3.16   

Gln271OE-2N, 2.62 Gln271OE-2N, 2.89 Gln200NE-6OH, 3.06 Gln200NE-6OH, 3.14 Gln116NE2-2O, 3.27 

Gln200NE-3OH, 2.67 Gln200NE-3OH, 3.33 Glu49OE2-12αOH, 3.20 Glu49OE2-10OH, 3.14 His64NE2-3OH, 2.71 

Thr280OG-11O, 2.68 Thr280OG-11O, 3.01  Glu49OE2-11O, 3.57 Asn82ND2-3OH, 2.82

 Thr280OG-12OH, 2.92   Asn82OD2-4N, 2.70 

Hydrogen bonding 

to Side chain 

    His100NE2-12OH, 2.92
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Figure 1.2.7. Docked conformations of 11 selected compounds shown in Figure 1.2.3. Except four 
tetracycline-like compounds, Doxycycline (green), rolitetracycline (blue), tetracycline (orange), and 
oxytetracycline (red)), oxetacaine (purple), other compounds are colored with cpk model. 
 

This study proposes an explanation for the inhibition mechanism on DV E protein as a 
foundation for further investigation. Figures 1.2.5 and 1.2.6 indicate the predicted positions of the 
tetracycline derivatives against E protein. The fused tetracyclic rings of rolitetracycline and 
doxytetracycline bind along with the D′0 strain of the E protein, and occupy the outlet of the binding 
site. Rolitetracycline and doxytetracycline both interact with Thr48, Glu49, Ala50 and Gln200 with 
hydrogen bonds. Such a hydrogen-bonding network provides strong attractive forces, stabilizing the 
binding of rolitetracycline and doxytetracycline between the D′0 strain and kl β-hairpin. By contrast, 
although tetracycline and oxytetracycline have the same tetracyclic core structures, they showed no 
inhibitory effect. Both compounds form hydrogen-binding networks with Gln200, Gln271, Phe279 
and Thr280. The predicted positions of tetracycline and oxytetracycline are buried deeply in the 
binding site. Additionally, and the moieties of the tetracyclic ring are docked toward the bottom of 
the binding site, and contact the surrounding hydrophobic residues via van der Waals interaction.  
Indeed, the inhibitors never docked to the E protein at the position to which the non-inhibitors 
docked, revealing that the selected inhibitors indeed possess a plausible binding specificity to the 
inhibitory location. 

In the E protein-host membrane fusion process, the structures of the three domains of E protein 
are significantly reconfigured to increase the fusion peptide of E protein from the viral membrane for 
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proper interactions with the host membrane. This conformational modification of E protein plays a 
critical role in DV infection (Figure 1.2.1). The rearrangement of kl β-hairpin and D′0 segment 
(Thr48, Glu49, Ala50, Lys51, Gln52) accompanied the opening of the putative binding site (Figures 
1.2.1B and 1.2.6). The docked poses of inhibitors occupied the space of the D′c strain and kl 
β-hairpin in the postfusion state, and formed a stable hydrogen-bonding network (Figure 1.2.5). They 
filled the displacement space, becoming rigid barriers when the rearrangement of β-hairpin and D’0 
strain were blocked (Figure 1.2.6). This network also made the ring moieties of rolitetracycline and 
doxycycline bind stably to the surface of domain I (Figure 1.2.1A), which may in turn block the 
rearrangement of domains II and I. Therefore, in addition to the rearrangement region on the domain 
II, the docked conformation of the inhibitors suggests that the residue region 48–52 is another 
significant region on the E protein for contacting inhibitors. This finding is consistent with previous 
reports that Gln52 might affect the pH threshold of fusion in flaviviruses 20. Therefore, residues 
48–52, as well as being important to inhibitor binding, may also directly affect the fusion of 
flaviviruses 

This study discovered novel inhibitors of the propagation of DV type 2 by performing 
computer-aided screening against the E glycoprotein, followed by a biological activity assay on the 
candidates in a cell culture system. The docked conformations indicate that both rolitetracyline and 
doxycycline block the rearrangement of critical residues involved in the pH threshold of E protein 
fusion. These compounds can act as the basis for developing new treatment against DV propagation 
with lesser side effect, and the binding states of these inhibitors can also provide valuable clues for 
further optimizing E protein inhibitors. This work also notes the additional properties of tetracycline 
derivatives for being effectively again DV propagation in mammalian cells, which would enable the 
proposed method to be refined further. 
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1.3 Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for 

fast protein structure database search 

1.3.1 Introduction 

The method of fast peptide and protein structure search is developed in order to build a 
prototype of peptide drug prediction system. We first developed a web service, termed 3D-BLAST, 
for the protein structure search according to transforming 3D protein structures into 1D sequences. 
The core concept of 3D-BLAST is that we aimed to use structural alphabet to represent pattern 
profiles of the backbone peptide fragments by clustering the accumulated (κ, α) plot. The previous 
results demonstrates the robustness and feasibility of the (κ, α) plot derived structural alphabet for 
developing a small set of sequence-structure fragments and a fast one-against-all structure database 
search tool.  

A major challenge facing structural biology research in the post-genomics era is to discover the 
biological functions of genes identified from large-scale sequencing efforts. As protein structures 
become increasingly available and structural genomics provides structural models in a genome-wide 
strategy41, proteins with unassigned functions are accumulating, and the number of protein structures 
in the Protein Data Bank (PDB) is rapidly rising 15. This current structure-function gap clearly 
reveals the requirement for powerful bioinformatics methods to discover the structural homology or 
family of a query protein by known protein sequences and structures. 

We have developed a novel kappa-alpha (κ, α) plot derived structural alphabet and a novel 
BLOSUM-like substitution matrix, called SASM (structural alphabet substitution matrix), for 
BLAST 42, which searches on an SADB database. This structural alphabet is valuable for 
reconstructing protein structures from only a small number of structural fragments, and for 
developing a fast structure database search method called 3D-BLAST. This tool is as fast as BLAST, 
and provides the statistical significance (E-value) of an alignment to indicate the reliability of a 
protein structure. To scan a large protein structure database, 3D-BLAST is fast and accurate and will 
be useful for the initial scan for similar protein structures which are able to be refined by detailed 
structure comparison methods (e.g. CE and MAMMOTH).  

To our best knowledge, 3D-BLAST is the first tool to provide fast protein structure database 
searching with the E-value by using the BLAST, which searches on an SADB database with an 
SAMS matrix. The SADB and the SASM matrix improve the ability of BLAST to search structural 
homology of a query sequence to a known protein structure or a family of proteins. This tool 
searches for the structural alphabet high-scoring segment pairs (SAHSPs) existing between a query 
structure and each structure in the database. Experimental results reveal that the search accuracy of 
3D-BLAST is significantly better than that of PSI-BLAST 42  at ≤25% sequence identity.  
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1.3.2 Materials and Methods  
A pair database comprising 674 structural pairs, each with a high structural similarity and low 

sequence identity, was derived from the SCOP classification database 43 for the (κ, α) plot. Each 
structure in this database (1348 proteins) was divided into a series of 3D protein fragments (225,523 
fragments), each five residues long, using kappa (κ) and alpha (α) angles. The angle κ, ranging from 
0° to 180°, of residue i is a bond angle formed by three Cα atoms of residues i – 2, i, and i + 2. The 
angle α, ranging from –180° to 180°, of a residue i is a dihedral angle formed by the four Cα atoms 
of residues i – 1, i, i + 1, and i + 2. Each structure has a specific (κ, α) plot when governed by these 
two angles. When the angles of (κ, α) are divided by 10°, this matrix has 648 cells (36 × 18). The 
fragment frequency of each cell in this matrix is unbalanced because the protein structures are 
significantly conserved with regard to α-helix (82,843 fragments) and β-strand structures (52,371 
fragments). Of these helix fragments, 71.1% (58,897 fragments) are located in four cells that contain 
22,310, 15,736, 13,013, and 7,838 fragments.  

To identify a set of 3D peptide fragments (a structural alphabet), we developed a novel 
nearest-neighbor clustering (NNC) method to cluster 225,523 peptide fragments in the accumulated 
(κ, α) plot into 23 groups. The steps of NNC is as follows: (1) identifying a representative peptide 
fragment for each cell in this matrix; (2) clustering 648 representative peptide fragments into 23 
groups by grouping similar representative peptide fragment into individual clusters; (3) in each 
cluster, identifying a representative peptide fragment and assigning it to a structural alphabet; (4) 
obtaining a composition of 23 structural alphabets that is similar to the 20 common amino acids. 
According to the restriction parameter γ, the cell with the highest number of fragments (22,310) in 
the accumulated (κ, α) plot should be divided into two sub-cells by equally separating the κ and α 
angles: one is located in 100°≤κ< 115° and 40°≤α < 45°, and the other is in 105°≤κ< 120° and 45°≤α 
< 50° . These two sub-cells were labeled as structural alphabets A and Y, respectively. The NNC 
method was then applied to cluster the remaining 203,213 fragments into 21 groups.  

A representative peptide fragment of each cell in the accumulated (κ, α) plot was first 
determined. For each cell, a peptide fragment distance matrix (d), stored with the rmsd values by 
computing all-against-all fragments, was created, and the size was N × N, where N is the total 
number of the fragments in a cell. An entry (dij), which represents the structural distance of 
fragments i and j, is computed by the rmsd of five Cα atom positions and is given as  
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where (Xk ,Yk , ik ) and (xk , yk , zk ) are the coordinates of the kth atom of the fragments i and j, 
respectively. For each fragment i, the sum of distance (di) between the fragment i and the other 

fragments in this cell is ∑ =

N

m imd
1

. The fragment with the minimum sum of distance is selected as 
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the representative peptide fragment of a cell. After the representative peptide fragment of each cell is 
identified, a distance matrix (D) is stored with the rmsd values by computing all-against-all 
representative fragments for these 647 fragments. Each entry (Dij, 1 ≤ i, j ≤ 647 ) is a measure of 
structural similarity, as defined in Equation 1.3.1, between representative fragments i and j. In order 
to ensure that the 3D conformations of the fragments clustered in the same group are similar, an rmsd 
threshold (ε) of the structural similarity is set to 0.5.  

 

 

Figure 1.3.1. The distribution and conformation of the 23-state structural alphabet. (A) The 
distribution of accumulated (κ, α) plot of 225,523 peptide fragments derived from the pair database 
with 1,348 proteins. This plot, which comprises 648 cells (36 × 18), is clustered into 23 groups, and 
each cell is assigned a structure letter. (B) The three-dimensional (3D) peptide conformations of the 
five main classes of the 23-state structural alphabet are including helix letter (A, Y, B, C, and D), 
helix-like letters (G, I, and L), strand letters (E, F, and H), strand-like letters (K and N), and others. 

Based on the distance matrix D and restriction parameters (ε and γ), the NNC method works as 
follows: (1) Create a new cluster (Ci, 1 ≤ i ≤ 20 ) by first selecting an unlabeled cell (a) with the 
maximum number of fragments. Label this cell as Ci. (2) Add an unlabeled cell, which is the nearest 
neighbor (i.e., a minimum rmsd value in row a of matrix D) of the cell a, into this cluster if this rmsd 
value is less than ε, and the sum of fragments in this cell is less than γ. Label this cell as Ci. Repeat 
this step until an added cell violates the restriction thresholds, ε or γ. (3) Repeat steps 1 and 2 until 
the number of clusters equals 20 or all of the cells are labeled. (4) Assign all of the remaining 
unlabeled cells to a cluster C21.  

Finally, we determined a representative peptide fragment and assigned a structural alphabet for 

each cluster. For each cell i in a cluster, we defined its weight as wi =∑ =

M

i i

i

S
S

1
/1

/1
, where Si is the 

number of fragments in cell i and M is the number of cells in this cluster. The sum of distance (Di) of 

this fragment i with all of the other cells in the same cluster is equal to ∑ =

M

m immi Dww
1

, where Dim is 
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the structural distance between representative peptide fragments i and m of the cells i and m, 
respectively. The fragment with the lowest sum of distance is selected as the representative peptide 
fragment of this cluster. We sequentially assigned a structural alphabet for each cluster except J, O, 
and U, since these three letters are not used in BLAST. Figure 1.3.1A shows the distribution of these 
23 clusters and structural alphabets on 648 cells in the (κ, α) plot. Figure 1.3.1B shows the 3D 
conformation of each peptide fragment.  

1.3.3 Results and Discussion 
A greedy algorithm and the evaluation criteria (global-fit score) presented by Kolodny et al.44 

were applied to measure the performance of 23-state structural alphabet (structural segments) in 
reconstructing the α-β-barrel protein (PDB code 1TIM-A 44; 45) and 38 structures selected from the 
SCOP-516 set, which comprises 516 proteins. This greedy algorithm reconstructs the protein for 
increasingly large segments of the protein using the best structural fragment, i.e. the one whose 
concatenation produces a structure with the minimum rmsd from the corresponding segment in the 
protein from 23 structural segments. No energy minimization procedure was utilized to optimize the 
reconstructing structures in this study. The global rmsd values were from 0.58 Å to 2.45 Å, and the 
average rmsd value was 1.15 Å for these 38 proteins.  

The 23-state structural alphabet should be able to represent more biological meaning than 
standard 3-state secondary structural alphabets. First, the classic regular zones of 3-state secondary 
structures are flexible structures. For instance, α-helices may be curved 46 and more than one-quarter 
of them are irregular 47, and the Φ and Ψ dihedral angles of β-sheets are widely dispersed. The 
proposed 23-state alphabet describes the α-helices with 8 segments (5 helix letters and 3 helix-like 
letters) and β-sheets with 5 segments. The 23 structural segments performed well performance in 
reconstructing protein structures, particularly in the structure segments of classic α-helices and 
β-sheets. Second, the 3-state secondary structure cannot represent the large conformational 
variability of coils. Nonetheless, some similar structures can be identified for many of the protein 
fragments, such as β-turns48, π-turns, and β-bulges 49. Here, 10 structural segments in the 23-state 
alphabet were utilized to describe the loop conformations. An analysis using the PROMOTIF 50 tool 
reveals that most of the segments (>80%) in the letter “W” are β-turns.  

An SADB database was easily derived from a known protein structure database based on the(κ, 
α)  plot and the structural alphabet. We have created five SADB databases derived from the 
following protein structure databases PDB; a non-redundant PDB chain set (nrPDB); all domains of 
SCOP1.69 43; SCOP1.69 with <40% identity to each other, and SCOP1.69 with <95% identity to 
each other. 

The SCOP-516 query protein set, which has a sequence identity below 95% selected from the 
SCOP database 43, was chosen to measure the utility of 3D-BLAST for the discovery of homologous 
proteins of a query structure. This set contains 516 query proteins that are in SCOP 1.69 but not in 
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SCOP 1.67, and the search database was SCOP 1.67 (11,001 structures). The total number of 
alignments was 5,676,516 (516 × 11,001). For evolutionary classification, the first position of the hit 
list of a query was treated as the evolutionary family/superfamily of this query protein. To compare 
with several related works on fast database search, 3D-BLAST was also tested on a data set of 108 
query domains, termed SCOP-108, proposed by Aung and Tan 51. These queries, which have <40% 
sequence homology to each other, were chosen from medium-sized families in SCOP. The search 
database (34,055 structures) represents most domains in SCOP 1.65. Finally, 3D-BLAST was 
analyzed on 319 structural genomics targets and the search database was the SCOP 1.69 with <95% 
identity to each other. 
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 Chapter 2: Pharmacophore Identification 

2.1 A Pharmacophore-Based Evolutionary Approach for Screening Selective 

Estrogen Receptor Modulators 

2.1.1 Introduction 
Virtual screening (VS) of molecular compound libraries has emerged as a powerful and 

inexpensive method for the discovery of novel lead compounds for drug development 25; 26. Given 
the structure of a target protein active site and a potential small ligand database, VS predicts the 
binding mode and the binding affinity for each ligand and ranks a series of candidate ligands. There 
are four main reasons for the rapid acceptance and success of VS: 1) The availability of the growing 
number of protein crystal structures; 2) The advent of structural proteomics technologies; 3) The 
enrichment and speed of VS 25; 52; and 4) The contribution of VS to the reduction in the cost of drug 
discovery. VS generally encompasses four phases based both on high-throughput molecular docking 
methods and the crystal structures of the target protein. These include target protein preparation, 
compound database preparation, molecular docking, and post-docking analysis 25. The molecular 
docking method screens the compound library to find lead compounds for the target protein, whereas 
post-docking analysis enriches the hit rate and optimizes the confirmed lead molecules through 
structure-activity relationship 53.  

The VS computational method involves two basic critical elements: efficient molecular docking 
and a reliable scoring method. A molecular docking method for VS should be able to screen a large 
number of potential ligands with reasonable accuracy and speed. The many molecular docking 
approaches that have been developed can be roughly categorized as rigid docking 54, flexible ligand 
docking 3; 5, and protein flexible docking. Most current VS methods employ flexible docking tools, 
such as incremental and fragment-based approaches (DOCK 55 and FlexX 3) and evolutionary 
algorithms (GOLD 5, AutoDock 56, and GEMDOCK 2). 

Scoring methods for VS should effectively discriminate between correct binding states and 
non-native docked conformations during the molecular docking phase and distinguish a small 
number of active compounds from hundreds of thousands of non-active compounds during the 
post-docking analysis. The scoring functions that calculate the binding free energy mainly include 
knowledge-based 57, physics-based 58, and empirical-based 59 scoring functions. The performance of 
these scoring functions is often inconsistent across different systems from a database search 1; 60. It 
has been proposed that combining multiple scoring functions (consensus scoring) improves the 
enrichment of true positives 1; 60.  

While the field of VS may be maturing 25; 26; 52, and many good VS methods have been proposed, 
the promise of the virtual compound library 61 to rapidly increase the number of candidate ligands 
demands further improvement in terms of the computational efficiency of flexible docking 
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algorithms 3; 5; 56. In addition, some VS methods are capable of identifying so-called 
“pharmacological preference” that is often the important interactions or binding-site hot spots 
typically evolved from known active ligands and the target protein 62; 63. These preferences might 
improve screening accuracy and guide the design and selection of lead compounds for subsequent 
investigation and refinement during lead discovery and lead optimization processes. Finally, the 
screening quality of docking methods using energy-based scoring functions alone is often influenced 
by the molecular weight and the structure of the ligand being screened (e.g., the numbers of charged 
and polar atoms). These methods are often biased toward both the selection of high molecular weight 
compounds (due to the contribution of the compound size 64; 65) and charged polar compounds (due 
to the pair-atom potentials of the electrostatic energy and hydrogen-bonding energy). 

To address the above issues, we developed a new VS method, termed GEMDOCK (Generic 
Evolutionary Method for molecular DOCKing), modified from our previous studies 2; 66. 
GEMDOCK is an evolutionary-based approach, which was applied in some fast VS algorithms 5; 56. 
Our approach uses multiple operators (e.g., discrete and continuous genetic operators) that cooperate 
using family competition (similar to a local search procedure) to balance exploration and exploitation. 
Like some VS methods 63; 67; 68, GEMDOCK evolves the pharmacological preferences from a 
number of known active ligands to take advantage of the similarity of a putative ligand to those that 
are known to bind to a protein’s active site, thereby guiding the docking of the putative ligand. 
However, unlike existing pharmacophore-based docking methods, we developed and incorporated a 
new scoring function that evolves a pharmacological consensus (e.g., hot spots) and ligand 
preferences using the target protein and known active ligands. This scoring function not only serves 
as the basis for molecular docking but also ranks the screened ligands prior to post-docking analysis 
by reducing the deleterious effect of certain structural features within some of the ligands. 

While GEMDOCK is generally applicable, in particular it has been validated by its application to 
the docking of a number of selective estrogen receptor modulators (SERMs) that are of great interest 
in cancer chemotherapy as well as estrogen replacement therapy in postmenopausal women69; 70; 71. 
To evaluate the strengths and limitations of GEMDOCK and to compare it with several widely used 
methods (DOCK, GOLD, and FlexX), we evaluated the screening utility of GEMDOCK by testing 
human estrogen receptor (ER) with the ligand data set, as proposed by Bissantz et al. 1 We also 
accessed whether our new scoring function was applicable to both the molecular docking and ligand 
scoring during virtual screening. The screening performance of GEMDOCK on this ligand data set is 
superior to that of the best available methods, and the docking accuracy is also comparable. Thus, 
GEMDOCK constitutes a rapid method that reduces the number of false positives during the 
screening of large databases when both pharmacological interactions and ligand preferences are 
mined from known active compounds. When known active ligands were not available, the screening 
accuracy of GEMDOCK is somewhat influenced and is comparable to that of comparative methods 
on this ligand data set. 
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2.1.2 Materials and Methods  
GEMDOCK was modified and enhanced from our previous tool 2 for VS (Figure 2.1.1). 

GEMDOCK can be sequentially applied to prepare target proteins and ligand databases, predict 
docked conformations and binding affinity using flexible ligand docking, and rank a series of 
candidates for post-docking analysis. In this section, we give details of the ligand database and target 
protein preparations, outline the scoring function used in this study, describe details of mining 
binding-site pharmacological interactions (e.g., hot spots) and ligand preferences, and briefly 
describe the docking method. 
 

 

Prepare drug 
database

Prepare 
target protein

Flexible docking

Post-docking analysis

Known active 
ligands

Mine ligand 
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Mine bind-site 
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: Main flow
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Superimpose X-ray or 
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Figure 2.1.1.  The main steps of GEMDOCK for virtual database screening, including the target 
protein and compound database preparation, flexible docking, and post-docking analysis. 
GEMDOCK mines a pharmacological consensus from the target protein and known active ligands 
when available. 
 

Preparations of ligand databases and target proteins 

SERMs exert their physiological effects by binding to the two currently known estrogen receptors 
(ERα or ERβ), which are members of the nuclear receptor superfamily of ligand-dependent 
transcription factors; moreover, SERMs display tissue-selective estrogen agonistic or antagonistic 
profiles 69; 70; 71. SERMs often beneficially affect the cardiovascular and central nervous systems and 
exert significant estrogen-like effects on some estrogen targets such as bone, lipid, breast, and uterine 
cells. Despite of the benefits of SERMs, long-term treatment with SERMs is often limited by 
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intolerable side effects, such as benign and malignant uterine lesions. Therefore, the design of new 
SERMs has become a challenging task.  

We used the ligand data set and initial ligand conformation from the comparative studies of 
Bissantz et al. 1 (e.g., DOCK, FlexX, and GOLD) to evaluate the screening accuracy of GEMDOCK 
using the ER antagonists. The ligand data set included the 10 known active compounds (EST01–10) 
listed in Figure 2.1.2 and 990 randomly chosen compounds from the Available Chemical Directory 
(ACD). The data set is available on the Web at http://gemdock.life.nctu.edu.tw/dock/download.php. 
For screening ER agonists, a set of 10 known ER agonists (Figure 2.1.3, ESA01–10) used in this 
study was identical to that reported earlier 72.  In total, the database used for screening ligands 
against the ER-antagonist complex (PDB code 3ert 71) and ER-agonist complex (PDB code 1gwr 73) 
contained 1,000 molecules; that is, 990 random compounds were the same for the two screens.  In 
addition, three ER-antagonist complexes (PDB codes: 1err, 3ert, and 1hj1) and four ER-agonist 
complexes (PDB codes: 1gwr, 1l2i, 1qkm, and 3erd) with experimentally determined X-ray 
structures from the PDB were selected to evaluate not only the docking accuracy but also the 
pharmacological consensuses evolved from known active ligands (i.e., Figures 2.1.2 and 2.1.3) and 
reference proteins (Figure 2.1.4). Each ligand from the PDB was represented systematically by four 
characters followed by three characters. For example, in the ligand “3ert.OHT”, “3ert” denotes the 
PDB code and “OHT” is the ligand code in the PDB. These ligand structures are shown in Figure 
2.1.2 (e.g., EST01, EST02, and EST03) and Figure 2.1.3 (e.g., ESA01, ESA02, ESA03, and ESA04).  

The ER-antagonist complex (PDB code: 3ert) and ER-agonist complex (PDB code: 1gwr) were 
selected as reference proteins for virtual screening. These complexes were reasonable choices 
because their ligand-binding cavities are wide enough to accommodate a broad variety of ligands and 
therefore did not require binding site modifications. As shown in Figure 2.1.4, the structures of these 
two reference proteins complexed with tamoxifen (3ert) or estradiol (1gwr) show that both ligands 
bind at the same site within the core of the ligand-binding domain and that each ligand induces a 
different conformation of helix 12 (H12). Comparison of the structures of these two complexes 
reveals that the H12 (blue) sits above the ligand-binding cavity in the ER-agonist complex (1gwr), 
thereby forming a lid. In contrast, the side chains of antagonists (e.g., tamoxifen and raloxifene) in 
the ER-antagonist complexes prevent the agonist-like-induced conformational change of H12 (green), 
projecting out of the ligand-binding pocket. When preparing the size and location of the 
ligand-binding site, we considered the protein atoms located less than 10 Å from each ligand atom. 
The metal atoms were retained and all structured water molecules were removed from the active site. 
GEMDOCK then assigned a formal charge and atom type for each protein atom based on our 
previous study 2.  
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Figure 2.1.2. Ten known ER antagonists are studied with respect to evolving the pharmacological 
consensus and docking against the ER-antagonist complex. Three ligands, EST01–03, are obtained 
from the PDB and each ligand is denoted by four characters followed by three characters, as in the 
PDB (e.g., 3ert.OHT, “3ert” denotes the PDB code and “OHT” is the ligand name in the PDB).  
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Figure 2.1.3. Ten known ER agonists are docked against the ER-agonist complex (PDB code 1gwr), 
and the pharmacological consensus is evolved. Four ligands, ESA01–04, are obtained from the PDB 
and each ligand is represented by four characters followed by three characters in the PDB. 
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Figure 2.1.4. Comparing the binding sites of the ER reference proteins by superimposing the 
complexes of the ER agonists (yellow, PDB code: 1gwr) and ER antagonists (blue, PDB entry: 3ert). 
The bound ligands (estradiol and tamoxifen are shown in red. In the ER-agonist complex, helix 12 
(H12) (blue) sits above the ligand-binding cavity, forming a lid. H12 in the ER-antagonist complex 
protrudes from the pocket. 
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Figure 2.1.5.  The linear energy function of pair-wise atoms for steric interactions (light line), 
hydrogen bonds (bold line), and electrostatic potential in GEMDOCK. 
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Scoring function 

We developed a new scoring function that simultaneously serves as the scoring function for both 
molecular docking and the ranking of screened compounds for post-docking analysis. This function 
consists of a simple empirical binding score and a pharmacophore-based score to reduce the number 
of false positives. The energy function can be dissected into the following terms: 

ligprepharmabindtot EEEE ++=  (2.1.1) 

 
where Ebind is the empirical binding energy, Epharma is the energy of binding site pharmacophores (hot 
spots), and Eligpre is a penalty value if a ligand does not satisfy the ligand preferences. Epharma and 
Eligpre are especially useful in selecting active compounds from hundreds of thousands of non-active 
compounds by excluding ligands that violate the characteristics of known active ligands, thereby 
improving the number of true positives. The values of Epharma and Eligpre are determined according to 
the pharmacological consensus derived from known active compounds and the target protein. In 
contrast, the values of Epharma and Eligpre are set to zero if active compounds are not available.  

The empirical-binding energy (Ebind) is given as 

penalintrainterbind EEEE ++=  (2.1.2) 

where Einter and Eintra are the intermolecular and intramolecular energies, respectively, and Epenal is a 
large penalty value if the ligand is out of the range of the search box. For our present work, Epenal was 
set to 10,000. The intermolecular energy is defined as 
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where rij is the distance between the atoms i and j; qi and qj are the formal charges and 332.0 is a 
factor that converts the electrostatic energy into kilocalories per mole. The lig and pro denote the 

numbers of the heavy atoms in the ligand and receptor, respectively. ( )ijB
ijrF  is a simple atomic 

pair-wise potential function (Figure 2.1.5), as defined in our previous study 2 where ijB
ijr is the 

distance between atoms i and j with interaction type Bij formed by pair-wise heavy atoms between 
ligands and proteins, Bij is either a hydrogen bond or a steric state. In this atomic pair-wise model, 
these two potentials are calculated by the same function form but different parameters, V1, . . . , V6 
given in Figure 2.1.5. The energy value of a hydrogen bonding should be larger than that for steric 
potential. In this model, atoms are divided into four different atom types 2: donor, acceptor, both, and 
nonpolar. A hydrogen bond can be formed by the following pair-atom types: donor-acceptor (or 
acceptor-donor), donor-both (or both-donor), acceptor-both (or both-acceptor), and both-both. Other 
pair-atom combinations are used to form the steric state. We used the atom formal charge to 
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calculate the electrostatic energy 2, which is set to 5 or −5, respectively, if the electrostatic energy is 
more than 5 or less than −5. These parameters, V1 to V6, and the maximum electrostatic energy were 
refined according to the docking accuracies of our previous work 2 on a highly diverse dataset of 100 
protein-ligand complexes proposed by Jones et al.5  

The intramolecular energy of a ligand is 
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where ( )ijB
ijrF  is defined as for Equation 2.1.3 except the value is set to 1000 when ijB

ijr  < 2.0 Å, 

and dihed is the number of rotatable bonds in a ligand. We followed the work of Gehlhaar et al. 59 to 
set the values of A, m, and θ0. For the sp3-sp3 bond, A = 3.0, m = 3, and θ0 = π; for the sp3-sp2 bond, 
A = 1.5, m = 6, and θ0 = 0.  

Mining pharmacological consensuses 

GEMDOCK evolves the binding-site pharmacological consensus and ligand preferences from both 
known active ligands and the target protein to improve screening accuracy. We used the premise that 
previously acquired interactions (hot spots) between ligands and the target protein can be used to 
guide the selection of lead compounds for subsequent investigation and refinement. When known 
active ligands were available, GEMDOCK used a pharmacophore-based scoring function (Equation 
2.1.1). On the other hand, LPelec and LPhb were set to zero and GEMDOCK used a purely 
empirical-based scoring function (Equation 2.1.2) if known active compounds were not available.  

For each known active ligand, GEMDOCK first yielded 5 docked ligand conformations by 
docking the ligand into the target protein, and only the docked ligand conformation with the lowest 
energy was retained for pharmacological consensus analysis. The protein-ligand interactions were 
extracted by overlapping these lowest-energy docked conformations, and the interactions were 
classified into two different types, including hydrogen bonding and hydrogen-charged interactions. 
After all of the protein-ligand interactions were calculated, the atom interaction-profile weight of the 
target protein representing the pharmacological consensus of a particular interaction was given as  

N
f

Q
k
jk

j =  (2.1.5) 

where N  is the number of known active compounds and k
jf is the total interaction number of an 

atom j (in a protein) interacting with an atom of known active ligands with the interaction type k (e.g., 
hydrogen bonding or hydrogen-charged interactions). In this work, an atom j (in a protein) was 
considered to interact with an atom i (in a ligand) if the distance between the atoms j and i ranges 
from (V1+ V2)/2 to (V3+ V4)/2, where V1, . . . , V4 are given in Figure 2.1.5. An atom j in the reference 

protein was considered a hot-spot atom when k
jQ  was more than 0.5.  
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The pharmacophore-based interaction energy (Epharma) between the ligand and the protein is 
calculated by summing the binding energies of all hot-spot atoms: 
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where CW(Bij) is a pharmacological-weight function of a hot-spot atom j with interaction type Bij, 

( )ijB
ijrF  is defined as in Equation 2.1.3, lig is the number of heavy atoms in a screened ligand, and hs 

is the number of hot-spot atoms in the protein. The CW(Bij) is given as  
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k
jQ  is the atomic pharmacological-profile weight (Equation 2.1.5) and k is the interaction type of the 

hot-spot atom j.  
We evolved the ligand preferences (Eligpre) from known ligands to reduce the deleterious effects of 

screening ligand structures that are rich in charged or polar atoms. Docking methods using 
energy-based scoring functions are often biased toward such compounds, which abound with 
charged and polar atoms (i.e., hydrogen donor or acceptor atoms) because the pair-atom potential of 
the electrostatic energy and hydrogen bonding energy is always larger than the steric energy. For 
example, the atomic pair-wise potential energies of the electrostatic, hydrogen bond, and steric 
potential were set to −5, −2.5, and −0.4 in this work. The ligand preference (Eligpre) is a penalty value 
for those screened ligands that violate the electrostatic or hydrophilic constraints. The Eligpre is given 
as 

hbelecligpre LPLPE +=  (2.1.8) 

where LPelec and LPhb are the penalties for the electrostatic (i.e., the number of charged atoms of a 
screened ligand) and hydrophilic (i.e., the fraction of polar atoms in a screened ligand) constraints, 
respectively.  LPelec is defined as 
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, NAelec is the number of charged atoms of a screened ligand and UBelec is the upper bound number of 
charged atoms derived from known active compounds. θelec is the maximum number of charged 
atoms among known active compounds, and σelec is the standard derivation of the charged atoms of 
known active compounds. LPhb is defined as 
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, rhb is the fraction of polar atoms (i.e., the atom type is both, donor, or acceptor) in a screened ligand 
and Urhb is the upper bound of the fraction of polar atoms calculated from known active ligands. 
NAhb and NAt are the number of polar atoms and the total number of the heavy atoms of a screened 
ligand, respectively. θhb and σhb are the maximum ratio and the standard derivation of the ratios of 
polar atoms evolved from known ligands, respectively. 

In order to reduce the deleterious effects of biasing toward the selection of high molecular weight 
compounds, we formulate a normalization strategy defined as  
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where Ebind is the empirical binding energy (Equation 2.1.2), NAt is the total number of the heavy 
atoms in a screened ligand, and μmw  is the mean of the number of heavy atoms in known active 
compounds. When the normalization strategy is applied, the energy function (Equation 2.1.1) is 
given as 

ligprepharma
MW
bindtot EEEE ++= . (2.1.12) 

 

Flexible docking algorithm 

Here, we present the outline of our molecular docking method that is a generic evolutionary 
method enhanced from our original technique 2. The core idea of our evolutionary approach was to 
design multiple operators that cooperate using the family competition model, which is similar to a 
local search procedure. The rotamer-based mutation operator, a discrete operator, is used to reduce 
the search space of ligand structure conformations. The Gaussian and Cauchy mutations, continuous 
genetic operators, search the orientation and conformation of the ligand relating to the center of the 
target protein.  

After the ligand database and the target protein were prepared and the pharmacological preferences 
were evolved, we first specified the crystal coordinates of the protein atoms from the PDB and 
assigned a formal charge and atom type for each protein atom. GEMDOCK then automatically 
decides the search cube of a binding site based on the maximum and minimum values of coordinates 
among these selected protein atoms. For each ligand in the database, the GEMDOCK takes the 
atomic coordinates from the ligand database and assigns a formal charge and atom type for each 
atom. It then sequentially predicts the binding conformation and estimates the binding affinity for 
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each ligand. Finally, GEMDOCK ranks these docked ligand conformations for use in the 
post-docking analysis. 

Our docking method works as follows: It randomly generates a starting population with N docked 
structures by initializing the orientation and conformation of the ligand relating to the center of the 
target protein. Each solution is represented as a set of three n-dimensional vectors (xi, σi, ψi), where n 
is the number of adjustable variables of a docking system and i = 1, . . ., N where N is the population 
size. The vector x is the adjustable variables, representing a particular orientation and conformation 
space of a ligand, to be optimized in which x1, x2, and x3 are the three-dimensional location of the 
ligand relating to the center of the target protein; x4, x5, and x6 are the rotational angles of the ligand 
relating to axes; and from x7 to xn are the twisting angles of the rotatable bonds inside the ligand. σ 
and ψ are the step-size vectors of decreasing-based Gaussian mutation and self-adaptive Cauchy 
mutation. In other words, each solution x is associated with some parameters for step-size control. 
The initial values of x1, x2, and x3 are randomly chosen from the feasible box, and the others, from x4 
to xn, are randomly chosen from 0 to 2π in radians. The initial step sizes σ is 0.8 and ψ is 0.2. After 
GEMDOCK initializes the solutions, it enters the main evolutionary loop which consists of two 
stages in every iteration: decreasing-based Gaussian mutation and self-adaptive Cauchy mutation. 
Each stage is realized by generating a new quasi-population (with N solutions) as the parent of the 
next stage. These stages apply a general procedure “FC_adaptive” with only different working 
population and the mutation operator. 

The FC_adaptive procedure employs two parameters, namely, the working population (P, with N 
solutions) and mutation operator (M), to generate a new quasi-population. The main work of 
FC_adaptive is to produce offspring and then conduct the family competition. Each individual in the 
population sequentially becomes the “family father”. With a probability pc, this family father and 
another solution that is randomly chosen from the rest of the parent population are used as parents 
for a recombination operation. Then the new offspring or the family father (if the recombination is 
not conducted) is operated by the rotamer mutation or by differential evolution to generate a quasi 
offspring. Finally, the working mutation is operates on the quasi offspring to generate a new 
offspring. For each family father, such a procedure is repeated L times called the family competition 
length. Among these L offspring and the family father, only the one with the lowest scoring function 
value survives. Since we create L children from one “family father” and perform a selection, this is a 
family competition strategy. This method avoids the population prematureness but also keeps the 
spirit of local searches. Finally, the FC_adaptive procedure generates N solutions because it forces 
each solution of the working population to have one final offspring. In the following, genetic 
operators are briefly described. We use ( )aaaxa ψσ ,,=  to represent the “family father” and 

( )bbbxb ψσ ,,=  as another parent. The offspring of each operation is represented as ( )cccxc ψσ ,,= . 

The symbol s
jx  is used to denote the j th adjustable optimization variable of a solution 

s , { }nj ,...,1∈∀ . 
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Recombination operators. GEMDOCK implemented modified discrete recombination and 
intermediate recombination. A recombination operator selected the “family father (a)” and another 
solution (b) randomly selected from the working population. The former generates a child as follows: 

⎪⎩

⎪
⎨
⎧

=
0.2y probabilit  with

0.8y probabilit  with
b
j

a
jc

j x

x
x  

The generated child inherits genes from the “family father” with a higher probability 0.8. 
Intermediate recombination works as: 

( ) 2/a
j

b
j

a
j

c
j wwww −+= β  

where w is σ or ψ based on the mutation operator applied in the FC_adaptive procedure. The 
intermediate recombination only operated on step-size vectors and the modified discrete 
recombination was used for adjustable vectors (x). 
Mutation operators. After the recombination, a mutation operator, the main operator of 
GEMDOCK, is applied to mutate adjustable variables (x). Gaussian and Cauchy Mutations are 
accomplished by first mutating the step size (w) and then mutating the adjustable variable x: 

( )⋅= Aww jj
''  

( )⋅+= Dwxx jjj
''  

where wj and xj are the ith component of w and x, respectively, and wj is the respective step size of 
the xj where w is σ or ψ. A(.) is evaluated as exp[τ’N(0, 1)+Nj(0, 1)] if the mutation is a self-adaptive 
mutation, where N(0, 1) is the standard normal distribution, Nj(0, 1) is a new value with distribution 
N(0, 1) that must be regenerated for each index j. When the mutation is a decreasing-based mutation 
A(.) is defined as a fixed decreasing rate γ = 0.95. D(.) is evaluated as N(0, 1) or C(1) if the mutation 
is, respectively, Gaussian mutation or Cauchy mutation. For example, the self-adaptive Cauchy 
mutation is defined as 

( ) ( )[ ]1,01,0exp '
j

a
j

c
j NN ττψψ += , 

( )tCxx j
c
j

a
j

c
j ψ+= . 

We set τ and τ’ to ( ) 1
2

−
n  and 

1

22
−

⎟
⎠
⎞⎜

⎝
⎛ n

, respectively, according to the suggestion of 
evolution strategies. A random variable is said to have the Cauchy distribution (C(t)) if it has the 

density function: f(y; t) = 
22

/
yt

t
+
π

, -∞ < y < ∞. In this paper t is set to 1. Our decreasing-based 
Gaussian mutation uses the step-size vector σ with a fixed decreasing rate γ = 0.95 and works as 

ac γσσ =  and ( )1,0j
ca

j
c
j Nxx σ+= . 

Our rotamer mutation is only used for x7 to xn to find the conformations of the rotatable bonds inside 
the ligand. For each ligand, this operator mutates all of the rotatable angles according to the rotamer 



 
 

48

distribution and works as kijx γ=  with probability kip , where kiγ  and kip  are the angle value and 

the probability, respectively, of ith rotamer of kth bond type including 33 spsp −  and 23 spsp −  

bond. The values of kiγ  and kip  are based on the energy distributions of these two bond types. 

 
2.1.3 Results and Discussion 

Parameters of GEMDOCK 

In our studies, GEMDOCK parameters in the flexible search phase included the initial step sizes 
(σ=0.8 and ψ=0.2), family competition length (L = 2), population size (N = 200), and recombination 
probability (pc = 0.3). For each ligand screened, GEMDOCK optimization stopped either when the 
convergence was below a certain threshold value or the iterations exceeded the maximal preset value 
of 60. Therefore, GEMDOCK generated 800 solutions in one generation and terminated after it 
exhausted 48000 solutions for each docked ligand. The average GEMDOCK docking run took 135 s 
using a Pentium 1.4-GHz personal computer with a single processor. 
 

Mining the pharmacological consensus 

Figure 2.1.6 and Table 2.1.1 show the pharmacological interaction preferences (hot-spot atoms), 
and Table 2.1.2 shows the ligand preferences. We evolved these pharmacological consensuses and 
steric binding interactions by overlapping the docked ligand conformations, yielded by GEMDOCK, 
of all known active compounds. Figures 2.1.6(a) and 2.1.6(b) show the overlap of ten docked poses 
of ten known active ligands in the vicinity of the ER-antagonist target protein and ER-agonist target 
protein, respectively. The dashed lines indicate the hydrogen bonds formed between the ligand and 
the reference proteins. For the ER-antagonist target protein, four binding-site pharmacological 
interactions were identified and circled as A (hydroxyl group 71; 74; 75; 76; 77), B (hydroxyl group 71; 74; 

75; 76), and C (dimethylamino group 71; 76 or piperidine nitrogen 74; 75). These interactions, evolved 
from docked conformations, are consistent with the interactions evolved from superimposing three 
X-ray structures with that from related studies 71; 74; 75; 76. As shown in Table 2.1.1, the 
pharmacological weights (CW(Bij) defined in Equation 2.1.7) and the interaction type for the 
ER-antagonist complex included E353-OE2 (3.0), R394-NH2 (2.9), H524-ND1 (2.4), and 
D351-OD1 (2.4). For the ER-agonist target protein, two binding-site pharmacological interactions 
were identified (e.g., A’ hydroxyl group and B’ hydroxyl group). The pharmacological weights and 
the interaction type for the ER-agonist complex included E353-OE2 (3.1), R394-NH2 (3.1), and 
H524-ND1 (3.4). These interactions are also consistent with those evolved by superimposing four 
X-ray structures (Figure 2.1.6(b)).  
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D351-OD1

E353-OE2 R394-NH2

H524-ND1

N C

H524-ND1

R394-NH2
E353-OE2

(a) ER antagonists (b) ER agonists 

OHA’
OHA

OH
B

OH
B’

 

Figure 2.1.6. The binding-site pharmacological consensuses are identified by overlapping the docked 
conformations of (a) ten known ER antagonists and (b) ten known ER agonists against the reference 
proteins 3ert and 1gwr, respectively. (a) Four pharmacological interactions were identified and 
circled as A (phenolic hydroxyl group), B (phenolic hydroxyl group), and C (piperidine nitrogen). (b) 
Three pharmacological interactions were identified and circled as A’ (phenolic hydroxyl group) and 
B’ (phenolic hydroxyl group). The dashed lines indicate the hydrogen bonds formed between the 
ligand and the target protein. These pharmacological interactions are consistent with those evolved 
from X-ray structures. 
 
Table 2.1.1. Pharmacological weights of hot-spot atoms of the ER-antagonist and ER-agonist 
complexes are evolved by overlapping docked conformations of known active ligands.   

  Hot-spots weight (CW(Bij))  

Residue 
Id a 

Atom 
Id b 

ER-antagonist 
complex 

ER-agonist 
complex 

Interaction type (Hot spots) 

E353 OE2 3.0 3.1 H-bond (OH↔O) (phenolic hydroxyl) 71; 

74; 75; 76; 77 
R394 NH2 2.9 3.1 H-bond (OH↔N) (phenolic hydroxyl) 71; 

74; 75; 76; 77 
H524 ND1 2.4 3.4 H-bond (OH↔N) 71; 74; 75; 76; 77 
D351 OD1 2.2 -c H-bond (N↔O) (dimethylamino group 71; 

76 and piperidine nitrogen74; 75)  
a One-letter amino acid code with the residue sequence numbered as in the PDB.  
b The atom name in the PDB. 
c D351-OD1 is not a hot-spot atom in the ER-agonist reference complex. 
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Table 2.1.2. Ligand preferences evolved from known active ligands are used to screen lead 
compounds for the ER-antagonist and ER-agonist complexes  

 Electrostatic preferences
(Equation 2.1.9) 

Hydrophilic preferences
(Equation 2.1.10) 

Molecular weight
(Equation 2.1.11)

Ligand name θelec σelec UBelec θhb σhb Urhb μmw K 
ER antagonist 2.0 0.63 2.63 0.15 0.02 0.17 34 0.16 

ER agonist 0 0 0 0.25 0.06 0.31 21.4 0.38 
 

For screening ER antagonists and agonists, Table 2.1.2 shows the parameter values of ligand 
preferences evolved from known ER antagonists (Figure 2.1.2) and agonists (Figure 2.1.3). These 
ligand preferences improve the screening accuracy by reducing the deleterious effects of ligand 
molecular weights and ligand structures that are rich in charged or polar atoms. The electrostatic 
parameter values (see Equation 2.1.9) for ER antagonists included the maximum number of charged 
atoms (θelec=2.0), standard derivation of the charged atoms (σelec= 0.63), and upper bound number of 
charged atoms (UBelec = 2.63). For the hydrophilic preferences (see Equation 2.1.10), the maximum 
ratio (θhb) was 0.15, the standard derivation (σhb) of the ratios was 0.02, and the upper bound ratio 
(Urhb) of polar atoms was 0.17. For molecular weight (see Equation 2.1.11), the mean of heavy 
atoms (μmw) was 21.6 and linear normalization parameter K was 0.16. In contrast, for ER agonists the 
values of UBelec and Urhb were 0 and 0.31, respectively, and K was 0.38.  
 

Evaluation of virtual screening accuracy 

Some common factors were used to evaluate the screening quality, including coverage (the 
percentage of active ligands retrieved from the database), yield (the percentage of active ligands in 
the hit list), false positive (FP) rate, enrichment, and goodness-of-hit (GH). The coverage (true 
positive rate) is defined as Ah/A (%), Ah/Th (%) is the yield (hit rate), and the FP rate is defined as 
(Th-Ah)/(T-A) (%). The enrichment is defined as (Ah/Th)/(A/T). Ah is the number of active ligands 
among the Th highest ranking compounds which is called the hit list, A is the total number of active 
ligands in the database, and T is the total number of compounds in the database.  The GH score is 
defined as 78 

( )
⎟
⎠
⎞

⎜
⎝
⎛

−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

AT
AT

AT
TAAGH hh

h

hh 1
4
3 . (2.1.13) 

The GH score contains a coefficient to penalize excessive hit list size and, when evaluating hit lists, 
is calibrated by weighting the score with respect to the yield and coverage. The GH score ranges 
from 0.0 to 1.0, where 1.0 represents a perfect hit list (i.e., containing all of, and only, the active 
ligands). In the data sets for screening the ER agonists or ER antagonists, A and T are 10 and 1000, 
respectively. Here, we also took the averages of hit rates, enrichments, GH scores, and FP rates. For 



 
 

51

example, the averages of the hit rates and enrichments are defined as ATi i
h

A

i
/)/(

1∑ =
 and 

{ } ATATi i
h

A

i
/)//()/(

1∑ =
, respectively, where i

hT  is the number of compounds in a hit list containing 

i active compounds. 
 

 

Molecular recognition of ER-antagonist and ER-agonist complexes 

We tested GEMDOCK 2 on a highly diverse data set of 100 protein-ligand complexes proposed by 
Jones et al 5 and on two cross-docking ensembles of protein structures. Upon consideration of the 
solutions at the first rank, in 79% of these complexes the docked lowest energy ligand structures had 
root-mean-square derivations (RMSDs) below 2.0 Å with respect to the corresponding crystal 
structures. The success rate increased to 85% if the structured water molecules were retained. In 
contrast, GOLD5 yielded a 71% success rate in identifying the experimental binding model based on 
the GOLD assessment categories, and the rate was 66% if based on the top-ranked solutions with 
RMSD values of less than 2 Å. FlexX 3 achieved 70% and 46.5% success rates for solutions at any 
rank and the first rank, respectively. 

The main objective of this study was to evaluate whether the new scoring function was applicable 
to both molecular docking and ligand scoring during virtual screening. First, GEMDOCK was 
evaluated by docking each ligand of seven ER complexes in the PDB into its respective complex and 
into its reference protein. Table 2.1.3 shows the overall predicted accuracy of GEMDOCK and 
GOLD. Ten independent docking runs were performed for each active compound, and the docked 
ligand conformation with the lowest energy was used to calculate RMSD values for ligand heavy 
atoms between the docked conformation and the crystal structure. The RMSD values of seven 
docked conformations (docking each ligand back into its respective complex) were less than 2.0 Å. 
When these ligands were docked into the reference protein using GEMDOCK, all docked 
conformations had an RMSD of less than 2.0 Å except for EST03 and ESA03 (genistein). EST03 
docked well in the binding site with the exception of the long acyclic side chain. The agonist ESA03 
could not be docked into its corresponding pose in the reference protein (1gwr) due to a fundamental 
difference between the binding site of ERα (1gwr) and ERβ (1qkm). As shown in Table 2.1.3, 
GEMDOCK and GOLD yielded results of equal quality, and GEMDOCK yielded similar results 
regardless of whether the pharmacological preferences (i.e., Epharma and Eligpre) were considered.  
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Table 2.1.3. Comparing GEMDOCK with GOLD with respect to docking seven ligands back into 
respective complexes and reference proteins 

GEMDOCK GOLD 
Native protein b Reference Protein c

 
 
Ligand id Etot d Ebind 

d Etot Ebind  
Native 
protein b 

Reference 
protein c 

EST01 
(1err.RAL a) 0.66 0.65 1.37 1.36 1.02 1.68 

EST02 
(3ert.OHT) 0.60 0.75 0.60 0.75 1.15 1.15 

EST03 
(1hj1.AOE) 1.41 1.05 3.27 3.35 5.07 3.92 

ESA01 
(1gwr.EST) 0.66 0.64 0.66 0.64 0.54 0.54 

ESA02 
(1l2i_ETC) 0.61 0.48 0.62 0.69 0.55 0.76 

ESA03 
(1qkm.GEN) 0.69 1.53 3.32 4.83 0.24 7.16 

ESA04 
(3erd.DES) 0.67 0.51 1.44 1.43 1.10 1.76 

a Four characters followed by three characters (separated by a period) denote the PDB code and the ligand name in the 
PDB, respectively. 
b The RMSD value for docking each ligand back into its respective complex.  
c The RMSD value for docking each ligand into its reference complex, 3ert for ER antagonists (e.g., EST01 ~ EST03) 
and 1gwr for ER agonists (e.g., ESA01 ~ ESA04). 
d Etot and Ebind are defined in Equation 2.1.1. 
 
Virtual screening of ER antagonists and ER agonists 

We compared the overall accuracy of GEMDOCK using four variations of energy terms to screen 
ER antagonists and agonists from a data set of 1,000 compounds proposed by Bissantz et al. 1 
(Figure 2.1.7 and Table 2.1.4). Each variation combined three scoring terms applied in GEMDOCK: 
binding energy (Ebind), pharmacological-interaction preferences (Epharma), and ligand preferences 
(Eligpre). For example, the approach “Pure binding” used only the binding energy (Ebind) as the 
scoring function; the approach “Interaction preference” integrated Ebind and Epharma for the scoring 
function; “Ligand preference” integrated Ebind and Eligpre for the scoring function; and “Both” 
integrated Ebind, Eligpre, and Epharma for the scoring function. The parameter values for interaction 
preferences (Epharma) and ligand preferences (Eligpre) are shown in Tables 2.1.1 and 2.1.2, respectively. 
The various ranks of ten known active ligands in the ligand screening database are shown in Table 
2.1.5, and the comparison of results obtained with other methods is shown in Table 2.1.6.   
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Figure 2.1.7. GEMDOCK screening accuracy of ER antagonists and ER agonists assessed by (A and 
B) true hits, (C and D) GH scores, and (E and F) the false positive rates against different true positive 
rates ranging from 50% to 100%. The performance of GEMDOCK was consistently superior when 
using both ligand preferences and pharmacological-interaction preferences. 
 
Table 2.1.4. GEMDOCK screening accuracy using different combinations of pharmacological 
preferences on the data set proposed by Bissantz et al. 1 

Measure factor ER antagonists (reference protein: 3ert) ER agonists (reference protein: 1gwr) 

 
Pure 

binding 

a 

Interactio
n 

preference 

b 

Ligand 
preference c Both d

Pure 
binding 

a 

Interaction 
preference b 

Ligand 
preference c Both d

Average hit rate (%) 34.88 57.93 71.58 92.19 6.94 7.52 25.02 45.66
Average enrichment 34.88 57.93 71.58 92.19 6.94 7.52 25.02 45.66

Average false positive 
rate (%) 1.32 0.94 0.56 0.13 7.83 6.34 2.56 0.75

Average GH score 0.39 0.57 0.67 0.83 0.17 0.18 0.32 0.48

a,b,c,d Using Ebind, Ebind + Epharma, Ebind + Eligpre, and Etot, respectively, for the scoring function. These energy terms are 
defined in Equation 2.1.1. 
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Table 2.1.5. The ranks of ten known ER antagonists and ten known ER agonists using GEMDOCK 
with different combinations of pharmacological preferences on the data set proposed by Bissantz et 
al. 1 

ER antagonists (reference protein: 3ert) ER agonists (reference protein: 1gwr) 

Ligand 
id a 

Pure 
binding 

b 

Interactio
n 

preferenc
e c 

Ligand 
preference 

d 
Both e Ligand 

id f 
Pure 

binding

Interactio
n 

preferenc
e 

Ligand 
preferenc

e 
Both

EST01 9 3 3 3 ESA01 87 57 33 8 
EST02 23 31 21 13 ESA02 25 49 7 6 
EST03 10 20 20 8 ESA03 31 32 3 3 
EST04 15 12 7 4 ESA04 220 116 99 29 
EST05 6 6 1 1 ESA05 128 97 53 20 
EST06 7 5 4 6 ESA06 101 73 41 14 
EST07 32 21 9 7 ESA07 53 53 16 7 
EST08 18 4 11 5 ESA08 45 102 9 26 
EST09 5 1 2 2 ESA09 43 38 10 5 
EST10 61 45 32 19 ESA10 97 66 37 11 

a, f Defined in Figures 2.1.2 and 2.1.3, respectively. 
b,c,d,e Using Ebind, Ebind + Epharma, Ebind + Eligpre, and Etot, respectively, for the scoring function. These energy terms are 
defined in Equation 2.1.1. 

 
Table 2.1.6. Comparing GEMDOCK with other methods on screening the ER antagonists by false 
positive rates (%) on the data set proposed by Bissantz et al. 1 

True positive 
(%) 

GEMDOCKa GEMDOCKb Surflexc DOCKc FlexXc GOLDc

80 1.5 (15/990) d 0.0 (0/990) 1.3 13.3 57.8 5.3 
90 2.3 (23/990) 0.4 (4/990) 1.6 17.4 70.9 8.3 
100 5.2 (51/990) 0.9 (9/990) 2.9 18.9 -e 23.4 

a GEMDOCK without pharmacological-interaction and ligand preferences (e.g., Ebind for the scoring function). 
b GEMDOCK with pharmacological interactions and ligand preferences (e.g., Etot for the scoring function). 
c Directly summarized from the references 18; 79 
d The false positive rate from 990 random ligands (percentage). 
e FlexX could not calculate the docked solution for EST09. 

 
As shown in Table 2.1.4 and Figure 2.1.7, GEMDOCK generally improves the screening quality 

when both interaction preferences and ligand preferences are considered. The latter was more 
important than the former for this data set. For the ER antagonists that were screened, average hit 
rates were 92.19% (Both), 71.58% (Ligand preference), 57.93% (Interaction preference), and 34.8% 
(Ebind). The average GH scores were 0.83 (Both), 0.67 (Ligand preference), 0.57 (Interaction 
preference), and 0.39 (Ebind). Figures 2.1.7C and 2.1.7E show that the GH scores and FP rates of the 
true positive rates ranged from 50% to 100%.  For the ER agonists that were screened, average hit 
rates were 45.66% (Both), 25.02% (Ligand preference), 7.52% (Interaction preference) and 6.94% 
(Ebind). The average GH scores were 0.48 (Both), 0.32 (Ligand preference), 0.18 (Interaction 
preference), and 0.17 (Ebind). Figures 2.1.7D and 2.1.7F show the GH scores and FP rates with 
different true positive rates ranging from 50% to 100%.  
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Table 2.1.7. GEMDOCK ranks using different combinations of pharmacological preferences for 
some typical ligands on screening ER agonists on the data set proposed by Bissantz et al. 1 

Ligand id in ACD Ligand structure  NAelec
a rhb

b 
Pure 

binding 

c 

Interaction 
preference 

d 

Ligand 
preference e Both f

MFCD00006630 

 
 
 0.00 0.47 5 172 911 850 

MFCD00006616 

 
 
 3.00 0.45 3 1 900 828 

 
MFCD00005746 

 
 

 
 3.00 0.52 4 2 925 889 

MFCD00003783 

 
 
 
 

0.00 0.15 54 270 13 165 

MFCD00012742 

 
 
 
 

0.00 0.24 10 6 2 1 

MFCD00002206 

 
 
 
 

0.00 0.18 13 11 1 4 

a The number of charged atoms in a screened ligand (Equation 2.1.9). 
b The fraction of polar atoms in a screened ligand (Equation 2.1.10). 
c,d,e,f Using Ebind, Ebind + Epharma, Ebind + Eligpre, and Etot, respectively, for the scoring function. These energy terms are 
defined in Equation 2.1.1.   

 
The screening accuracy of GEMDOCK for ER antagonists was better than that of ER agonists on 

this data set. These results might be caused by using the same 990 random compounds proposed by 
Bissantz et al. 1 for these two screens. When they prepared the random ligand set, only the chemical 
reagents of the ER-antagonist complex were eliminated and therefore the ER-agonist-like 
compounds might be selected. For example, GEMDOCK screened two ligands, MFCD00012742 and 
MFCD00002206 (Table 2.1.7), which are similar in structures to ESA03 and ESA04 (Figure 2.1.4), 
respectively. At the same time, the numbers of the ligands, which violate the ligand preferences, e.g., 
LPelec and LPhb shown in Table 2.1.2, of ER antagonists and ER agonists, are 400 and 289 
compounds, respectively. The MFCD compounds were the random ligands in the data set. 

GEMDOCK was superior to other approaches (Surflex, DOCK, FlexX, and GOLD) for screening 
the ER antagonists (Table 2.1.6). All of these methods were tested using the same reference protein 
and screening database with true positive rates ranging from 80% to 100%. When the true positive 
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rate was 90%, the FP rates were 2.3% (GEMDOCK without pharmacological preferences), 0.4% 
(GEMDOCK with pharmacological preferences), 1.6% (Surflex), 17.4% (DOCK), 70.9% (FlexX), 
and 8.3% (GOLD).  
 
Table 2.1.8. GEMDOCK ranks using different combinations of pharmacological preferences for 
some typical ligands when screening ER antagonists on the data set proposed by Bissantz et al. 1 

Ligand id in ACD Ligand structure NAelec
a rhb

b
Pure 

bindin
g c 

Interaction 
preference 

d 

Ligand 
preference e Both f

MFCD00016941 

 

0 0.35 8 2 661 260

MFCD00016787 

 

0 0.32 51 8 747 319

MFCD00001218 

 

6 0.34 13 17 954 937

MFCD00010009 

 

0 0.00 88 430 5 57 

MFCD00002371 

 

0 0.13 40 19 16 12 

MFCD00002206 

 

0 0.18 37 30 46 20 

a The number of charged atoms in a screened ligand (Equation 2.1.9). 
b The fraction of polar atoms in a screened ligand (Equation 2.1.10). 

c,d,e,f Using Ebind, Ebind + Epharma, Ebind + Eligpre, and Etot, respectively, for the scoring function. These energy terms are 

defined in Equation 2.1.1.   
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The influences of pharmacological preferences 

When using interaction energy scoring alone for choosing ligands, docking methods (e.g., 
GEMDOCK and GOLD) favor the selection not only of highly charged polar compounds but also 
high molecular weight compounds. Figures 2.1.8 and 2.1.9 show the influences of the ligand 
structures and molecular weight, respectively, when the binding scoring (Ebind) alone was used in 
GEMDOCK. The docking energy of a ligand with charged or polar atoms is often lower than the 
energy of a non-charged ligand when the docked conformations are similar. For example, the 
docking energies are −76.86 for ESA01-C (rhb is the smallest), −91.32 for ESA01, and −99.64 for 
ESA01-COO (with charged atoms, and rhb is the largest) when the docked positions of these ligands 
are similar (Figure 2.1.8). At the same time, ESA01 and ESA01-COO form the pharmacological 
interactions shown in Figure 2.1.6(b) (e.g., A’ phenolic hydroxyl group and B’ phenolic hydroxyl 
group). In contrast, ESA01-C has no polar atoms to form these pharmacological interactions. We 
obtained these ligand structures (EAS01-C and ESA01-COO) using the 3-dimensional structure 
generator CORINA 80.  

Tables 2.1.7 and 2.1.8 show the effect of pharmacological preferences of some typical ligand 
structures on screened ER agonists and antagonists, respectively. When the binding energy (Ebind) 
alone was used to screen ER agonists, GEMDOCK selected two ligands, MFCD00012742 (1st) and 
MFCD00002206 (4th), which are similar in structure to ESA03 and ESA04, respectively, and satisfy 
the ligand preferences. Due to higher numbers of polar atoms at critical sites, these ligands formed 
greater numbers of pharmacological interactions compared with known active ligands. At the same 
time, GEMDOCK was able to exclude ligands such as MFCD00006630 (rhb = 0.47), 
MFCD00006616 (rhb = 0.45 and NAelec = 3), and MFCD00005746 (rhb = 0.52 and NAelec = 3) that 
violate the ligand preferences of known ER agonists (Table 2.1.2). For example, their rhb values were 
larger than the upper bound ratio (Urhb = 0.31) of polar atoms or the upper bound number (UBelec = 0) 
of charged atoms. When the penalty for the ligand preferences (Eligpre) was considered, the ranks of 
MFCD00006630 (911th), MFCD00006616 (900th), and MFCD00005746 (928th) lagged substantially. 
Ligands such as MFCD00003783 lagged (244th) since it is unable to interact with three important 
residues (Glu353, Arg394, and His524; Figure 2.1.6(b)) in the reference protein. 

GEMDOCK yielded similar results when the ER antagonists were screened (Table 2.1.8). When 
the binding energy (Ebind) alone was used, the ranks of ligands MFCD00016941 (rhb = 0.35), 
MFCD00016787 (rhb = 0.32), and MFCD00001218 (rhb = 0.34) were 8th, 51th, and 13th.  When both 
Ebind and ligand preferences (Eligpre) were considered for the scoring function, the ranks of these 
ligands were 661th (MFCD00016941), 747th (MFCD00016787), and 954th (MFCD00001218) since 
their rhb values were larger than the upper bound ratio (e.g., Urhb,= 0.17 in Table 2.1.2) derived from 
known ER antagonists. These total scoring values were penalized by hydrophilic preferences (i.e., 
LPhb in Equation 2.1.10). Ligand MFCD00001218 was also penalized by the electrostatic 
preferences (i.e., LPelec in Equation 2.1.9) because the number of charged atoms (NAelec = 6) was 
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larger than the upper bound (Urelec = 2.63 in Table 2.1.2). The screening of ligand MFCD00010009, 
which has no polar atoms to form pharmacological interactions (Figure 2.1.6(a)), often fell behind 
when GEMDOCK used both Ebind and Epharma for the scoring function. In contrast, ligands 
MFCD00002371 and MFCD00002206 yielded good ranks for various combinations of energy terms 
since they are able to form binding-site pharmacological interactions and satisfy the ligand 
preferences.  

Figure 2.1.9 and 2.1.10 show the effect of molecular weight on screening accuracy. A docking 
method using energy-based scoring alone is often biased toward large molecular weight ligands 
because the overall van der Waals interaction energy is summed over all pairs of ligand and target 
protein atoms within a specified cutoff distance. Figure 2.1.9(a) shows that ESA01 (blue) and EST03 
(yellow) have a common group A and that EST03 has an additional substructure group (side chain B). 
The van der Waals force of a large ligand (e.g., EST03) is often larger than that of a small ligand 
(e.g., ESA01). In this case, EST03 acquires additional van der Waals force from side chain B as 
shown in Figure 2.1.9(b). For example, when using Ebind alone for docking a ligand into the reference 
protein (3ert), GEMDOCK yielded docking energies of −127.27 for EST03 and −82.82 for ESA01. 
Figure 2.1.10 shows the true hits obtained by GEMDOCK when screening ER agonists without 
(dashed line) or with molecular weight normalization (solid line; defined in Equation 2.1.11).  
When GEMDOCK applied molecular weight normalization and pharmacological preferences to 
screen ER agonists, the average hit rate was 45.66%, the average FP rate was 0.75%, and the GH 
score was 0.48. In contrast, these averages were 21.18%, 2.02%, and 0.29 when molecular weight 
normalization was not considered.   

Figure 2.1.11 shows the true hits of GEMDOCK using the cleaned lists and the original data set 
proposed by Bissantz et al. 1 For each test case (ER antagonists and ER agonists), we prepared the 
cleaned list by filtering the original set in order to eliminate the ligands, which violate the 
electrostatic (LPelec) or hydrophilic constraints (LPhb). These two cleaned lists, including the known 
active compounds, consist of 590 and 701 compounds for screening the ER antagonists and ER 
agonists, respectively. As shown in Figure 2.1.11, the true hits (gray lines) of GEMDOCK using 
Ebind (C-Pure binding) and Ebind + Epharma (C-Interaction preference) as the scoring functions on the 
cleaned lists are similar to those (black lines) of GEMDOCK using Ebind + Eligpre (W-Ligand 
preference) and Ebind + Eligpre+Epharma (W-Both) as scoring functions, on the original set, respectively. 
Using GEMDOCK on the cleaned sets, average GH scores were 0.82 (Interaction preference) and 
0.66 (Pure binding) for ER antagonists, and average GH scores were 0.41 (Interaction preference) 
and 0.29 (Pure binding) for ER agonists. These experiments indicated that the pharmacological 
interaction preferences were able to improve the GH scores for both the cleaned lists and original set; 
moreover, the ligand preferences might improve the screening accuracy of a scoring function and 
become the filters to prepare a ligand database.   

 In summary, we developed a near-automatic tool with a novel scoring function for virtual 
screening by making numerous modifications and enhancements to our original techniques. By 
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integrating a number of genetic operators, each having a unique search mechanism, GEMDOCK 
seamlessly blends the local and global searches so that they work cooperatively. The key aspect of 
the present work is that our new scoring function uses pharmacological-interaction preferences to 
select the ligand structures that form pharmacological interactions with target proteins; furthermore, 
the scoring function applies ligand preferences to select ligand structures that are similar to known 
active ligands. Our scoring function is indeed able to enhance the accuracy during flexible docking 
and improves the screening utility by reducing the number of false positives during the post-docking 
analysis. Our results demonstrate the applicability and adaptability of GEMDOCK for virtual 
screening.   
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Figure 2.1.8. Docking energy is influenced by ligand structures generated by CORINA. (a) The 
fraction of polar atoms in ESA01-C is the smallest among these three ligands, whereas that of 
ESA01-COO is the largest. (b) The docked positions are similar, but the docking energies differ: 
−91.32 for ESA01, −76.86 for ESA01-C, and −99.64 for ESA01-COO. 
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Figure 2.1.9. The influence of molecular weight on docking energy. (a) ESA01 (blue) and EST03 
(yellow) have a common group A, and EST03 has an additional substructure group B. (b) The 
docked conformations (into reference protein 3ert) are similar, and the docking energies are −82.82 
for ESA01 and −127.27 for EST03.    
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Figure 2.1.10. The accuracy of GEMDOCK for screening ER agonists, assessed using scoring 
functions with molecular-weight normalization (solid line) and without molecular-weight 
normalization (dash line). 
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     (a) ER antagonists                                       (b) ER agonists 
   
Figure 2.1.11. The accuracy of GEMDOCK for screening (a) ER antagonists and (b) ER agonists, 
assessed using the cleaned ligand sets (C-Pure binding and C-Interaction preference) and the ligand 
set proposed by Bissantz et al. 1 (W-Ligand preference and W-Both). 
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Chapter 3: Post-analysis of Virtual Screening 
For post-analysis of virtual screening, we developed a cluster method for post analysis to 

improve enrichment for virtual screening. The method combines protein-ligand interactions (e.g. 
hydrogen bonds, electrostatic interactions, and van der Waals), which are generated by our 
well-developed docking tool (i.e. GEMDOCK), and physical-chemical features and structures for 
each compound candidate selected by GEMDOCK. For each cluster, this method selected a 
representative compounds for biological tests and improved the enrichment of virtual screening. Our 
works on the post-analysis have published one journal paper and one poster. 
Journal papers: 

 J.-M. Yang* Y.-F. Chen, T.-W. Shen, B. S. Kristal, and D. F. Hsu, "Consensus Scoring Criteria 
for Improving Enrichment in Virtual Screening," Journal of Chemical Information and 
Modeling, vol. 45, pp. 1134-1146, 2005. (SCI, IF: 3.2) (Times Cited: 21) 

Posters 
 C.-N. Ko, Y.-F. Chen, Y.-J Chen and J.-M. Yang, "Cluster analysis of Structure-based Virtual 

Screening by Using Protein-ligand Interactions and Compound Structures", in Annual 
Conference on Biotechnology, Hsinchu, Taiwan, 2007 

3.1 Cluster analysis of Structure-based Virtual Screening by Using 

Protein-ligand Interactions and Compound Structures 

3.1.1 Introduction 

With the recent development of high-throughput X-ray crystallography, the total number of 
structures will grow at an even greater speed81. And the enormous advances in genomics have 
resulted in a large increase in the number of potential therapeutic targets that are available for 
investigation. This growth in potential targets has increased the demand for reliable target validation, 
as well as technologies that can identify rapidly several quality lead candidates. Virtual screening 
methods are a primary source for the discovery of lead molecules for drug development, with 
high-throughput docking algorithms being among the most extensively used of these methods. The 
application of virtual high-throughput screening82; 83, to the drug discovery process invariably 
produces a large number of potential lead candidates. And it is well known that current scoring 
functions used in virtual screening campaigns are often inadequate at predicting the true binding 
affinity of a ligand for a receptor84. These prospective ligands need to be filtered in order to reduce 
their number for more precise and labor-intensive studies.  

The purpose for utilizing post-analysis is to minimize the number of false positives in the 
selection list and to propagate the true hits to the top of the list. One of the post-analysis methods 
such as clustering based upon structural similarity can nonetheless generally improve the 
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performance of the scoring function8; 85 . Clustering molecules based upon similarity requires some 
quantitative measure (descriptor) of the similarity between two molecules. There are many different 
approaches to generate descriptor, include 2D and 3D methods. Most of the 2D methods have 
focused on representing a molecule based upon its own structural and chemical composition, like 
Atom-Pair. But it regardless the information from protein that is important in the field of 
structure-based drug designs. Deng and co-workers8 described a novel approach to representing the 
properties of a ligand. As opposed to calculating the properties of a ligand from the perspective of its 
own structural and chemical components, the Structural Interaction Fingerprint (SIFt) method 
represents a ligand by the interactions it forms in the binding site of a protein. Using seven bits per 
binding-site residue to represent seven different types of interaction, the SIFt method encoded a 
ligand-protein interaction into a binary string. The types of interaction that considered are hydrogen 
bond and physical contact. Recently another approach proposed by Amari et al,7have developed a 
clustering tool for visualized cluster analysis of protein-ligand interaction (VISCANA) that analyzes 
the pattern of the interaction of the receptor and ligand on the basis of quantum theory. They applied 
the ab initio fragment molecular orbital (FMO)86 method for represent the interaction between 
protein and ligand, which used the ab initio electronic structure calculation of proteins and encoding 
each docked pose into real number string. But the FMO method needed to obtain more reliable 
descriptions of van der Waals interactions and hydrogen bonds that are important for receptor-ligand 
binding.  

We developed a cluster method for post analysis to improve enrichment for VS. The method 
combines protein-ligand interactions (e.g. hydrogen bonds, electrostatic interactions, and van der 
Waals), which are generated by our well-developed docking tool (i.e. GEMDOCK), and 
physical-chemical features and structures for each compound candidate selected by GEMDOCK. 
The physical-chemical features of a compound were described by atom pair descriptors (i.e. 
compound topological similarity) proposed by Carhart et al. Based on these normalized feature 
profiles, hierarchical clustering methods were used to cluster these compound candidates. For each 
cluster, this method selected a representative compounds for biological tests. Our method was 
evaluated on five well-known drug targets, including thymidine kinase (TK), dihydrofolate reductase 
(DHFR), estrogen receptor agonist (ESA), estrogen receptor antagonists (EST) and neuraminidase 
(NA). We also practically applied our method for the screening of Helicobacter pylori shikimate 
kinase (HpSK) and the test the inhibitor activities of selected compounds in bioassay. 

 
3.1.2 Materials and Methods  

We developed a cluster method for post analysis to improve enrichment for VS (Figure 3.1.1A). 
The method combines protein-ligand interactions (e.g. hydrogen bonds, electrostatic interactions, and 
van der Waals), which are generated by our well-developed docking tool (i.e. GEMDOCK2; 66), and 
physical-chemical features and structures for each compound candidate selected by GEMDOCK. 
The physical-chemical features of compound structures were described by atom pair descriptors (i.e. 
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compound topological similarity) proposed by Carhart et al87; 88 (shown as Figure 3.1.1B). Based on 
these feature profiles shown in Figure 3.1.1A, hierarchical clustering methods were used to cluster 
these compound candidates. For each cluster, this method selected a representative compounds for 
biological tests. 

The interactions of atom pairs on each protein-ligand complex were collected as a real number 
vector which the length and order were corresponded to atoms on the binding site of target protein 
(shown as Figure 3.1.1B). The structure of each compound was represented by the atom-pair 
descriptor which was proposed by Carhart et al.,88; 89 (shown as Figure 3.1.1B). The atom-pair 
descriptor approach describes the molecular structure by the bonding interval of all pairs of atom 
types. Hierarchical clustering analysis was employed for analyzing the profiles of interactions and 
compound structures on MATLAB90; 91. The post-processing of interaction and structure analyses 
separates the screening candidates into several meaningful groups and the compound with the lowest 
docked energy in each group was selected as the representatives for the bioassays (Figure 3.1.1B). 
For evaluate the method of cluster analysis, we adopt this method for five important drug targets and 
the results of validation suggested a threshold of cutoff. This analysis process was also applied to the 
virtual screening of Helicobacter pylori shikimate kinase (HpSK). The biological assays reported the 
discovery of a new inhibitor structure from five canadidates. 
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Figure 3.1.1. Cluster analysis for post-processing of virtual screening. (A) The flowchart of cluster 
analysis. The top ranks in screening are selected for cluster analysis. Each compound is grouped by 
its interaction and molecular properties. (B) The cluster analyses of interaction and molecular 
properties. The interaction analysis uses the hydrogen bonding, electrostatic and van der Waals 
interactions of atom pairs on the protein-ligand complexes to cluster similar docked poses. The 
molecular property analysis used atom-paired descriptors to cluster similar molecular structures. 
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Preparations of the target proteins and screening sets 
The compound set for virtual screening was prepared by selecting them from the CMC database 

in May 2004 based on two criteria: (1) molecular weight ranging between 200 and 800, and (2) no 
compounds with multiple components. A set comprising 5,331 compounds was eventually obtained. 
The five sets of target specific compounds were from the literatures (Thymidine kinase (TK) and 
human estrogen receptor alpha (ERα) antagonists17, ERαagonist92, human dihydrofolate reductase 
(hDHFR)10 and Neuramindase (NA)93). The other additional 990 compound set was randomly 
selected from ACD database for validation10; 17. All 3D structures of compound were generated by 
CORINA3.0 and shown in Figure 3.1.2. 
 The structure of the protein binding pocket on TK, ERα (for antagonist and agonist), hDHFR, 
NA and SK were isolated and prepared for the GEMDOCK. The structure of the binding pocket in 
the pre-described ligand-bound conformation (PDB code 1kim14, 3ert94, 1gwr94, 1hfr95, 1mwe96 and 
1zui97) including including amino acids enclosed within a 10 Å radius sphere centered on the bound 
ligand, were used. The coordinates of protein atoms were taken from the PDB for the screening 
processing. GEMDOCK docked each compound in the data sets against these binding cavities, and 
ranked each compound by docked energy of the docked conformation. To validate our method, 
compounds for five validated set were chosen for cluster analysis. According to the ranking, top 
ranked compounds for SK were chosen for cluster analysis and in vivo biological activity tests to 
validate their inhibitory activities. 
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Figure 3.1.2. Active compound structures of validation sets. The compounds of each target are 
denoted in the abbreviation of protein and numbers. The compound co crystallized in the complex of 
PDB is further denoted in the PDB code of the protein and the ligand. 

Docking method and scoring function 

Our previous works 2; 9 have showed that the docking accuracy of GEMDOCK was better than 
some well-known docking tools, such as GOLD 5 and FlexX3, on a diverse data set of 100 
protein-ligand complexes proposed by Jones et al.5 The screening accuracy of GEMDOCK were also 
better than GOLD, FlexX, and DOCK on screening the ligand database from Bissantz et al. (2000) 
for the thymidine kinase 28 and the estrogen receptor 9. In this study, GEMDOCK parameters in the 
flexible docking included the initial step sizes (σ=0.8 and ψ=0.2), family competition length (L = 2), 
population size (N = 300), and recombination probability (pc = 0.3). For each ligand screened, 
GEMDOCK optimization stopped either when the convergence was below a certain threshold value 
or the iterations exceeded the maximal preset value of 60. For the latter case, GEMDOCK will 
produce 800 solutions in one generation and terminated after it exhausted 48,000 solutions for each 
compound in the screening set. 

The screening quality of docking methods using energy-based scoring functions alone is often 
influenced by the structure of the ligand being screened (e.g., the numbers of charged and polar 
atoms). These methods are often biased toward charged polar compounds due to the pair-atom 
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potentials of the electrostatic energy and hydrogen-bonding energy. In order to reduce this ill effect, 
GEMDOCK could evolve the pharmacological preferences from a number of known active ligands 
or from domain knowledge to take advantage of the similarity of a putative ligand to those that are 
known to bind to a protein’s active site, thereby guiding the docking of the putative ligand9. 
GEMDOCK could use either a purely empirical scoring function2 or pharmacophore-based scoring 
function9. When GEMDOCK used a pharmacophore-based scoring function, some known active 
ligands (more than two) or domain knowledge are required for evolving the pharmacological 
consensus according to our previous results. The empirical-binding energy (Ebind) is the sum of the 
intermolecular (Einter) and intramolecular energies (Eintra), respectively 2. The pharmacophore-based 
energy function 9 is the sum of three energy items, including the empirical binding energy (Ebind), the 
energy of binding site pharmacophores (Epharma), and a penalty value (Eligpre) if a ligand does not 
satisfy the ligand preferences. Epharma and Eligpre are especially useful in selecting active compounds 
from hundreds of thousands of non-active compounds by excluding ligands that violate the 
characteristics of known active ligands (or domain knowledge).  

All ligands are docked into the target protein binding pocket and the atom based protein-ligand 
interaction descriptors is generated from the docked poses corr. The interactions of atom pairs on 
each protein-ligand complex were collected as a real number vector which the length and order were 
corresponded to atoms on the binding site of target protein 

Atom pair descriptors 

The method of atom-pair descriptor is to describe the molecular topology by counting the 
shortest path of valence bonds between two atom types. The definition of atom type is show as Table 
3.1.1. Atom pair descriptors was generated from the self-developed atom-pair generator program, 
and the methodology was proposed by Carhart et al.,88; 89. Two major components for constructing a 
set of atom-pair descriptors include the definition of atom type and the number of distance bins 
between two atom types. An atom-pair is a simple type of substructure defined in term of the atom 
types and the shortest path graph distance between two atoms. The graph distance is defined as the 
smallest number of atoms along the path connecting two atoms in a molecular structure. The formula 
of an atom-pair is as atom type i—(distance)—atom type j. Where the distance is the valence bond 
distance between the atoms type i and j in the case of a 2D atom-pair description. We clustered the 
SYBYL 23 atom types into 10 atom types (Table 3.1.1) in order to reduce the number of atom-pair 
descriptors and improve the accuracy. Our settings of atom-pair approach followed the previous 
research of Hans Matter98. The maxim um of valence bond distance was set as 14 in this study and a 
total of 825 (55 x 15) atom-pair descriptors were generated for each molecular structure99. The 
representation of 825 atom-pair descriptors is bit string.  
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Table 3.1.1. Atom types used in the atom-pair descriptors 
Description Atom type Atom type in SYBYL Mol2 

Aromatic carbons C.ar C.ar 
Nonaromatic carbons C.na C.3 C.2 C.1 C.cat 
Aromatic nitrogen N.ar N.ar 
Nonaromatic nitrogen N.na N.3 N.2 N.1 N.am N.4 N.pl3
Oxygen atoms in the sp3 hybridization state O.3 O.3 
Oxygen atoms in the sp2 hybridization state O.2 O.2 
All sulfur atoms S S.3 S.2 S.O S.o2 
Phosphorus atoms P.3 P.3 
Halogen atoms X F Cl Br I 

 

Hierarchical cluster method 

 Hierarchical methods have the advantage of building up an interpreTable 3.1.relationship 
between the clusters. Hierarchical clustering analyses were carried out with MATLAB91.  We 
removed the column with zero in each ligand before calculating the distance of interaction and 
structure vectors. The similarity distance of the protein-ligand interaction vectors are measured by 
the correlation coefficients. Formula was as followed. 

( )( )
( )

11
1

n

i i
corr i
xy

x y

X X Y Y
D

n S S
=

− −
= −

−

∑

                            
 (3.1.1) 

where corr
xyD  is the correlation distance between docked poses X and Y. The Sx is the standard 

deviation of X. Xi is the ith value of X. n is the number of atoms in the binding cavity. The similarity 
distance of atom-pair descriptor strings is measured through the tanimoto coefficients. The formula 
was as followed.  

tani
xy

X Y
D

X Y
=

I

U         (3.1.2) 

where tani
xyD  is the tanimoto distance between X and Y. X YI  is the number of ON bits common 

in both X and Y, and the X YU  is the number of ON bits present in either X or Y. The standard 

UPGMA clustering method is adapted for calculating the distance between two clusters while 
constructing the dendrogram. The formula was as followed. 

      (3.1.3) 
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The reference threshold was calculated from verifying dataset by Equation 3.1.4 for determining the 
number of clusters.  is the method for measuring similarity. For interaction analysis,  is 

corr
xyD . For molecular structure,  is tani

xyD . The dendrogram graph was plotted for visualizing 

the binding mode of multi docked poses by protein-ligand interaction. 
3.1.3 Results and Discussion 

We applied the cluster analysis method on five datasets for validation. The verifying dataset was 
constructed by cross-docking of all 61 known active compounds against 5 target proteins. The testing 
dataset for virtual screening was constructed by docking known active compounds and 990 randomly 
selected compounds against 5 target proteins. GEMDOCK was adapted to produce the docked 
prediction and score the docked poses. The molecular recognitions of five classes of active 
compounds for target protein were shown in Figure 3.1.3. The average RMSD of docked poses and 
crystal conformations were below 2.0Å and the details were shown in Table 3.1.2. The residues of 
pharmacological consensus were used in the docking procedures but not in the scoring and clustering 
procedures. 

 A B C

D E

Y101-OH

R163-NH1
Y172

Q125-NE2

Q125-OE1

D351-OD1

H524-ND1

R394-NH2
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E353-OE2

G420-O
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R292-NH2
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Figure 3.1.3. Molecular recognition on (A) hDHFR (1hfr), (B) TK (1kim), (C) NA (1mwe), (D) 
ERα-agonist form (1gwr), (E) ERα-antagonist form (3ert). The residues of pharmacological 
consensus are label with their numbers. The hydrogen bonding of docked pose and residues are 
denoted as green dash lines. 



 
 

70

Table 3.1.2. The RMSD values of docked poses and crystal ligands 
TK (1kim) ER (3ert, 1gwr) hDHFR (1hfr) NA (1mwe) 
Complex RMSD Complex RMSD Complex RMSD Complex RMSD 
1e2k.TMC 0.69 1err.RALa 1.27 1boz.PRD 1.13 lig1l7f_BCZ 0.88 
1e2m.HPT 0.51 3ert.OHTa 0.71 1dlr.MXA 0.62 lig1nnc_GNA 0.75 
1e2n.RCA 1.34 1hj1.AOEa 3.13 1dls.MTX 1.53 lig2qwf_G20 0.60 
1e2p.CCV 0.67 1uom.PTIa 0.81 1drf.FOL 1.24 lig1bji_G21 0.81 
1ki2.GA2 3.04 1gwr.ESTb 0.71 1hfr.MOT 0.51 lig1f8b_DAN 0.64 
1ki3.PE2 3.21 1l2i.ETCb 0.52 1kms.LIH 1.36 lig1f8c_4AM 0.46 
1ki6.AHU 0.37 1qkm.GENb 2.92 1kmv.LII 0.83 lig1f8d_9AM 0.59 
1ki7.ID2 0.49 3erd.DESb 1.32 1mvs.DTM 0.75 lig1f8e_49A 0.60 
1kim.THM 0.41   1ohj.COP 1.27 lig1ina_ST6 0.79 
2ki5.AC2 3.14   2dhf.DZF 1.12 lig1ing_ST5 1.03 
      lig1inw_AXP 0.93 
      lig1inx_EQP 0.92 
      lig1ivc_ST2 2.09 
      lig1ivd_ST1 1.02 
      lig1ive_ST3 1.03 
      lig1mwe_SIA 0.52 
      lig1xoe_ABX 1.33 
      lig1xog_ABW 2.42 
      lig2qwg_G28 0.80 
      lig2qwh_G39 0.74 
Average 
RMSD 

1.58 Average 
RMSD 

1.42 Average 
RMSD 

1.03 Average 
RMSD 

0.95 

a Four antagonists dock into target protein (3ert) 
b Four agonists dock into target protein (1gwr) 

 

Significance test of descriptors 

t-test for protein-ligand interaction descriptor 

We verified whether the protein-ligand interaction descriptors could identify the similar binding 
poses from data. The similar binding poses were defined as the poses of active compounds against its 
target protein, and the dissimilar binding poses was defined as the poses of other compounds docked 
into the same target protein. For t-test, the H0 is that there are no differences under the representation 
of interaction descriptors and the results were listed in Table 3.1.3. The t-scores are calculated as the 
standard two sample t-test statistics: 
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Where μ is the mean of samples, and 
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The result of t-test showed that the representation of interaction descriptors for docked pose could 
show the difference of active and inactive ones.  

 

Table 3.1.3. t-test for the interaction representations of similar and dissimilar binding poses (α=0.01). 

Target 
protein H0

a 
Similar : 
Average 
Distance 

Dissimilar : 
Average 
Distance 

P-value 
Similar : 
Stdb of 

Distance 

Dissimilar : 
Stda of 

Distance 
DHFR Reject 0.21 0.50 1.71E-58 0.09 0.13 
ESA Reject 0.25 0.42 7.04E-20 0.13 0.12 
EST Reject 0.31 0.48 7.94E-39 0.09 0.12 
NA Reject 0.17 0.73 0.00E+00 0.07 0.20 
TK Reject 0.19 0.47 3.89E-64 0.08 0.15 

a H0 is that there are no differences in the representation of descriptors 
a Standard Deviation 

 

For the needs of post-analysis, we further checked whether the interaction representations could 
discriminate the active compounds and other four groups of non-active compounds in the docked 
interactions and conformations. Table 3.1.4 showed the details of tests. Docked poses on DHFR and 
NA fully passed all the tests, but the other poses on TK, ESA, and EST didn’t. We checked the 
docked poses on these proteins and found that the reason maybe came from the fused ring structures 
of ligands. ESA and EST were specific on the steroid compounds for their hormonal regulation 
functions; TK was specific on the thymidine base compounds for the kinase functions. But the 
skeleton of rings on the lignads of them were shared the closed lengths (Figure 3.1.2) and this 
phenomenon also showed on the distance of atom-pair descriptors.  
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Table 3.1.4. t-test for the interaction representations of five groups of compounds against target 
proteins(α=0.01) 

Target 
protein 

Compound 
class H0

a 
Similar :
Average 
Distance

Dissimilar : 
Average 
Distance 

P-value 
Similar : 
Stdb of 

Distance 

Dissimilar : 
Stda of 

Distance 
DHFR Reject 0.21 0.50 1.71E-58 0.09 0.13 
ESA Reject 0.52 0.58 2.73E-03 0.18 0.12 
EST Reject 0.52 0.63 7.51E-07 0.21 0.13 
NA Reject 0.46 0.55 5.34E-23 0.13 0.14 

DHFR 

TK Reject 0.38 0.51 8.03E-11 0.16 0.13 
DHFR Pass 0.55 0.62 0.10111 0.28 0.16 
ESA Reject 0.23 0.48 2.29E-31 0.14 0.14 
EST Pass 0.67 0.76 0.23105 0.25 0.14 
NA Reject 0.33 0.59 1.51E-58 0.24 0.20 

ESA 

TK Reject 0.46 0.57 0.000121 0.25 0.20 
DHFR Pass 0.55 0.57 4.01E-01 0.21 0.14 
ESA Reject 0.25 0.42 7.04E-20 0.13 0.12 
EST Reject 0.31 0.48 7.94E-39 0.09 0.12 
NA Reject 0.40 0.46 1.46E-09 0.15 0.15 

EST 

TK Reject 0.28 0.43 2.17E-29 0.09 0.15 
DHFR Reject 0.35 0.68 3.46E-25 0.22 0.25 
ESA Reject 0.59 0.71 2.91E-04 0.28 0.24 
EST Reject 0.56 0.66 2.46E-04 0.25 0.24 
NA Reject 0.17 0.73 0.00E+00 0.07 0.20 

NA 

TK Reject 0.48 0.60 3.46E-07 0.18 0.23 
DHFR Reject 0.42 0.62 9.80E-12 0.13 0.10 
ESA Reject 0.16 0.52 9.99E-62 0.07 0.13 
EST Pass 0.58 0.65 6.28E-02 0.18 0.14 
NA Reject 0.40 0.53 2.92E-53 0.11 0.15 

TK 

TK Reject 0.19 0.47 3.89E-64 0.08 0.15 
a H0 is that there are no difference in the representation of descriptors 

b Standard Deviation 

t-test for atom-pair descriptor 

The t-tests were also used for check the representations of atom-pair descriptors on compound 
structures. The similar structures were defined as the active compounds against its target protein, and 
the dissimilar structures were defined as the other compounds against the same target protein. For 
t-test, the H0 is that there are no differences under the representation of atom-pair descriptors and the 
results were listed in Table 3.1.4. 
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Table 3.1.4. t-test for the atom-pair representations of similar and dissimilar structures (α=0.01). 

Target 
protein H0

a 
Similar : 
Average 
Distance 

Dissimilar : 
Average 
Distance 

P-value 
Similar : 
Stdb of 

Distance 

Dissimilar : 
Stda of 

Distance 
DHFR Reject 0.42 0.63 5.84E-23 0.15 0.12 
ESA Reject 0.24 0.66 4.60E-65 0.11 0.14 
EST Reject 0.27 0.63 2.85E-56 0.14 0.14 
NA Reject 0.32 0.65 1.75E-131 0.18 0.17 
TK Reject 0.22 0.63 2.11E-93 0.09 0.19 

a H0 is that there are no difference in the representation of descriptors 
b Standard Deviation 

Cutoff of hierarchical cluster for verifying datasets 

The cluster sizes and members of hierarchical cluster method were depended on the 
determination of cutoff distance. We proposed an approach for cutoff determinate by validation sets. 
We decided the cutoff according to maximize the true positive rates and minimize the false positive 
rates in the cluster analyses. In the cluster analyses of validate sets, we defined the true positive as 
the active compounds for its pharmacological target and the others compound were defined as false 
positives. The true positives were further denoted as intra set and the false positives were denoted as 
inter set. To maximize the true positives at a given distance threshold t, we defined an equation as 
followed 

max / 2intra-d t inter-d t

intra inter

C C
C C

< >
⎛ ⎞⎛ ⎞

+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
      (3.1.7) 

where t is the given distance threshold. intra-d tC <  is the number of intra active compound pairs which 

had the distances < threshold t. interC  is the number of compound pairs between active and 

non-active compounds. The threshold t of interaction and structure clusters were tested from 0 to 1 
on five protein targets. For interaction cluster, the distance threshold t at 0.39 of correlation 
coefficient measurement had the maximum discrimination (88.9%). For structure cluster, the 
maximum discrimination (91.5%) was at the t=0.55 of tanimoto coefficient measurement (Figure 
3.1.4) 
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Figure 3.1.4. The normalized interaction and structure distances of five classes of compounds. The 
distance distributions of intra datasets are labeled in red, and the inter datasets are labeled in black. 
The cutoff distance of atom-pair descriptor for hierarchical cluster is 0.55 (tanimoto coefficients), 
and protein-ligand interaction descriptor is 0.39 (correlation coefficients). 

 

Cluster analysis for five classes of protein targets 

 We demonstrate the characters of the cluster analysis through using the single feature 
representation. 

Cluster of protein-ligand interaction 

hDHFR the result of interaction clustering was shown on Figure 3.1.5. Three major clusters were 
identified as cluster c, d and e. First, all active compounds were group together into the cluster a, 
(Figure 3.1.5A), All hDHFR ligands in cluster b had hydrogen-bond (E30-OE1, E30-OE2, V115-O, 
I7-O), van der Waals force (I60-CAR, F31-RING), the binding interactions of each docked poses 
within the cluster b were similar. The cluster c contained 6 TK ligands and one NA ligand, and all 
docked poses of cluster d were NA ligands (Figure 3.1.5A). Ligands in cluster d had hydrogen-bond 
(Y121-O, I7-O), and all docked poses with in cluster e had hydrogen-bond (E30-OE1, V8-N). There 
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were two types of hDHFR active compounds (Figure 3.1.2) 9, the DHFR03, 04, 05, 09, 10, belonged 
to old types and had two more carboxylic acid group. The old drugs had different binding affinity 
comparing with new drugs. The interactions of two types of DHFR drugs were shown in Figure 3.1.6. 
The old types contain additional hydrogen bonds (R70-NH1, R70-NH2, and N64-ND2) comparing to 
new types, these were shown on the residue numbers in red of Figure 3.1.6A. The important van der 
Waals force (I60-van der Waals force, F31-stacking force, F34-stacking force, NAP-stacking force) 
could easily discriminate in the cluster map and those interacted residues were shown in Figure 
3.1.6B and 6C. Visual inspection of hDHFR cluster analysis demonstrated that our method could 
help to easily identify the difference of these binding interactions and could discriminate the 
screening results by their differences in the protein-ligand interactions.  
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Figure 3.1.5. The interaction cluster for hDHFR. (A) The clusters of 61 known compounds against 
the target protein hDHFR (PDB code 1hfr). (B) Hierarchical clustering of protein-ligand interaction 
of 61 docked poses on hDHFR (PDB id: 1hfr). The atom based interactions of each ligand is 
represented as one row in the heat map. The color gradient from green to red corresponds to energy 
gradient from low to high. The hierarchical tree shows on the left of heat map. The interacted 
residues were shown in the top of the heat map. (a) The overall docked poses of 61 compounds on 
1hfr. (b) The cluster with most numbers of hDHFR active compounds (c) and (d) show the clusters 
closed to hDHFR active compounds. (e) and (f) show the sub-clusters of (b). The hydrogen bonding 
is denoted as dash line and stack force is denoted as curve line. 
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Figure 3.1.6. The sub-cluster of hDHFR active compounds bounded on hDHFR. The cluster includes 
5 new drugs (DHFR01, 02, 06, 07, 08) and 5 old drugs (DHFR03, 04, 05, 09, 10). (A) The heat map 
of hDHFR active compounds. The arrows in green and orange denote the hydrogen bonding and van 
der Waals interactions, respectively. The residues labeled in red were the differences of interactions 
(Q35, N64, and R70) in new and old drugs. (B) The interactions of new drugs. (C) The interactions 
of old drugs. 
 
TK Our cluster method analyze the interactions of TK (1kim) and the result showed in Figure 3.1.7. 
Two major clusters were identified in the cluster analysis (Figure 3.1.7A). All docked poses of active 
compounds were grouped into cluster b. the major differences of interactions between cluster b and c 
were shown in Figure 3.1.7B. The cluster b contained the hydrogen bond with Q125-NE1 and NE2, 
the cluster c only interacted with Q125-NE2. The cluster c contained two positive van der Waals 
force on A167-C, but cluster c had no interaction. That was because the structures of cluster c were 
slightly larger than the volume of the cavity. Those differences could easily inspect from the heat 
map of interactions (Figure 3.1.7B), and it is useful for mining conserved interaction within clusters.  
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Figure 3.1.7. The interaction cluster for TK. (A) The clusters of 53 known compounds against the 
target protein TK (PDB code 1kim). (B) Hierarchical clustering of protein-ligand interaction of 53 
docked poses on TK (PDB id: 1kim). (a) The overall docked poses of 53 compounds on 1hfr. (b) The 
cluster with most numbers of TK active compounds (c) show the clusters closed to TK active 
compounds. The hydrogen bonding is denoted as dash line and stack force is denoted as curve line. 

 

NA, EST and ESA The processes of cluster analysis on these three targets were the same as descript 
above. The results of NA, EST, and ESA were shown in Figure 3.1.8A, 8B and 8C, respectively. The 
known active compounds against NA were grouped within a cluster (frame in red) and had 
hydrogen-bond with target protein (R152, E277, R292, and R371). In the part of ERα antiagonists 
(3ert), the active compounds were divided into four sub-clusters on the heat map (Figure 3.1.8B). 
Two were singleton, one contains 4 inhibitors, and last cluster contained 5 inhibitors and 8 ERα 
agonists. We could inspect that the positive van der Waals force on (I424, M388, and L349) made 
EST11 and EST10 different from other inhibitors. In the part of ERα agonists (1gwr), all active 
compounds except of ESA08 were group into one cluster, and the ESA08 had additional interaction 
with target protein (T347 and L525). 
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Figure 3.1.8. The interaction cluster for NA (PDB code 1mew), ERα antiaginst (PDB code 3ert) and 
ERα aginst (PDB code 1gwr). (A) The cluster analysis for NA. All the known active compounds 
were grouped within a cluster (frame in red) and had hydrogen-bond with target protein (R152, E277, 
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R292, and R371). (B) The cluster result of ERα antiagonists. The active compounds were divided 
into four clusters by the red frames on the heat map. The positive van der Waals force on (I424, 
M388, and L349) made EST11 and EST10 different from other inhibitors. (C) The cluster result of 
ERαagonists. All active compounds except of ESA08 were grouped into one cluster. ESA08 had 
additional interaction with target protein (T347 and L525). 

 

Cluster of compound structures 

The structure analysis was based on the topology and bonding information and represented by 
atom-pair descriptors. The hierarchical cluster result of 61 known compound structures was shown in 
Figure 3.1.9. Under the threshold t=0.55, there were three major clusters a, b and c. 10 ERα agonists 
were grouped in the cluster a and all 11 ERα antagonists were also grouped within in the cluster b. In 
the cluster c, it contained 10 TK inhibitors and 14 NA inhibitors. The topological structures between 
TK and NA inhibitors were similar. 
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Figure 3.1.9. The hierarchical cluster of 61 known compound structures. The structure was 
represented by the atom-pair method and the similarity distance measured by tanimoto coefficient. 
Under the threshold t = 0.55, there were three major clusters, (a) (b) and (c). (a) 10 ERα agonists 
within the cluster. (b) 11 ERα antagonists in a structure cluster. (c) 10 TK inhibitors and 14 NA 
inhibitors. 

 

 Cluster analysis of virtual Screening on hDHFR 
GEMDCOK was adapted for the virtual screening test for a set of 10 hDHFR inhibitors and 990 

compounds from ACD. At the post processing of virtual screening, we adapted the cluster analysis 
for the top 100 in hDHFR screening list. The atom based protein-ligand interactions and atom-pair 
structure descriptors were generated for each ligand in the top 100. Then, the correlation coefficient 
and tonimoto coefficient were applied for measuring the distances of interactions and structures, 
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respectively. The result of hierarchical clustering was shown in Figure 3.1.10A represented as a heat 
map. All hDHFR inhibitors were belonged to the same cluster and this cluster contained 45 
compounds included 10 active compounds and 35 unknown compounds. The interaction 
comparisons of active and unknown compounds were shown in Figure 3.1.10A. The hDHFR active 
compounds had the hydrogen bonding interactions with target protein at I7-O, V115-O, E30-OE1, 
E30-OE2, and N64-ND2. The van der Waals contacts formed on F31-stacking force, F31-stacking 
force, I60-van der Waals contact and NAP-stacking force. 35 unknown compounds had similar 
hydrogen bonding network to target protein (I7-O, V115-O, E30-OE1, E30-OE2, and N64-ND2) The 
van der Waals interactions were similar to active compounds (F31-stacking force, F31-stacking force, 
I60-van der Waals contact, and NAP-stacking force). The binding interactions within the cluster were 
similar and the most of unknown contained the flavones and purine structures which ring size closed 
to thymidine base.  

The structure analysis result was shown in Figure 3.1.10B. Two groups of compounds were 
clustered as further two structural differences clusters, respectively. The active compounds were 
spliced into two clusters, the old types and new types (Figure 3.1.10B) because of the difference of 
the carboxylic acid group. The unknown structures were also clustered into purine and flavones 
groups which were labeled in the red circle in Figure 3.1.10B. From the cluster result, we selected 
the compound with lowest energy in each cluster for representing all compounds of the cluster. Each 
representative compounds structures were shown as Figure 3.1.10B. Our method was able to identify 
and classify screening result through structure and interactions of protein and ligand. The 
representative compound of each cluster presented the characteristics of whole cluster. The bio assay 
to representative structures could saved expense and improved the efficiency to discover hit from 
screening results. 
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Figure 3.1.10. The cluster analysis of virtual screening on hDHFR (PDB code 1hfr). The screening 
set was composited of 990 random selected compounds from ACD and 10 hDHFR inhibitors. The 
top 100 of screening list were selected for clustering analysis. (A) The details of interactions for the 
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cluster with 10 hDHFR inhibitors. The cluster contained 45 compounds include 10 active compounds 
and 35 unknown compounds. The important hydrogen bonding and van der Waals interactions were 
denoted as green and orange arrows, respectively. (B) The structure analysis for the cluster with 10 
hDHFR inhibitors. The structures of 45 compounds were represented by atom-pair description and 
clustered according to tanimoto coefficient. Four major structure clusters were grouped. The active 
compounds were separated into the old types (d) and the new types (e) because of the difference of 
the carboxylic acid group. The unknowns were clustered into 2 groups and the structures of 2 groups 
were different. The compound with lowest energy of each cluster was chosen as the representative 
for the cluster.  

 

Table 3.1.5. The pharmacophore consensus calculated by superimposing known active compounds 
used for molecular docking on TK, ER, hDHFR, NA, and HpSK 

  Pharmacophore consensus 
weight (CW(Bij)) 

 

Residue 
Id a 

Atom 
Id b 

hDHFR-ligand Interaction type 

I7 O 3.50 H-bond (NH↔O) (NH group) 
E30 OE1 4.00 H-bond (NH↔O) (NH group) 
E30 OE2 4.00 H-bond (NH↔O) (NH group) 
R70 NH1 1.50 H-bond (O↔NH) (carbonyl group) 
R70 NH2 1.50 H-bond (O↔NH) (carbonyl group) 

V115 O 2.50 H-bond (NH↔O) (NH group) 
  ER-antagonist  

E353 OE2 3.0 H-bond (OH↔O) (phenolic hydroxyl) 
R394 NH2 2.9 H-bond (OH↔N) (phenolic hydroxyl) 
H524 ND1 2.4 H-bond (OH↔N) 

D351 OD1 2.2 H-bond (N↔O) (dimethylamino group 
and piperidine nitrogen) 

  ER-agonist  
E353 OE2 3.1 H-bond (OH↔O) (phenolic hydroxyl) 
R394 NH2 3.1 H-bond (OH↔N) (phenolic hydroxyl) 
H524 ND1 3.4 H-bond (OH↔N) 

 

  Pharmacophore consensus 
weight (CW(Bij)) 

 

Residue 
Id a 

Atom 
Id b 

TK-ligand Interaction type 

Q125 OE1 4.00 H-bond (NH↔O) (NH group) 
Q125 NE2 3.50 H-bond (O↔NH) (carbonyl group) 
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Y101 OH 2.00 H-bond (OH↔OH) (hydroxyl group) 
R163 NH1 1.50 H-bond (OH↔N) (hydroxyl group) 

Y172 

CG 
CD1 
CD2 
CE1 
CE2 
CZ 

2.50 van der Waals force (C↔C) 

  NA-ligand  
R371 NH1 2.0 H-bond (NH↔O) (NH group) 
R371 NH2 2.0 H-bond (NH↔O) (NH group) 
R292 NH1 1.5 H-bond (NH↔O) (NH group) 
R292 NH2 1.5 H-bond (NH↔O) (NH group) 
E276 OE2 1.5 H-bond (OH↔OH) (hydroxyl group) 
R152 NH1 2.0 H-bond (O↔NH) (carbonyl group) 

 

  Pharmacophore consensus 
weight (CW(Bij)) 

 

  SK-subtrate  
D33 OD1 1.5 H-bond (OH↔OH) (hydroxyl group) 
D33 OD2 1.5 H-bond (OH↔OH) (hydroxyl group) 
R57 NH1 1.5 H-bond (O↔NH) (carbonyl group) 
G80 N 1.5 H-bond (NH↔O) (NH group) 
R132 NH1 1.5 H-bond (NH↔O) (NH group) 
R132 NH2 1.5 H-bond (NH↔O) (NH group) 

a One-code amino acid with the residue sequence number in PDB. 
b The atom name with the atom serial number in PDB. 

 

Table 3.1.6. The ligand preferences calculated from known active compounds used for virtual 
screening on TK, ER, hDHFR, NA, and HpSK 

 
Electrostatic preferences

(Equation 3.1.9) 
Hydrophilic preferences 

(Equation 3.1.10) 
Ligand name 　elec 　elec UBelec 　hb 　hb Urhb 
TK-substrate 0 0 0 0.50 0.05 0.55 

ER-antagonist 2.00 0.56 2.56 0.15 0.03 0.18 
ER-agonist 0 0 0 0.25 0.06 0.31 

hDHFR-ligand 4.00 2.11 6.11 0.40 0.05 0.45 
NA-ligand 4.00 0.75 4.75 0.50 0.05 0.55 

SK-substrate 2.00 0 2.00 0.42 0 0.42 
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Cluster analysis for the screening result of HpSK 

 The post analysis of HpSK screening was performed by cluster analysis and further tested in 
vivo. We selected top 300 for cluster analysis. Compounds were analyzed by protein-ligand 
interactions and structures. The cutoffs of hierarchical clusters were set manually for giving an 
appropriated number of clusters. The result of cluster analysis was shown as Figure 3.1.10. There 
were 8 major interaction clusters and compounds in theses clusters were grouped into 23 sub-clusters 
by their structures. Finally, 23 representative compounds were selected for bioassay. Five of 23 
compounds were actually bought and tested the inhibitory activities. The in vivo test of Dr. Wang, 
W.-C. identified the compound code MCMC00000106 (furosemide) shown 36% inhibition on 
shikimate kinase at the concentration of 625 µm. 
3.1.4 Conclusions 

We developed a cluster method for post analysis to improve enrichment for VS. The method 
combines protein-ligand interactions (e.g. hydrogen bonds, electrostatic interactions, and van der 
Waals), which are generated by our well-developed docking tool (i.e. GEMDOCK), and 
physical-chemical features and structures for each compound candidate selected by GEMDOCK. 
The physical-chemical features of a compound were described by atom pair descriptors (i.e. compound 
topological similarity) proposed by Carhart et al. Based on these normalized feature profiles, 
hierarchical clustering methods were used to cluster these compound candidates. For each cluster, 
this method selected a representative compounds for biological tests. This analysis method was 
validated on five pharmaceutical interest targets, TK inhibitors, DHFR inhibitors, ER agonist, ER 
antagonists and NA inhibitors. The validation on five targets suggested an approximated threshold 
for the cutoff of hierarchical clusters. The validation results also showed the power for mining the 
representatives with the important interactions and diverse structures from the virtual screening data. 
The practical application for the inhibitor analysis of HpSK reported a new inhibitor structure from 
the screening data. We screened the CMC database against HpSK and chosen top 300 of screening 
candidates for post-processing analysis. The analysis presented 23 representative candidates and five 
of 23 representative candidates were tested in vivo by cooperated laboratory of Dr. Wen-Ching Wang. 
The in vivo test identified a new inhibitor structure, furosemide and this candidate inhibited the 36% 
enzyme activity of HpSK at 625uM. 
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Figure 3.1.11. The cluster analysis for HpSK screening. The top 300 were selected for cluster 
analysis. The interaction cluster grouped the poses into 8 clusters and the structure cluster further 
grouped the structures as 23 sub-clusters. Five compounds were tested in vivo and one showed the 
inhibitory activity for HpSK. 
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3.2 Consensus Scoring Criteria for Improving Enrichment in Virtual Screening 

3.2.1 Introduction 
The average cost and time of bringing a new drug to market has been estimated to be US$ 802 

million in 2000 US dollars and 12 years 100, respectively. Discovery of novel lead compounds 
through virtual screening (VS) of chemical databases against protein structures is an emerging and 
promising step in computer aided drug design 25; 26; 27; 52. Given the structure of a target protein active 
site and a potential small ligand database, VS predicts the binding mode and the binding affinity for 
each ligand and ranks a series of candidate ligands. The VS computational method involves two 
basic critical elements: efficient molecular docking and a reliable scoring method. A molecular 
docking method for VS should be able to screen a large number of potential ligands with reasonable 
accuracy and speed; and scoring methods for VS should effectively discriminate between correct 
binding states and non-native docked conformations during the molecular docking phase and 
distinguish a small number of active compounds from hundreds of thousands of non-active 
compounds during the post-docking analysis. The scoring functions that calculate the binding free 
energy mainly include knowledge-based 57, physics-based 58, and empirical-based 59 scoring 
functions.  

The performance of these scoring functions is often inconsistent across different systems from a 
database search 17; 60. The inaccuracy of the scoring methods, i.e., inadequately predicting the true 
binding affinity of a ligand for a receptor, is probably the major weakness for VS. It has been 
reported that fusion among different scoring methods in VS would improve the performance and, on 
average, the performance of the combined method performs better than the average of the individual 
scoring functions.101 More recently, the same phenomena has been previously reported in 
information retrieval (IR) and in molecular similarity measurement 102; 103; 104; 105; 106; 107. Charifson et 
al. (1999) 101, presented a computational study in which they used an intersection-based consensus 
approach to combine scoring functions. They showed an enrichment in the ability to discriminate 
between active and inactive enzyme inhibitions for three different enzymes (p38 MAP kinase, 
inosine monophosphate dehydrogenase, and HIV protease) using two different docking methods 
(DOCK 55 and GAMBLER) and thirteen scoring functions. Bissantz et al. (2000)17 used three 
docking programs (DOCK, FlexX 3, and GOLD 5) in combination with seven scoring functions to 
assess the accuracy of VS methods against two protein targets (thymidine kinase (TK) and estrogen 
receptor (ER)). Stahl and Rarey (2001) 60 presented a study of the performance of four scoring 
functions for library docking using the program FlexX on seven target proteins. The study in 
Verdonk et al. (2004)108 addressed a number of issues on the use of VS protein-ligand docking based 
on VS experiments against four targets (neuraminidase, ptp1b, cdk2, and ER) using the program 
GOLD and three scoring functions. Wang and Wang (2004)109 presented an idealized computer 
experiment to explore how consensus scoring works based on the assumption that the error of a 
scoring function is a random number in a normal distribution. They also studied the relationship 
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between the hit-rates and the number of scoring functions and the performance of several ranking 
strategies (the rank-by-score, the rank-by-rank, and the rank-by-vote strategy) for consensus 
scorings. 

These reported results are significant and potentially robust in that the performance results of 
these CS methods seem to be independent of the target receptor and the docking algorithm. The 
reported results seem to depend on the method of combination (by rank, by score, by intersection, by 
MIN, by MAX, and by voting) and the number and nature of individual scoring functions involved in 
the combination. While researchers have come to realize the advantage and benefit of method 
combination and consensus scorings, the major issues of how and when these individual scoring 
functions should be combined remain a challenging problem not only for researchers but also 
perhaps more importantly, for practitioners in virtual screening.  
Here we address these issues for improving the enrichment in VS using the concept of data fusion 
and exploring diversity on scoring characteristics between individual scoring functions.  In 
particular, we use the rank/score function as a scoring characteristic and the variance of the 
rank/score graph between individual scoring functions as a diversity measurement. Data fusion 
approaches have been proposed, developed, and implemented in information retrieval 102; 103; 106; 107, 
molecular similarity 105, and microarray gene expression analysis 110, where the following two 
general criteria have been identified for potential improvement: (a) each of the individual scoring 
functions has to have a relatively good performance, and; (b) the scoring characteristics of each of 
the scoring functions have to be different. In viewing CS as a problem of data fusion, we investigate 
these two criteria, using the performance ratio Pl /Ph (Pl and Ph are the high and low performance of a 
pairing combination, respectively) as the relative performance measurement and the rank/score graph 
as the scoring characteristic, together with rank-based and score-based consensus scoring (RCS and 
SCS) procedure for improving the enrichment in VS by combining five scoring functions on the four 
target proteins TK, DHFR, ER-antagonist receptor (ER), and ER-agonist receptor (ERA) using two 
docking algorithms GEMDOCK 2; 66 and GOLD 5. A novel consensus scoring system in VS was then 
developed and evaluated.  
 
3.2.2 Materials and Methods 

Preparations of ligand databases and target proteins 

We used the ligand data set from the comparative studies of Bissantz et al. 17 to evaluate the 
screening accuracy of different CS on TK, DHFR, ER, and ERA. The receptors for these screens 
cover different receptor types and therefore provide a reasonable test of CS. For each target protein, 
the ligand database included 10 known active compounds and 990 random compounds. In total, the 
database used for screening ligands against the target proteins contained 1000 molecules, that is, 990 
random compounds were the same for each of these screens. For screening TK and ER, the sets of 10 
known active compounds were identical to that reported earlier.17 For screening ER agonists, a set of 
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10 known agonists was identical to that reported earlier 72 and the 10 active compounds of DHFR 
were selected from the Protein Data Bank (PDB). 111  

Four complexes of the target proteins were selected for virtual screening from the PDB: TK 
complex (PDB code: 1kim), DHFR (PDB code: 1hfr), ER-antagonist complex (PDB code: 3ert), and 
ER-agonist complex (PDB code: 1gwr). These complexes were reasonable choices because their 
ligand-binding cavities are wide enough to accommodate a broad variety of ligands and therefore did 
not require binding site modifications. The active compound set of each target protein, target proteins, 
and 990 random compounds are available on the Web at 
http://gemdock.life.nctu.edu.tw/dock/download.php.  

Docking methods and scoring functions 

GEMDOCK docking 

Our previous work 2; 66 showed that the docking accuracy of GEMDOCK was better than 
comparative approaches, such as GOLD and FlexX, on a diverse data set of 100 protein-ligand 
complexes proposed by Jones et al. 5. The screening accuracy of GEMDOCK were also better than 
GOLD, FlexX, and DOCK on screening the ligand database from Bissantz et al. (2000) for TK 28 
and ER- antagonist receptor 112. In this study, GEMDOCK parameters in the flexible docking 
included the initial step sizes (σ=0.8 and ψ=0.2), family competition length (L = 2), population size 
(N = 200), and recombination probability (pc = 0.3). For each ligand screened, GEMDOCK 
optimization stopped either when the convergence was below a certain threshold value or the 
iterations exceeded the maximal preset value of 60. Therefore, GEMDOCK generated 800 solutions 
in one generation and terminated after it exhausted 48,000 solutions for each docked ligand.  

GEMDOCK used a simple empirical-based scoring function (denoted GEMDOCK-Binding) 
and a pharmacophore-based scoring function (denoted GEMDOCK-Pharma) that used a simple 
empirical binding score and a pharmacophore-based score. The empirical-binding energy (Ebind) is 
given as 

intrainterBindingGEMDOCK EEE +=−  (3.2.1) 

where Einter and Eintra are the intermolecular and intramolecular energies, respectively.2 The energy 
function, GEMDOCK-Pharma, can be dissected into the following terms 28: 

ligprepharmabindingGEMDOCKPharmaGEMDOCK EEEE ++= −−        (3.2.2) 

where EGEMDOCK-Bind is the empirical binding energy defined in Equation (1), Epharma is the energy of 
binding site pharmacophores (hot spots), and Eligpre is a penalty value if a ligand does not satisfy the 
ligand preferences 28; 112. Epharma and Eligpre are especially useful in selecting active compounds from 
hundreds of thousands of non-active compounds by excluding ligands that violate the characteristics 
of known active ligands, thereby improving the number of true positives. 
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GOLD 2.1 Docking.  
GOLD 5 is a widely used and reliable docking tool. Standard parameters of the GOLD program 

were used in this study. For each of the 10 genetic algorithm (GA) runs, a maximum number of 
10,000 operations were performed on a population of 50 individuals. Operator weights for crossover, 
mutation, and migration were set to 95%, 95%, and 10%, respectively. The maximum distance 
between hydrogen donors and fitting points was set to 2 Å, and nonbonded van der Waals (vdW) 
energy was cut off at 4.0 Å. To further speed up the calculation, the GA docking was stopped when 
the top three solutions were within 1.5 Å rmsd of each other. These parameters are chosen according 
to the standard default settings recommended by the authors for virtual screening.  

GOLD offered two scoring functions that were the GoldScore 5 and the ChemScore 113. The 
GoldScore function was made up of three components: protein-ligand hydrogen bond energy 
(EH_Bond_Energy), protein-ligand van der Waals energy (EComplex_Energy), and ligand internal van der 
Waals energy and ligand torsional strain energy (EInternal_Energy). Here, the GoldScore function was 
divided into two kinds of functions (GOLD-GoldScore and GOLD-Goldinter), which were given as 
5: 

ynergInternal_EergyComplex_EnrgyH_Bond_EneGoldScoreGOLD EEEE −+−=− )(  (3.2.3) 

and  

)( ergyComplex_EnrgyH_Bond_EneGoldinterGOLD EEE +−=−  (3.2.4) 

The ChemScore function was derived empirically from a set of 82 protein-ligand complexes by 
regression against measured affinity data. The ChemScore function was defined as 113 

G　 GOLD-ChemScore  G　　 0  G　 hbond  G　 metal  G　 lipo  G　 rot (3.2.5) 
Each component of this equation is the product of a term dependent on the magnitude of a 

particular physical contribution to free energy and a scale factor determined by regression. G　 hbond 
was the hydrogen bond contribution; G　 metal and G　 lipo were metal-ligand and lipophilic. Binding 
contributions, respectively; and G　 rot was a term, which penalizes flexibility. 

Here, two docking methods (GEMDOCK and GOLD) and five scoring functions 
(GEMDOCK-Binding, GEMDOCK-Pharma, GOLD-GoldScore, GOLD-Goldinter, and 
GOLD-ChemScore) were used to study the screening performance of data fusion. In order to analyze 
the performance uniformly, the fitness scores of these five scoring functions were taken as the 
negative of the sum of the component energy terms, so that larger fitness scores were better. 

 

Performance evaluation 

It is important to have objective criteria for evaluating the overall quality (and performance) of 
a scoring method. Some common factors used for this purpose are false positive (FP) rate, yield (the 
percentage of active ligands in the hit list), enrichment, and goodness-of-hit (GH score). Suppose 
that Ah is the number of active ligands among the Th highest ranking compounds (i.e., the hit list), A 
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is the total number of active ligands in the database, and T is the total number of compounds in the 
database. Then Ah/Th (%) is the hit rate and (Th - Ah)/(T-A) (%) is the FP rate respectively. The 
enrichment is defined as (Ah/Th)/(A/T). The GH score is defined as 78 
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The GH score contains a coefficient to penalize excessive hit list size and, when evaluating hit 
lists, is calibrated by weighting the score with respect to the yield and coverage. The GH score 
ranges from 0.0 to 1.0, where 1.0 represents a perfect hit list (i.e., containing all of, and only, the 
active ligands). Here, we took the averages of FP rates, enrichments, and GH scores. For example, 
the averages of the FP rate and enrichment are defined as  
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respectively, where i
hT  is the number of compounds in a hit list containing i active compounds. 

Methods of Data Fusion.  
Our approach to combination methods and CS in VS is analogous to those used in IR 102; 106; 107 

and in microarray gene expression analysis 110. Here we explore the fundamental question, i.e., when 
and how two scoring functions should be combined in order to achieve a performance higher than 
both individual scoring functions. Since the number of compounds is in the thousands or even tens of 
thousands, listing all mathematically possible scoring functions would be a computationally 
intractable problem. We therefore instead chose to take a combinatorial approach to the problem that 
focuses on taking a group of m scoring functions and evaluates the performance of all possible 

combinations, which are ( ) 12
1

−=∑
=

m
m

k

k
mC (when m is 5, this number is 31). In addition, when we 

track the performance of all combinations, we investigate specifically when and why any 
combinations outperform all individual scoring functions in terms of the performance and the scoring 
characteristics of each of the individual scoring functions. 

A scoring function SA(x) of the scoring method A is a function which assigns a real number to 
each compound x in the set of all n compounds D={c1, c2, …, cn}. Hence, the scoring function SA(x) 
is a function from ℜ→D  (the set of real numbers). When treating SA(x) as an array of real 
numbers, sorting the array and assigning a rank to each of their compounds would transfer the 
scoring function SA(x) to a ranking function RA(x) from D to N where N={1, 2, ..., n}. In the 
following, we elaborate on the issues of performance evaluation and methods of combinations.  
In order to fairly compare and correctly combine multiple scoring functions, one has to normalize the 
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scores obtained by different methods. In our approach, we normalize all scoring functions SA(x): 
ℜ→D  to the range of x which is less than or equal to 1 but greater than or equal to zero, i.e., S’A(x): 

]1 ,0[→D , as follows: 

Dx
SS
SxSxS
minmax

minA
A ∈

−
−

=  ,)()('        (3.2.8) 

where Smax is the maximum value and Smin is the minimum value of SA(xj), nj ≤≤1 , respectively; n is 
the number of compounds in the list. Here, Smax is the first rank and Smin the last rank among n 
compounds.  

Methods of Combination  

 Given a list of m scoring functions, there are several different methods of combinations such as: 
rank by voting, rank by rank, rank by score, and conditional probability (Bayes’ rule). Rank by 
voting has been reported to have a poor performance 109. The conditional probability (CP) fusion 
algorithm approaches the consensus scoring problem by weighting each compound in a virtual 
screening experiment run with an activity-based conditional probability 114. Although the 
combination method CP has been shown experimentally to perform as well or better than the 
sum-rank (i.e. rank by rank) method, the calculation of the combination scoring CP(x) for each 
compound x assumes that the individual scoring probabilities represent independent events. 
     In this paper, we consider two combinations using rank-based consensus scoring (RCS) and 
score-based consensus scoring (SCS). Since we distinguish the two functions (ranking function RA(x) 
and normalized scoring function S’A(x)) for a scoring method A, we calculate the scoring function for 
RCS and SCS of the m scoring methods Ak, k = 1, 2, …, m, as follows: 
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When we sort SR(x) and SS(x) into ascending and descending order, respectively, the ranking 
functions RR(x) and RS(x) can be obtained for RCS and SCS, respectively. We note that, in the two 
functions, we simply assign equal weight to each scoring method. Combination methods which give 
different weights to each individual scoring method have been reported 115. The weighting method of 
scoring functions is a part of our future works. 

Rank/Score Graph 

 In the process of searching for prediction variables or criteria for consensus scoring and method 
combination, we have defined various performance factors to evaluate a scoring method A and 
various methods of combinations. In this paper, we explore the scoring characteristics of scoring 
method A by calculating the rank/score function fA as follows: 

))(('))('()( 11 jRSjRSjf AAAAA
−− == o    (3.2.11) 
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where j is the rank of the compound x which has the score fA (j), i.e., j is in N = {1, 2, 3, …, n}. We 
note that N is not the set of compounds (which is D), but the set of all positive integers less than or 
equal to n. In fact, N is used as the index set for the ranking function value. The rank/score function 
fA so defined signifies the scoring behavior of the scoring method A and is independent of the 
compounds. The graph of the rank/score function y = fA (x) with respect to the scoring method A is 
the rank/score graph of A. The x-axis and y-axis of a rank/score graph are the rank and the 
normalized score, respectively. The variation (R/Svar) of a rank/score graph and the relative 
performance measurement (Pl /Ph) of combining two scoring functions A and B are defined as  
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and 

))(),(max(/))(),(min(/ BPAPBPAPPP hl =    (3.2.13) 
where n is the number of compounds in the hit list and j is the rank of the compound with score fh(j), 
where h = A or B; P(A) and P(B) are the performances (measured as GH score and false positive rate) 
of methods A and B, respectively.  

In IR, consensus scoring has been demonstrated to improve the performance when the 
combinations of the scoring functions involved have high performance (e.g., low FP rates or high 
GH scores) and their variation of the rank/score graph was large. Here, a new CS index (called 
CSindex), which is an indicative criterion for combining two scoring functions A and B from m ( 2≥m ) 
scoring methods, was developed to guide the combinations in VS and defined as  
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g(.) is a normalization function (i.e., ]1 ,0[:)( →vvg ) and CSindex ranges between 0 and 2; Pm is the 

mean performance of m primary scoring functions (i.e., ∑
=

=
m

k
km mAPP

1

/)( ).  

Algorithm 
 We provided a consensus scoring (CS) procedure for both RCS and SCS to improve the 
screening accuracy in VS.  The flowchart of the algorithm is shown in Figure 3.2.1 and a more 
detailed description of the algorithm is shown as the following. 
 
The RCS/SCS Algorithm 

1) Given: A compound set D with n compounds in a compound database (or a hit list), ci∈D, i 

= 1, 2, …, n, t receptor targets, performance evaluator P (e.g., the GH score or FP rate), and 

m scoring methods Ak with scoring functions SAkx), k = 1, 2, …, m. 

2) Output: The best consensus scoring and combination methods for the t receptor targets and 
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the compound set D. 

3) Step 1: If we knew in advance which scoring function works better for a given target or 

targets, output this scoring function directly. Otherwise, execute following steps to select 

the best CS. 

4) Step 2: For each receptor target, calculate the scoring functions SAk(x) using the m scoring 

methods Ak, k = 1, 2, …, m. Obtain each ranking function RAk(x) from each SAk(x) by 

ranking the scores in SAk(x) in descending order. (Note: There are the m single scoring 

methods). 

5) Step 3: Calculate the other 2m – m – 1 combinations and consensus scoring using Equations 

9 and 10. (Note: These are the ( )m
k  k-combinations, k = 2, 3, …, m, and the scoring 

functions are all normalized). If the 2m–1 scoring methods can be evaluated (including both 

rank and score combinations), then go to Step 4. Otherwise, go to Step5. 

6) Step 4: [The performance of the individual scoring function can be evaluated (i.e., the 

active and inactive compounds are known)] 

7) Step 4.1: Evaluate the performance of all of single and combination scoring functions using 

evaluator P (e.g., GH score or FP rate). Note that these are the ranking functions RAk(x) and 

scoring function SAk(x), k = 1, 2, …, 2m–1. Graph the performance curve for all the single 

and combination functions using rank and score combinations. Order the performance 

within each of the m group with ( )m
k  combinations where k = 1, 2, …, m. 

8) Step 4.2: For each single scoring method A, obtain rank/score graph using Equation 11. 

9) Step 4.3: Search in the space of 2m – m – 1 consensus scorings and find any combination 

method )( g
kA which is the combination of the g single scoring methods },...,,{

21 gkkk AAA  

where 2 ≤ g ≤ m and kj∈[1, m] so that (a) P(
jkA ) have high performance (e.g., high GH 

scores or lower FP rates), (b) 
jkAf and 

ikAf  are dissimilar and complementary for any i, j 

and i ≠ j in [1, g] (i.e., ( ),(/ var ikjk AA ffSR is large) , and (c) P( )( g
kA ) is better than or as good 

as P(Ak), where Ak are the single scoring functions and k = 1, 2, …, m. The consensus 

scorings are often to improve the screening accuracy when the value CSindex (Equation 13) 

is more than 1.2.  

10) Step 4.4: The combination method )( g
kA  is the desired consensus scoring method that we 

seek for the receptor target and the compound set D. Go to Step 6. 
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11) Step 5: [The performance of the individual scoring function is unknown (i.e., the active and 
inactive compounds are unknown)] 

12) Step 5.1: For each single scoring method A, obtain the rank/score graph using Equation 11. 

13) Step 5.2: Search in the space of the m single scoring functions. Find any group of g single 

scoring functions A(g) = },...,,{
21 gkkk AAA , where 2 ≤ g ≤ m and kj∈[1, m] so that 

jkAf and 

ikAf are dissimilar and complementary for any i, j and i ≠ j in [1, g] (i.e., 

),(/ var ikjk AA ffSR is large). 

14) Step 5.3: The combination method )( g
kA of g single scoring methods is the desired 

combination method for the receptor target and the compound set D. 

15) Step 6: Output the )( g
kA  which is the desired combination methods. 
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Input

Compound set D = {Ci, where i= 1,2,? n}
scoring methods Ak, k = 1,2, ? m,

t Receptor targets, and
performance evaluator P

For given targets
and P, do we know
which Ak is best?

Calculate SAk (x) and RAk (x)
where k = 1,2,? m

Calculate other 2m -m -1
combinations and CS functions

Can the 2m -1 scoring 
methods be evaluated?

Compute rank/score graph and 
for each of 2m-1 methods

Find subset of g methods 
{Ak1, Ak2, ?  Akg} s.t. 

R/Svar (fAki, fAkj) is maximized, i? j

Let Ak
(g)  = Comb (Ak1, Ak2, ?  Akg)

Output  Ak
(g)

Output its 
scoring function

Ak

Evaluate all 2m -1 scoring 
functions. Graph the curves

Compute rank/score graph for 
each of primary methods

Yes

Yes

No

No

Maximize P (Ak
(g)), 1≤ g ≤ m,

where Ak
(g) = comb (Ak1,Ak2, ?  Akg)

 

Figure 3.2.1. The Flowchart of RCS/SCS Algorithm 
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3.2.3 Results and Discussion 
Table 3.2.1 shows the overall accuracy of using two docking programs (GEMDOCK and GOLD) 
and five scoring functions to assess the accuracy of VS methods against four protein targets (TK, 
DHFR, ER, and ERA). These scoring methods, defined in Equations 3.2.1 to 3.2.5, were termed as 
GEMDOCK-Binding (Method A), GEMDOCK-Pharma (Method B), GOLD-GoldScore (Method C), 
GOLD-Goldinter (Method D), and GOLD-ChemScore (Method E). For each method, the first term 
denotes the docking tool and the second term represents the scoring function used. For example, 
Method A uses GEMDOCK as the docking tool and Equation 3.2.1 as the scoring function; Method 
E uses GOLD as the docking tool and Equation 3.2.5 as the scoring function. The average FP rate 
(Equation 3.2.6) and average GH score were used to evaluate the screening accuracy. Among these 
five methods, the accuracy of GEMDOCK-Pharma was the best for TK and both ER receptors, and 
GOLD-Goldinter outperformed other methods on DHFR.   
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Table 3.2.1. Screening accuracy of five methods on screening TK, DHFR, ER-antagonist receptor, 
and ER-agonist receptor. The bold case is the best score. GEMDOCK-Pharma with the 
pharmacophore-based scoring function and GOLD with the Goldinter score are superior to others 

Target  
protein a Measure factor 

GEMDOCK
-Binding 

(Method A b) 

GEMDOCK
-Pharma 

(Method B c)

GOLD 
-GoldScore

(Method C d)

GOLD 
-Goldinter 

(Method D e) 

GOLD 
-ChemScore
(Method E f)

Average Enrichment 12.29 42.27  10.34 7.09 1.32 

Average FP rate (%) 4.11 0.82 5.04 7.61 38.48 TK 

Average GH Score 0.22 0.45 0.20 0.17 0.08 

Average Enrichment 29.57 70.21 29.40 90.64 1.17 

Average FP rate (%) 3.24 0.32 15.49 1.48 50.04 DHFR 

Average GH Score 0.35 0.66 0.32 0.81 0.05 

Average Enrichment 34.88 92.19 34.07 75.14 67.14 

Average FP rate (%) 1.32 0.13 20.44 0.88 1.17 
ER-antagonist 

receptor 
(ER) Average GH Score 0.39 0.83 0.34 0.70 0.64 

Average Enrichment 6.94 45.66 3.50 15.21 25.09 

Average FP rate (%) 7.83 0.75 21.67 6.40 5.24 
ER-agonist 

receptor 
(ERA) Average GH Score 0.17 0.48 0.12 0.23 0.31 

a TK: HIV-1 thymidine kinase (PDB code: 1kim); DHFR: human dihydrofolate reductase (PDB 
code:1hfr); ER-antagonist receptor: estrogen receptor of antagonists (PDB code: 3ert); and 
ER-agonist receptor: estrogen receptor of agonists (PDB code: 1gwr). 
b Method A uses GEMDOCK as the docking tool and Equation (1) as the scoring function.  
c Method B uses GEMDOCK as the docking tool and Equation (2) as the scoring function. 
d Method C uses GOLD as the docking tool and Equation (3) as the scoring function.  
e Method D uses GOLD as the docking tool and Equation (4) as the scoring function.  
f Method E uses GOLD as the docking tool and Equation (5) as the scoring function.  

 

     Table 3.2.2 shows FP rates of GEMDOCK and four comparative approaches: Surflex 18, 
DOCK 55, FlexX 3, and GOLD 5) for screening the ER and TK. All of these methods were tested 
using the same reference protein and screening database with true positive rates ranging from 80% to 
100%. GEMDOCK-Pharma (GEMDOCK with pharmacological preferences) was superior to the 
comparative approaches and GOLD-Goldscore (GOLD used Equation 3 as the scoring function) was 
better than FlexX and DOCK, two widely used docking tools. For example, the FP rates were 2.3% 
(GEMDOCK-Binding), 0.4% (GEMDOCK-Pharma), 1.6% (Surflex), 17.4% (DOCK), 70.9% 
(FlexX), and 8.3% (GOLD-GlodScore) when the true positive rate was 90% for ER antagonists. 
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Table 3.2.2. Comparing GEMDOCK with other methods on screening the ER antagonists and TK 
inhibitors by false positive rates (%) on the same data set proposed by Bissantz et al. 17 The bold case 
is the best score 

Target 
protein 

True 
positive 

(%) 

GEMDOCK
-Binding a 

GEMDOC
K 

-Pharma b 

 Surflex 
c 

DOCK 
c 

FlexX 
c GOLD c 

ER- 
antagonist

s 
80 1.5 (15/990) d 0.0 (0/990) 1.3 13.3 57.8 5.3 

 90 2.3 (23/990) 0.4 (4/990) 1.6 17.4 70.9 8.3 
 100 5.2 (51/990) 0.9 (9/990) 2.9 18.9 -e 23.4 

Thymidine 
kinase 80 4.7 (47/990) 0.6 (6/990) 0.9 23.4 8.8 8.3 

 90 8.9 (88/990) 1.3 (13/990) 2.8 25.5 13.3 9.1 
 100 9.7 (96/990) 2.9 (29/990) 3.2 27.0 19.4 9.3 

a,b GEMDOCK uses Equations 1 and 2 as scoring functions, respectively. 
c Directly summarized from 18.  
d The false positive rate from 990 random ligands. 

e FlexX could not calculate the docked solution for EST09. 
   Our consensus scoring methods consist of rank combinations and score combinations on five 
methods, including Method A, B, C, D, and E (Table 3.2.1). Result statistics of VS in TK, DHFR, 
and ER, and ERA are summarized in Figures 3.2.1 and 3.2.2 and Tables 3.2.3 and 3.2.4. Figures 
3.2.1 and 3.2.2 plot the average FP rates and average GH scores, respectively, of all 31 possible 
combinations including the five individual scoring functions. The y-axis values for each combination 
(including the single case) are sorted in ascending order in each group of k-combinations, k = 1, 2, 3, 
4, and 5, respectively. A k-combination method means that it combines k methods. For example, the 

number of 2-combination methods is 10 (i.e., 2
5C =10) in this paper. The Method BD is the 

combination of Methods B and D; and the Method CDE is the combination of Methods C, D, and E. 
Tables 3.2.3 (RCS) and 3.2.4 (SCS) give average FP rates and average GH scores of five kinds of 
k-combination methods for screening four targets. According to these experimental results, the 
behavior of RCS and SCS is similar. Therefore, we focus on the analysis of RCS in the following.  
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Figure 3.2.2. Average false positive rates of 31 various rank combinations and scoring combinations 
of five methods for four virtual screening targets: (a) TK, (b) DHFR, (c) ER-antagonist receptor, and 
(d) ER-agonist receptor. These five methods (i.e., A, B, C, D, and E) are defined in Table 3.2.1.  
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Figure 3.2.3. Average GH scores of 31 various rank combinations and scoring combinations of five 
methods for four virtual screening targets: (a) TK, (b) DHFR, (c) ER-antagonist receptor, and (d) 
ER-agonist receptor. These five methods (i.e., A, B, C, D, and E) are defined in Table 3.2.1. 
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Table 3.2.3. Screening accuracies of different rank combinations of five methods on screening four 
targets: TK, DHFR, ER, and ERA. The methods and targets are defined in Table 3.2.1 and the bold 
case is the best score 

Measurement 
factors Single (5) a 2-Com (10) b 3-Com (10) c 4-Com (5) d 5-Com (1) e 

Average false 
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

Average 11.21 14.12 4.79 8.38 7.77 9.91 3.31 4.24 5.40 6.16 2.04 2.46 4.04 4.11 1.39 1.52 -f -f -f -f

SD 15.44 20.98 8.76 7.89 7.34 9.80 4.09 3.76 3.63 4.73 1.72 2.07 1.90 2.44 0.74 0.61 -f -f -f -f

Maximum value 38.48 50.04 20.44 21.67 17.35 27.56 9.22 11.86 9.92 14.64 4.16 7.55 5.88 6.69 1.86 1.98 3.10 3.00 1.04 1.08

Minimum value 0.82 0.32 0.13 0.75 0.58 0.14 0.04 0.99 0.53 0.07 0.04 0.72 0.83 1.07 0.08 0.55 3.10 3.00 1.04 1.08

Average  
GH score TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

Average 0.23 0.44 0.58 0.26 0.29 0.47 0.68 0.41 0.29 0.47 0.69 0.46 0.28 0.48 0.68 0.48 -f -f -f -f

SD 0.14 0.30 0.21 0.14 0.19 0.28 0.15 0.21 0.18 0.23 0.13 0.18 0.14 0.17 0.09 0.13 -f -f -f -f

Maximum value 0.45 0.81 0.83 0.48 0.58 0.84 0.86 0.74 0.56 0.85 0.86 0.72 0.53 0.72 0.84 0.71 0.28 0.52 0.67 0.56

Minimum value 0.08 0.05 0.34 0.12 0.13 0.10 0.48 0.15 0.16 0.16 0.55 0.19 0.21 0.27 0.63 0.39 0.28 0.52 0.67 0.56

 
a Five individual methods 
b Combination of two selected methods, ten compositions. 
c Combination of three selected methods, ten compositions. 
d Combination of four selected methods, five compositions. 
e Combination of five selected methods and only one composition. 
f Average and standard deviation could not be calculated when one value exists. 
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Table 3.2.4. Screening accuracies of different score combinations of five methods on screening four 
targets: TK, DHFR, ER, and ERA. The methods and targets are defined in Table 3.2.1 and the bold 
case is the best score 

Measurement 

factors 
Single (5)a 2-Com (10)b 3-Com (10)c 4-Com (5)d 5-Com (1)e 

Average false 
positive rate 

(%) 
TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

Average 11.21 14.12 4.79 8.38 7.46 7.67 2.57 3.13 4.07 3.02 1.12 1.28 2.01 1.15 0.44 0.50 -f -f -f -f

SD 15.44 20.98 8.76 7.89 9.51 12.25 4.80 3.26 5.40 5.47 2.00 1.57 1.92 1.45 0.41 0.27 -f -f -f -f

Maximum 
value 38.48 50.04 20.44 21.67 26.16 34.31 13.74 9.91 18.18 18.00 6.54 5.42 5.40 2.91 1.08 0.92 1.14 0.09 0.22 0.34

Minimum 
value 0.82 0.32 0.13 0.75 0.73 0.10 0.07 0.33 0.64 0.10 0.07 0.23 0.69 0.05 0.10 0.19 1.14 0.09 0.22 0.34

Average  
GH score TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

Average 0.23 0.44 0.58 0.26 0.28 0.53 0.69 0.41 0.36 0.64 0.76 0.52 0.41 0.75 0.79 0.60 -f -f -f -f

SD 0.14 0.30 0.21 0.14 0.15 0.27 0.16 0.17 0.14 0.22 0.09 0.13 0.11 0.13 0.03 0.07 -f -f -f -f

Maximum 
value 0.45 0.81 0.83 0.48 0.51 0.81 0.85 0.62 0.51 0.81 0.86 0.66 0.52 0.84 0.84 0.72 0.46 0.82 0.78 0.61

Minimum 
value 0.08 0.05 0.34 0.12 0.10 0.08 0.50 0.17 0.12 0.16 0.58 0.20 0.23 0.52 0.75 0.52 0.46 0.82 0.78 0.61

 
a Five individual methods 
b Combination of two selected methods, ten compositions. 
c Combination of three selected methods, ten compositions. 
d Combination of four selected methods, five compositions. 
e Combination of five selected methods and only one composition. 
f Average and standard deviation could not be calculated when one value exists. 
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   As shown in Figure 3.2.2 and Figure 3.2.3 and Table 3.2.3, the average accuracy improved with 
the increase of fused methods. Five individual methods on screening TK, found that the best GH 
score and best false positive rate are 0.23 and 11.21%, respectively (Table 3.2.3). When method 
fusions with rank combinations were carried out by combining a pair of methods one by one, the 
accuracy improved from 0.23 to 0.29 in average of overall GH score and the average of false positive 
rates dropped from 11.21% to 7.77% (Table 3.2.3). Fusing three and four selected methods 
maintained mean GH scores at 0.29 and 0.28. The overall false positive rates fell in average value of 
5.40% and 4.04%, respectively. 

The effectiveness of fused methods may be influenced by the performance of primary methods. 
For example, the best GH scores of primary methods are 0.45, 0.81, 0.83, and 0.48, respectively, for 
TK, DHFR, ER, and ERA (Table 3.2.1), and the improvements of fused methods for TK and ERA 
are significantly better than the ones of DHFR and ER. With the increase of fused methods, the 
average accuracy as measured by means GH scores and false positive rates. Other entries (i.e., 
DHFR, ER, and ERA) in Table 3.2.3 show similar trends of these promotions in average GH scores 
and false positive rates. 

Although Table 3.2.3 shows the average accuracy level improving with number of fused 
methods, the unique contribution of data fusion is most clearly observed when one considers 
individually the results obtained with each of the possible combinations. Specifically, comparing 
within Figure 3.2.2 and Table 3.2.4, the maximum accuracy always occurs in the combination of a 
pair of methods. In all of the screening sets in this paper, the best composition consistently appeared 
with the combination of Methods B and D.  
   For ER antagonists, the GH scores of Method A and Method C were 0.39 and 0.34 and the other 
three methods (Methods B, D, and E) had good GH scores with 0.83, 0.70, and 0.64, respectively 
(Table 3.2.1). As shown in Figure 3.2.2(c) and Figure 3.2.3 (c), combinations with Method A or 
Method C may reduce the performance of an individual method. For example, Methods CD and BC 
performed worse than Methods B and D. One possible reason is that these less accurate methods are 
predominantly adding noise that overwhelms the correction ability of fusion. On the other hand, 
combinations with Method B or Method D performed comparatively better than the other Method 
combinations. The Method BD had the highest value (0.86) in the GH score and lowest value in the 
false positive rate (0.04%). Other targets (i.e., TK, DHFR, and ERA) in Table 3.2.3 and Figure 3.2.2 
show similar results. This phenomenon indicated data fusion could improve the quality of screening 
if each of the combination methods has relatively high performance.  
  Figure 3.2.4 shows the rank/score graphs of five individual scoring methods and Table 3.2.5 shows 
the variances of rank/score graphs of 10 compositions combining two methods for four screening 
targets. The scoring value showing in Figure 3.2.4 was normalized through Equation 3.2.8. The 
variation of rank/score graph of the Method AB, on average, is the smallest (i.e., the rank score 
graphs are the most similar) because Methods A and B used the same docking tool and the similar 
scoring function. The Method CD has the similar phenomenon. Table 3.2.1 shows that Method B 
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consistently outperformed Method A and Figure 3.2.3 shows that the fusion methods combining with 
Method B are consistently better than the methods combining with Method A in four test cases. For 
DHFR, ER, and ERA, Method D is better than Method C and the fusion methods with Method D 
consistently outperformed than the fusion methods with Method C. According to these observations, 
we could divide these five methods into three groups. The first group consisted of Methods A and B, 
the second group included Methods C and D, and the final group is GOLD-ChemScore (Method E).  
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Table 3.2.5. The relationships between the GH-score improvement with the performance ratio (Pl/ 
Ph), CSindex and the variance (R/Svar) of rank/score graph of 10 pairing combinations of five 
methods on four virtual screening targets 

Target protein*  AB a AC AD AE BC BD BE CD CE DE 

TK g(Pl/ Ph) b 0.41 1.00 0.82 0.26 0.36 0.27 0.00 0.91 0.30 0.39

 g(R/Svar) c 0.34 0.64 0.62 0.39 1.00 0.97 0.74 0.00 0.19 0.17

 CSindex
 d 1.34 1.64 1.37 0.39 1.92 1.74 1.03 0.80 0.19 0.19

 RCS e 0.11 0.06 0.01 -0.09 0.09 0.13 -0.32 0.00 -0.07 -0.05

 SCS f 0.06 0.02 0.00 -0.02 0.01 0.01 -0.11 -0.01 -0.09 -0.07

DHFR g(Pl/ Ph) b 0.54 1.00 0.43 0.10 0.49 0.88 0.02 0.39 0.12 0.00

 g(R/Svar) c 0.04 0.91 0.88 0.32 1.00 0.97 0.41 0.00 0.45 0.46

 CSindex 0.61 1.56 1.46 0.32 1.52 1.97 0.53 0.54 0.45 0.65

 RCS 0.02 0.23 -0.07 -0.19 0.01 0.03 -0.36 -0.27 -0.22 -0.68

 SCS 0.05 0.28 -0.09 -0.07 0.02 0.00 -0.02 -0.17 -0.23 -0.70

ER antagonists 

(ER) g(Pl/ Ph) b 0.12 0.92 0.30 0.41 0.00 0.86 0.71 0.16 0.25 1.00

 g(R/Svar) c 0.00 0.82 0.46 0.29 1.00 0.68 0.47 0.21 0.28 0.03

 CSindex 0.15 1.11 0.62 0.47 1.01 1.68 1.30 0.21 0.30 0.96

 RCS -0.03 0.13 0.06 0.14 -0.29 0.03 -0.01 -0.20 -0.15 0.08

 SCS -0.01 0.11 -0.20 0.15 -0.03 0.02 0.01 -0.18 -0.10 0.11

ER agonists 

(ERA) g(Pl/ Ph) b 0.21 0.91 0.96 0.59 0.00 0.47 0.80 0.53 0.27 1.00

 g(R/Svar) c 0.40 0.49 0.57 0.10 0.88 1.00 0.39 0.00 0.33 0.45

 CSindex 0.70 0.77 1.07 0.43 0.93 1.61 1.39 0.08 0.33 1.22

 RCS -0.10 0.00 0.03 0.20 -0.14 0.26 0.24 -0.08 -0.05 0.22

 SCS -0.06 0.02 -0.04 0.20 0.07 0.09 0.14 -0.07 0.01 0.22
* Four target proteins (TK, DHFR, ER, and ERA) are defined in Table 3.2.1. 
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a There are 10 compositions of combining pair methods from 5 primary scoring methods (A, B, C, D, 
and E) defined in Table 3.2.1. 
b the normalization performance ratio (Equation 13) of a pair-combination method. 
c the normalization variance (Equation 12) of a rank/score graph of a pair-combination method. 
d a performance indicator (Equation 14) of a pair-combination method.  
e,f the GH-score improvements of rank-based consensus scoring and score-based consensus scoring, 
respectively. 
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                          (c)                                              (d)     

Figure 3.2.3. Rank/score curves of five methods (defined in Table 3.2.1) for four virtual screening 
targets: (a) TK, (b) DHFR, (c) ER-antagonist receptor, and (d) ER-agonist receptor. 

 

   Analyzing the relation between Figure 3.2.2 and Figure 3.2.3 revealed a possible mode of the 
fusion performance for VS according to the observation of data fusion in IR that the fusion 
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performance corresponds to the comparability of individual performance and the graphical variation 
of individual rank/score graph. The most variation of rank/score graphs was the Method BD among 
10 pair combinations (Figure 3.2.4 and Table 3.2.5) and the Method BD also brought the best GH 
score for all test cases (Figure 3.2.3). In Figure 3.2.3b (DHFR), Methods B and D had the highest 
GH score (0.66 and 0.81) among primary methods (Table 3.2.1) and the combination of these two 
methods had the best GH score (0.84) and the lowest false positive rate (0.14%) among the 
combinations with two methods. A similar phenomenon occurred in the ER antagonist study (Figure 
3.2.3c), On the other hand, Methods A and B had the highest GH score (0.22 and 0.45) among 
primary methods in TK (Figure 3.2.3a) but the best combination was the Method BD among 10 pair 
combinations. Figure 3.2.4 shows that the variation between Methods B and D is larger than the 
rank/score variation of Methods A and B.  
  These experimental results using the BD model implied that the variation of rank/score graph 
might be useful to improve the screening accuracy in both VS and IR. This concept is supported by 
observations of similar phenomenon occurring in ER agonists (Figure 3.2.3d). Specifically, Methods 
B and E that had the highest GH scores but their rank/score variation is smaller than the variance of 
Methods B and D. The performance of Method BD was better than Method BE for ER agonists.  
     Figure 3.2.5 and Figure 3.2.6 and Table 3.2.5 are the results of the Algorithm (Figure 3.2.1) 
when g = 2 where pairing combinations were considered and R/Svar (fA, fB) was used to calculate the 
bi-diversity of methods A and B. Figure 3.2.5a shows the relationship between the GH-score 
improvement and the variance (R/Svar, Equation 12) of rank/score graphs of 10 pairing combinations 
for each target protein. Figure 3.2.5b indicates the relationship between the GH-score improvement 
and the relative performance measurement (Pl /Ph, Equation 3.2.13).  
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                       (a)                                     (b)      
Figure 3.2.5. The relationships between the GH-score improvement with (a) normalized value of 
variance of rank/score graph (Equation 3.2.12) and (b) normalized value of Pl/ Ph of 40 pairing 
combinations of five methods for four virtual screening targets (defined in Table 3.2.1). 

Figure 3.2.6 and Table 3.2.5 show that a pairing combination is able to improve the performance 
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if the normalized R/Svar and Pl /Ph of a combining method are considered simultaneously and their 
values are more than 0.5. These results implied that consensus scoring yielded improved screening 
accuracy if the multiple scoring functions involved have high performance and their rank/score 
variation was large. A similar phenomenon was also found in data fusion in IR 106; 107. The CSindex 
(Equation 3.2.14) is used to integrate these two criteria (R/Svar and Pl /Ph). Figure 3.2.7 shows the 
relationship between GH score improvement and the CSindex of 10 pairing combinations for each 
target protein. A pairing combination often improves screening accuracies when its CSindex was 
more than 1.5.  
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Figure 3.2.6. The GH-score improvements with normalized variances of rank/score graphs (R/Svar) 
and normalized relative performance measurement (Pl/ Ph) of 40 RCS and SCS pairing combinations 
of five methods for four virtual screening targets. The positive and negative GH-score improvements 
are denoted with circle and cross, respectively.   

Consensus scoring is a popular strategy for solving the scoring inaccuracy problem in virtual 
screening. In this study, our consensus scoring methods consist of rank combinations (Figure 3.2.2 
and Table 3.2.3) and score combinations (Figure 3.2.3 and Table 3.2.4) on five scoring functions 
related to two docking algorithms. When we associated individual ranks into different combinations, 
the accuracy (in terms of average false positive rates and average GH scores) of some of these 
combinations was better than each individual. From this study of data fusion on screening four cases 
of receptor targets, it demonstrates that a fusion method is able to improve the screening accuracy in 
VS only when (a) each of the individual scoring function has a relatively good performance (Pl /Ph) 
and (b) the scoring characteristics of each of the scoring functions are quite different (R/Svar). The 
observations of RCS and SCS are summarized as follows:  
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a) Figure 3.2.6 shows that combining multiple scoring functions improves enrichment of true 
positives only if both g(Pl /Ph) > 0.5 and g(R/Svar) > 0.5. These two prediction indicators can 
be combined into a single indicator CSindex > 1.5 (Figure 3.2.7). For example, in 
ER-antagonists receptor, the GH scores of Methods B (0.83) and D (0.70) (Table 3.2.1) are 
the best and the Method BD (0.86) is the best among 31 combinations (Table 3.2.3). The 
CSindex of the Method BD is 1.68 (Table 3.2.5). 
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Figure 3.2.7. The relationships between the GH-score improvement with the CSindex (Equation 3.2.14) 
of 40 pairing combinations of five methods for four virtual screening targets. 

 

b) These statistics revealed that the accuracy of consensus scoring was improved by increasing 
scoring methods for both RCS and SCS (Tables 3.2.3 and 3.2.4). However, the combination 
of all scoring methods did not display the best possible performance observed. For RCS, The 
performance of 2-combination or 3-combination methods outperformed 4-combination or 
5-combination methods. 

c) The variance, R/Svar, of a pair of rank/score graphs is a useful index to improve the screening 
accuracy for combining two individual methods when the individual scoring functions are 
quite different (or complementary, e.g., normalized R/Svar > 0.5). This criterion is useful and 
important because very often the performance of the individual scoring function is not known 
or cannot be evaluated at the juncture. Our approach can be used in different situations, 
whether it is running a truly blind screen, a combination screen coupling a blinded set with 
partial analysis and subsequent use of previous hits as a training set, or a screen with a true 
training set. Our approach also reveals that approaches that yield the best average GH 
score/FP (i.e., SCS) which are relevant for screens without training sets, are different from 
those approaches that optimize individual GH score (i.e., RCS), which are applicable when a 
training set is available. 

d) The best GH scores of RCS are consistently superior to SCS for these four target proteins 
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(Figure 3.2.3). Table 3.2.3 shows that RCS yielded its best individual GH scores: 0.58 
(Method BD in TK), 0.85 (Method ABD in DHFR), 0.86 (Methods BD and ABD in ER), and 
0.74 (Method BD in ERA). Table 3.2.4 shows that SCS obtained its best GH scores: 0.52 
(Method ABCD in TK), 0.84 (Method ABDE in DHFR), 0.86 (Methods BDE in ER), and 
0.72 (Method BCDE in ERA).  

e) The best average GH scores and best average FP rates of SCS are significantly superior to 
RCS on all target proteins (Table 3.2.3 and Table 3.2.4). For example, in TK, the best average 
GH scores are 0.41 (SCS) and 0.29 (RCS), and the best average FP rates are 2.01% (SCS) 
and 4.04% (RCS). In ER antagonists, the best average GH scores are 0.79 (SCS) and 0.69 
(RCS), and the best average FP rates are 0.44% (SCS) and 1.39% (RCS). 

f) For RCS methods, the moderate number of scoring functions, two or three, are the best and 
sufficient for the purpose of consensus scoring (Figure 3.2.2). In contrast, the number of 
combining methods is three or four to achieve the best performance for SCS methods (Figure 
3.2.3). This phenomenon was also found in data fusion in IR and was consistent with the 
previous findings in CS 109.  

g) When combining methods with highly differential performance, Figure 3.2.2 (FP rates) and 
3.2.2 (GH scores) show that SCS works better than RCS. For example, the combinations of 
BE (in TK) and ABE (in DHFR) where Methods B and E are the best and the worst, 
respectively; among five primary methods. In ER and ERA, the combinations of BC (ER) 
and BCE (ERA) have the similar results.  

3.2.4. Conclusions  
   It has been shown that consensus scoring improves VS and has become a robust scoring method 
because each individual scoring function has strengths and weakness with respect to docking 
algorithms, receptor targets, and the database sets. It appears that on average the consensus scoring 
does perform better than the average performance of the individual scoring methods, but does not 
perform better than the best of the individual scoring function. In our experiment on the four 
receptors TK, DHFR, ER, and ERA, the two docking algorithms we used (GEMDOCK and GOLD) 
have been shown to be very good. Although performances (measured as GH score and false positive 
rate) of each individual scoring function do vary within each of and among the receptor targets, 
interesting patterns do stand out where we showed that combinations of two scoring function leads to 
significant improvement on average GH score and average FP rate.  
   We summarize and state the two consensus scoring criteria, which would serve as two predictive 
variables for improving enrichment in VS: a consensus scoring which combines multiple scoring 
functions should only be used when (a) the scoring functions involved have high performance and (b) 
the scoring characteristic of each of the individual scoring functions are quite different. These two 
CS criteria also work for different performance between SCS and RCS. It has been reported that, on 
average, score combination is more effective than rank combination. However, we have 
demonstrated that in a majority of cases under the two CS criteria, rank combination does perform 
better or as good as score combination. This is analogous to the results reported in IR 102; 106; 107. Our 
second criterion calculates the rank/score function of each scoring function and then computes the 
differences between the rank/score functions of the scoring methods involved. Our second criterion 
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does not involve performance evaluation of the combined methods. This criterion is useful because 
very often the performance of individual scoring functions is not known or cannot be evaluated. We 
believe that our rank-based and score-based consensus scoring (RCS and SCS) procedure and 
consensus criteria for improving the enrichment in VS should be useful to researchers and 
practitioners in virtual screening. 
  Our work has provided a framework to study consensus scoring criteria and a procedure (the 
Algorithm) for both rank-based and score-based consensus scoring to improve the hit rates, FP rates, 
the enrichment, and the GH score. The procedure is computationally efficient, able to adapt to 
different situations, and scalable to a large number of compounds and a greater number of 
combinations. Moreover, we have shown the power of two-combinations (pairing combinations) and 
used the rank/score graph to assess the bi-diversity between two scoring methods used. Our current 
work represents the first of a series of investigations to explore consensus scoring criteria for 
improving enrichment in VS. It also engenders a whole school of issues and directions worthy of 
further study: 

1) We will study the extension to three and higher number of combinations of scoring 
functions using the rank/score graph variation (R/Svar) as a diversity measurement for the 
scoring methods involved.   

2) In this paper, we use rank/score function fA as the scoring characteristic for the scoring 
method A. Then we use the variation on the rank/score function (R/Svar) to characterize the 
scoring diversity between two scoring methods A and B. Other parameters such as the 
difference between the score functions SA and SB and the difference between the rank 
functions RA and RB can be also used to distinguish the scoring diversity. The rank/score 
graphs (Figure 3.2.4) have provided a clear visualization for characterizing the scoring 
diversity between individual scoring functions. 

3) In our combination (RCS and SCS) of scoring functions, we use averages to compute the 
scores for the rank and score combination. Combination using different weighting schemes 
can be used. Hsu and Palumbo 115 presented work on combination of two scoring methods 
using weighty scheme with a step of one tenth as a proportion. 

4) The two docking algorithms we used, GEMDOCK and GOLD with five scoring functions, 
were superior to other evolutionary algorithms on two receptor targets (Table 3.2.2). A 
more diverse set of docking methods, scoring functions, and receptor targets will be studied 
to determine the advantages of SCS and RCS for VS.  
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Chapter 4 Quantitative Structure Activity Relationships 
For QSAR analysis, we developed a QSAR methodology associating molecular docking and 

feature selection with PLS, named GEMPLS. GEMPLS served as feature selection and model 
building in QSAR analysis. Potential features for contributing inhibition would be selected by 
evolutionary strategy and built regression by PLS. Due to the low correlation of binding affinity and 
current scoring functions, we also analyzed the factors, which affect binding affinities of 
protein-ligand complexes, from five dimensions including protein-ligand interactions, protein 
properties, structure and chemical-physical descriptors of ligands, metal-ligand bonding, and solvent 
effects. The correlation between predicted binding affinities and experimental values are 0.612 and 
0.601 on the training set (891 protein-ligand complexes) and on testing set (98 protein-ligand 
complexes), respectively. These seven factors will be added into our QSAR method (termed 
GEMQSAR) to improve the prediction abilities and accuracies. The works in this part published one 
conference paper and one international poster paper 
Conferences Papers: 

 K-C Hsu, Y-F Chen, and J-M Yang*, "Binding affinity analysis of protein-ligand complexes," 
2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 167-171, 
2008.  

Posters 
 Y.-F. Chen, L.-J. Chang, J.-M. Yang*, "Integrating GEMDOCK with GEM-PLS and GEM-kNN 

for QSAR modeling of huAChE and AGHO," in 15th Annual International Conference on 
Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference on 
Computational Biology (ECCB), Vienna, Austria, 2007. 

 

4.1 Analysis of Protein-ligand Complexes to Predict Binding Affinity 

4.1.1 Introduction 
One of the important issues in computer-aided drug discovery is to predict the binding affinity 

between a compound and a target protein. Compounds with high binding affinities to a target protein 
are often considered as the potential inhibitors that slow or block physiological, chemical, or 
enzymatic actions of this protein. Binding affinities are usually determined by some experiments 
such as microcalorimetry 116; 117, ELISA assays 118, NMR spectrometry 119, and surface plasmon 
resonance 120. The high-throughput screening method 121 is used to detect the binding affinities of a 
large number of compounds to identify lead compounds for a target protein. However, these 
experiment methods are often labor-intensive, time-consuming, and expensive. Therefore, many 
computational methods have been proposed to discover the lead compounds by predicting the 
binding affinities between compounds and the target proteins. 
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The structure-based virtual screening is one of the computational methods to identify lead 
compounds for a specific receptor from thousands of compounds. Each compound in the database is 
docked into a target protein and assigned a binding score for measuring binding affinities based on 
scoring functions. The scoring methods for virtual screening should effectively discriminate between 
correct binding states and non-native docked conformations during the molecular docking phase and 
distinguish a small number of active compounds from hundreds of thousands of non-active 
compounds during the post-docking analysis. The compounds with higher scores are considered as 
potential compounds and selected for biological assay which is the measurement of the 
pharmacological activity of a compound. The scoring functions that calculate the binding free energy 
mainly include knowledge-based 57, physics-based 58, and empirical 59 scoring functions. 
Physics-based energy functions are based on physical mechanisms and often derived from ab initio 
quantum-mechanical calculations according to the principles of physics. One advantage of 
physics-based energy functions is the lucid physical meaning of each individual term, but 
physics-based energy functions often requires the high-computation cost and their energy landscapes 
are often very rugged. In general, an empirical scoring function has simplified energy terms based on 
physical mechanisms. Knowledge-based scoring functions are derived from energy-like functions by 
considering the distributions of inter-atomic distances in a set of crystal structures of protein–ligand 
complexes.  

In practice, the performance of a scoring function is limited by our incomplete understanding of 
the complex issues involved in chemical interactions. The inaccuracy of the scoring methods, i.e., 
inadequately predicting the true binding affinity of a ligand for a receptor, is probably the major 
weakness for virtual screening. Some knowledge-base scorings, such as X-SCORE 122, 
ChemScore113, DrugScore 57, and PLD 123, applied regression techniques to predict binding affinities 
by deriving from a set of protein-ligand complexes with experimental binding affinities. The 
deficiency of current scoring functions is mainly due to the inadequate descriptions of the 
interactions between ligands and proteins 25. For example, most scoring functions use simple model 
to handle metal-ligand and water-ligand interactions and consider hydrogen-bonding interactions as 
the same even if some interactions are essential for chemical reactions. 

Here, we address these issues by deriving 87 descriptors from 891 protein-ligand complexes 
selected from PDB according to five dimensions, including protein-ligand interactions, structural and 
physicochemical descriptors of a compound, protein binding site evolution, metal-ligand interactions, 
and water effects. Based on these 87 descriptors, we applied a stepwise regression method to select 
top five descriptors, which are highly correlated to experimental affinities, for developing the 
GemAffinity. The GemAffinity was then used to predict binding affinities on an independent set and 
it outperforms 12 comparative scoring functions on this set. For post-screening analysis, we applied 
The GemAffinity to score the docked complexes generated by GEMDOCK 2, which is 
well-developed molecular docking tool, on four targets. The GemAffinity is able to enrich the 
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prediction accuracy of GEMDOCK on these four targets. 

4.1.2 Materials and Methods 
Overview 

Figure 4.1.1 shows the overview of deriving the descriptors and developing GemAffinity for 

predicting binding affinities. With the aim to identify descriptors for the binding process in the 

molecular recognition, we first selected the 989 protein-ligand complexes with experimental binding 

affinities from PDB. We derived 87 descriptors from protein functions and evolution, ligand 

structures and physicochemical aspects, and molecular interactions. Furthermore, a stepwise 

regression was applied to find the relationship between descriptors and binding affinities. Some key 

selected descriptors, which significantly reflect the experimental binding affinities, are used to 

develop GemAffinity for the prediction of binding affinities. Finally, the GemAffinity was evaluated 

on an independent testing set and post-screening analysis on four target proteins.  
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Figure 4.1.1. The overview of analyzing protein-ligand complexes to develop the GemAffinity for 
predicting binding affinities.  
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Protein-ligand complex dataset 

We collected 1,091 protein-ligand complexes with experimental binding affinities from the 

PDBbind124. Among these 1091 complexes, 989 complexes are selected by excluding 80 complexes 

(missing atoms in binding sites) and 22 complexes (no HETATM records of water atoms). The 

descriptors of the excluded complexes are incorrect due to the miss data and may bias the results. 

The remaining complexes were randomly divided into a training set (891 complexes) and a testing 

set (98 complexes). For each complex, we used the negative logarithm of Kd or Ki (i.e. -log Kd or -log 

Ki) as its binding affinity. 

Virtual screening dataset  

A widely used approach to test scoring functions for the virtual screening is to rank the docked 
poses generated by docking tools to identify inhibitors (substrates) for a target receptor from 
thousands of compounds. We selected four target proteins with ~1000 compounds to evaluate the 
GemAffinity performance and to compare it with other methods. These four target proteins include 
thymidine kinase (TK), estrogen receptor antagonist (ER), estrogen receptor agonist (ERA), and 
human carbonic anhydrase II (HCAII). The receptors for these screens cover different receptor types 
and therefore provide a reasonable test of scoring functions. Four complexes of the target proteins 
were selected for virtual screening from the PDB: TK complex (PDB code: 1kim 14), ER-antagonist 
complex (PDB code: 3ert 71), ER-agonist complex (PDB code: 1gwr 125), and HCAII complex (PDB 
code:1cil 126). These complexes were reasonable choices because their ligand-binding cavities are 
wide enough to accommodate a broad variety of ligands and therefore did not require binding site 
modifications.   

For each target, the screening compound data set proposed by Bissantz et al.127 consists of 990 
random compounds. In addition, the set includes 10 known active compounds 2 for TK, ER, and 
ERA; and 20 known active compounds 126; 128; 129; 130; 131 for HCAII target. The active compound set 
of each target protein, target proteins, and 990 random compounds are available on the Web at 
http://gemdock.life.nctu.edu.tw/dock/download.php.  

 

Descriptors for binding affinity 

We derived 87 descriptors from 891 complexes described in the protein-ligand complex dataset 
according to five dimensions: protein-ligand interactions, protein binging-site conserved properties, 
QSAR-based (quantitative structure activity relationship) compound properties, water effects, and 
metal-ligand bonding. These dimensions are described as follows:  
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Protein-ligand interactions: We considered three protein-ligand interaction types, including van der 
Waals interactions, electrostatic interactions, and hydrogen-bonding interactions. The van der Waals 
force consists of a piece-wise linear potential (PLP), generated by GEMDOCK 2 and Lennard-Jones 
potential. The hydrogen-bonding force includes a PLP 2 and a non-linear potential generated by 
AutoDock 4. The electrostatic force was measured by the GEMDOCK. In addition, we also regarded 
the numbers of protein-ligand interactions within different cutoffs for each force type. For van der 
Waals force, the distance of an atomic pair between a protein and its ligand was divided into 10 
cutoffs which are 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 Å. For hydrogen-bonding and 
electrostatic interactions, the distance was divided into 10 cutoffs, including 2.5, 2.6, 2.7, 2.8, 2.9, 
3.0, 3.1, 3.2, 3.3, and 3.4 Å. In total, there are 35 descriptors for protein-ligand interactions.  

Protein binging-site evolutionary property: Conserved residues in a binding site of a protein often 
highly correlated to the biological functions. For example, the catalytic charged residues of a protein 
are often conserved across many species. They polarize substrates to stabilize transition states 132. If 
these conserved residues mutate, the protein may lose their functions or execute different biological 
functions. Based on these observations, we used the number of highly conserved residues, which 
form hydrogen bonds between a protein and its ligand, as the descriptor of protein binging-site 
evolutionary property in the binding site. 

Here, we developed a conserved score method, derived from our previous work on 
protein-protein interactions 133, to measure the conversation degree of a residue in the binding site. 
The amino acid sequence of a protein-ligand complex was first subjected to PSI-BLAST 42 by 
searching on UniRef90 134. The E-value cutoff of PSI-BLAST was set to 10-5 and the number of the 
iterations was 3. Based on the position specific scoring matrix (PSSM) automatically generated by 
PSI-BLAST, the conserved score of each residue was defined as  

Ci = Mir — Krr  (4.1.1) 

where Mir is the value in the PSSM for the residue type r at the position i, and Krr is the diagonal 
value of BLOSUM62135 for the residue type r. The residue-conserved descriptor was defined as  

∑
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where Ri is 1 if Ci is greater than 0 and at least one hydrogen bond is formed at the position i between 

protein and its bound ligand. H is the number of highly conserved residues with hydrogen bonds of a 

protein. Among 891 complexes in the training set, 571 complexes consist of highly conserved 

residues forming hydrogen bonds between proteins and their bound ligands.  

We used HCAII (PDB code: 1cil 126) as an example to describe the steps of deriving the highly 

conserved residues forming hydrogen bonds with its bound ligand (Figure 4.1.2). First, the multiple 
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sequence alignment (MSA) of the query sequence and the homologous sequences are derived by 

PSI-BLAST (Figure 4.1.2a). Based on the MSA and Equation 4.1.1, conserved score of each residue 

can be calculated. Here, the residue is considered as a highly conserved residue (e.g. GLN92, HIS94, 

HIS96, HIS119, and THR199) when its score is greater than or equal to 1.0 (Figure 4.1.2b). Finally, 

we count the number of highly conserved residues which form hydrogen bonds with bound ligand. In 

this example, the number of highly conserved residues with hydrogen bonds is 5.  

HIS119
Score: 1

HIS96
Score: 2

HIS94
Score: 2

GLN92
Score: 2

THR199
Score: 2

Ligand
Zinc

92

conserved 
score

2
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(a) (b)
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2 2 1 2

91

-4

HCAII

 
Figure 4.1.2. An example of describing metal-ligand bonds and highly conserved residues forming 
hydrogen bonds. (a) The multiple sequence alignment of the query sequence, human carbonic 
anhydrase II (HCAII, PDB code: 1cil), and its homologous sequences by PSI-BLAST. The E-value 
cutoff of PSI-BLAST was set to 10-5 and the number of the iterations was 3. The conserved scores of 
part residues are given in the bottom. (b) The residues that are highly conserved and form hydrogen 
bonds with the ligand are GLN92, HIS94, HIS96, HIS119, and THR199. In this example, the number 
of highly conserved residues with hydrogen bonds is 5. In addition, the ligand also forms a 
metal-ligand bond (red line) with the Zinc (the bond length is 1.96 angstrom). This metal-ligand 
bond is one of the primary binding interactions in HCAII. 

 

QSAR-based compound properties: The QSAR methods 53; 136 demonstrated that physical and 
biological properties of a ligand are useful for predicting binding affinities of a group similar 
compounds. We used the QSAR module of the Cerius2 to generate 26 compound descriptors, such as 
spatial, conformational, electronic, structural, and thermodynamic terms. 
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Water effects: In general, a compound should be solvated before it binds to its receptor. The water 
effects play a crucial role in mediating the interactions between proteins and their bound ligands 137. 
The interactions between the bound ligand and structural waters in a complex were used to measure 
the water effects. We calculated the number of structural water molecules which are within a specific 
distance cutoff around a ligand. The distance bins are classified into 12 cutoffs, including 2.5, 2.6, 
2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 Å. 

Metal-ligand bonding: The metal atoms in an active site often play the key role for stabilizing 
ligands and reaction catalysis. However, many scoring functions consider the interaction between 
metal atoms and ligands as a simple hydrogen-bonding interaction. In this study, we separated 
metal-ligand bonding interactions from hydrogen-bonding interactions by considering the metal 
atoms which are within a specific distance from a ligand. In the 891complexes, 99 and 152 
complexes have metal atoms which are within 2.2 Å and 3.6 Å distance from ligand, respectively. 
Figure 4.1.3 shows that most of metal-ligand bonding distances were less than 2.8 angstrom. It meant 
that the metal-ligand bonding distances were almost shorter than the normal hydrogen bonding 
distances. The metal-ligand bonding interaction is 1 if a metal atom is less than a specific distance; 
conversely, the value is 0. Here, we considered 13 distance cutoffs which are 2.2, 2.3, 2.4, 2.5, 2.6, 
2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, and 3.4 Å. In the HCAII, the ligand forms a metal-ligand bond (red 
line) with the Zinc and the bond length is 1.96 (angstrom)Å (Figure 4.1.2b). This metal-ligand bond 
is one of the primary binding interactions in HCAII 126. 
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Figure 4.1.3. The distribution of metal-ligand bonding distances in the 891 complexes in the training 
set.  
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Stepwise regression analysis 

The stepwise regression 138 method was used to select descriptors which are highly correlated to 

protein-ligand binding affinities one by one in the order of descending importance. Here, we 

employed the simple stepwise regression method to develop the scoring methods. This method is 

often to avoid the ill effects (such as over fitting and the loss of biological/physical/chemical 

meaning.) of the machine learning approaches, such as the support vector machines, genetic 

algorithms, and neural networks. This model first selected the descriptor with the highest Pearson’s 

correlation coefficient into the predicted model. The model sequentially added the other descriptor 

which is able to improve the correlation between predicted binding affinities derived by the selected 

descriptors and experimental binding affinities. The process was stopped if the improved correlation 

of the added one was less than 0.005 to reduce ill-effect of the overfitting data. Finally, the model 

selects five descriptors for the GemAffinity to predict binding affinities (Table 4.1.1).  

Table 4.1.1. The selected descriptors in the new scoring function  

Selected  
order Name r a Descriptors 

1 fvdw 0.497 Sum of Lennard-Jones potential between a protein and a ligand 

2 VMetal 0.544 The distance between metal irons and a ligand is less than 2.2 Å 

3 NrotBon 0.579 Number of rotatable bonds of a ligand 

4 Nwater 0.594 Number of structural waters which are near to a ligand within 3.6 Å  

5 NconHB 0.599 
Number of highly conserved residues forming hydrogen bonds between 
proteins and ligands 

a the correlation between the predicted binding affinities by stepwise regression models and experimental binding 

affinities. 

 

Application on virtual screening 

A scoring method should be able to effectively discriminate between correct binding states and 
non-native docked conformations during the molecular docking phase. For virtual screening, it is 
important for scoring functions to identify a small number of active compounds from hundreds of 
thousands of non-active compounds during the post-docking analysis. Here, we evaluated the 
GemAffinity to score docked protein-ligand complexes generated by the GEMDOCK on four targets 
(i.e. TK, ER, ERA, and HCAII). Our previous works show that the GEMDOCK is comparative to 
some approaches (e.g. GOLD 5 and FlexX 139) for molecular docking 2 and virtual screening 9; 10.  
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In this study, the GEMDOCK parameters in the flexible docking included the initial step sizes (σ=0.8 
and ψ=0.2), family competition length (L = 2), population size (N = 200), and recombination 
probability (pc = 0.3). For each ligand screening, GEMDOCK optimization stopped either when the 
convergence was below a certain threshold value or the iterations exceeded the maximal preset value 
of 60. Therefore, the GEMDOCK generated 800 solutions in one generation and terminated after it 
exhausted 48,000 solutions for each docked ligand. Standard parameters of the GOLD 5 program and 
its scoring function (i.e. GoldScore) were used in this study. For each of the 10 genetic algorithm 
(GA) runs, a maximum number of 10,000 operations were performed on a population of 50 
individuals. The maximum distance between hydrogen donors and fitting points was set to 2 Å, and 
nonbonded van der Waals (vdW) energy was cut off at 4.0 Å. To further speed up the calculation, the 
GA docking was stopped when the top three solutions were within 1.5 Å rmsd of each other. These 
parameters are chosen according to the standard default settings recommended by the authors for 
virtual screening. 

4.1.3 Results and Discussion 

Scoring function 

The stepwise regression method selects top five descriptors for predicting binding affinities 

(Table 4.1.1). These descriptors are the sum of Lennard-Jones potential (fvdw), the number of 

metal-ligand bonds (VMetal), the number of rotatable bonds of a ligand (NrotBond), the number of 

structural waters which are near to a ligand within 3.6 Å (Nwater), and the number of highly conserved 

residues forming hydrogen bonds between ligands and proteins (NconHB). The coefficient of each 

descriptor and the GemAffinity is given as  

−log(Kd,pred)= −0.072fvdw+ 1.168VMetal − 0.078NrotBond −0.039Nwater + 0.102NconHB +3.430  

 

The selected orders of these five descriptors are correlated to the accuracy orders (e.g. 0.497, 0.544, 
and 0.579 shown in Table 4.1.1), which are the Pearson’s correlation coefficient between predicted 
binding affinities and experimental binding affinities. For example, Pearson’s correlation coefficients 
are 0.497 and 0.544 using only the first descriptor (i.e. fvdw) and the first two descriptors (i.e. fvdw and 
VMetal). Please note the values of this scoring function and −log(Kd,pred) are positive to present a high 
binding affinity. In general, fvdw is negative and its coefficient (i.e. −0.072) is negative; therefore, the 
value −0.072fvdw is positive and positively contributes to binding affinities of compounds. VMetal and 
NconHB are positive and their respective coefficients are also positive values which positively 
contribute to the binding affinities. On the other hand, Nwater and NrotBond are positive but their 
respective coefficients are negative. These two terms negatively contribute to binding affinities. 
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Selected descriptors 

The Lennard Jones 12-6 potential was selected first and its Pearson’s correlation coefficient is 
0.497 (Table 4.1.1). This result shows that the complementary shape between proteins and their 
ligands is critical for protein-ligand binding affinities. In addition, Pearson’s correlation coefficient 
between van der Waals forces (i.e. PLP) of the GEMDOCK and the experimental binding affinities is 
0.48 on 891 complexes in the training set. Lennard Jones potential function has various parameters 
of atomic pairs, and the GEMDOCK treats all atomic pairs as the same. This difference may be one 
of reasons why the performance of Lennard-Jones potential function is lightly better than the one of 
the GEMDOCK. 

The energy function, using the PLP potential to soften the repulsive term of Lennard–Jones 

potential, of GEMDOCK has a good performance in flexible protein-ligand docking. The short range 

repulsive interactions (e.g. Lennard–Jones potential) tend to infinity at low interatomic separation 

leading to rough energy surfaces with high energy barriers. A soft scoring function (e.g. PLP 

potential used in GEMDOCK) has been applied for softening the repulsive intermolecular potential 

to decrease the strong sensitivity of interaction energies to local conformation changes. Generally, a 

soft scoring function has the benefit of being computationally efficient, conversely, it may increase 

the number of false near-native solutions (structures). The tradeoff of its advantages and limitations 

can be optimized. 

The metal-ligand bonding is the second selected term. The metal-ligand bonding is a 

metal-ligand interaction with the distance cutoff less than 2.2 angstrom in this study (Figure 4.1.3). A 

metal-ligand bond is often a strong bonding interaction and is able to stabilize the interactive 

conformations between a protein and its compound (Figure 4.1.4). In our GemAffinity, we 

highlighted and considered the metal-ligand bond as a special force because its distance cutoff (i.e. 

2.2 angstrom) is much shorter than the general hydrogen-bonding distance (i.e. 2.8 angstrom). This 

scoring function discriminates between metal-ligand interactions and hydrogen bonds to avoid 

energy rises drastically when the distance of a metal-ligand bond is shorter than 2.2 angstrom. Figure 

4.1.4 shows the effect of the metal-ligand bonds in the cytidine deaminase protein (PDB code 1ctu 

and 1ctt 140). The binding affinity of the complex with the metal-ligand bond (1ctu) between zinc2+ 

and the bound ligand is 11.92. On the other hand, the binding affinity of the complex (1ctt) without 

metal-ligand bond (1ctt) is 4.52. The only change of the binding affinities of these two complexes is 

due to the loss of the metal-ligand bond 140.  
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Figure 4.1.4. The effect of the metal-ligand bonds. In the cytidine deaminase protein (PDB code 1ctu 

and 1ctt), the binding affinities of the complexes with the metal-ligand bond (1ctu) and without 

metal-ligand bond (1ctt) are 11.92 and 4.52, respectively. The change of the binding affinities of 

these two complexes is due to the loss of the metal-ligand bond. 

The third selected descriptor was the number of rotatable bonds of a ligand. This descriptor is 

important for molecular mechanics because the freedom of rotatable bonds become lower during the 

binding process. The number of rotatable bonds gave a measure of the unfavorable torsional entropy 

loss upon protein-ligand binding affinities. The fourth selected descriptor (i.e. the number of 

structural water molecules within 3.6 Å distance from the bound ligand) was the water effects. A 

large amount of water molecules around a ligand within 3.6 angstrom imply that the large volume of 

the ligand is exposed to the solvent. A ligand buried deeply inside a protein could have larger 

binding affinities than those were bounded on the protein surface.  

The final selected term for the GemAffinity is the number of highly conserved residues with a 

hydrogen bond (bonds). A highly conserved residue is often highly responsible to maintain 

biological functions of a protein because the hydrogen bonds on conserved residues were often 

responsible for stabilizing the ligands and catalyzing the reactions. We used the number of highly 

conserved residues with hydrogen bonds to measure the binding affinities. The descriptor is 

generated according to the properties of each binding site, and it distinguishes specific interactions 

from other hydrogen bonds. The Pearson’s correlation coefficient between the number of highly 
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conserved residues with hydrogen bonds and the experimental binding affinities is 0.15. Conversely, 

the coefficient between the numbers of hydrogen bonds and the experimental affinities is 0.12. It is 

reasonable to discriminate the hydrogen-bonds with highly conserved residues from others.  

A hydrogen bond formed between highly conserved residue and the ligand often highly 

influences the binding affinity (Figure 4.1.5). For example, the binding affinity of the 

beta-glucosidase protein (PDB code 1uz1 141 and 2j77) from thermotoga maritima drops from 6.89 to 

4.89 due to the loss of a hydrogen bonding between the ligand and the Glu166. The Glu166 is a 

conserved residue and its conserved score is 2 using Equation 4.1.1. Conversely, a hydrogen bond 

formed between non-conserved residues and the ligand may lightly influence the binding affinity 

(Figure 4.1.6). The binding affinity of the oligo-peptide binding protein (PDB code 1b58 142 and 

1b3h 143) slightly reduced from 6.58 (1b58) to 6.21 (1b3h) even if two hydrogen bonds between the 

ligand and two residues Asn436 and Tyr269. These two residues are not conserved and their 

conserved scores are -3 and -6 based on Equation 4.1.1. 

 

Figure 4.1.5.  An example of a hydrogen bond loss in the highly conserved residue. The binding 

affinities of beta-glucosidase protein (PDB code 1uz1 and 2j77) are 6.89 and 4.89, respectively. For 

these two complexes, the bound-ligand structures and protein-ligand interacting are very similar and 

the only difference is the position of Nitrogen atom in the ligand. For the complex 1uz1, the nitrogen 

forms a hydrogen bond with Glu166; conversely, it is unable to form any hydrogen bond on the 

complex 2j77. The conserved score of Glu166 is 2. 
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Figure 4.1.6.  An example of hydrogen bonds loss in the low conserved residues. For the 
oligo-peptide binding protein (PDB code 1b58 and 1b3h), the binding affinities of the complexes 
with hydrogen bonds (1b58) and without hydrogen bonds (1ctt) between bound ligands and residues 
(i.e. Asn436 and Tyr269) are 6.58 and 6.21, respectively. The conserved scores of Asn436 and 
Tyr269 are -3 and -6. 

 

Binding affinity prediction 

After the GemAffinity was developed, we evaluated it on 98 complexes in the independent test 

set and compared it with other methods. Pearson’s correlation coefficients, yielded by our 

GemAffinity, on the training set (891 complexes) and the independent test set (98 complexes) are 

0.60 and 0.58, respectively (Figure 4.1.7). In general, it is neither straightforward nor completely fair 

to compare the results of different scoring functions for predicting binding affinities of protein-ligand 

complexes. Here, we compared the GemAffinity with other 12 scoring functions on the data set 

(Figure 4.1.8). The correlations of other 12 scoring functions were directly summarized from the 

previous work 113. The results show that the GemAffinity is the best among 13 comparative scoring 

functions on this data set. Some scoring functions, the empirical scoring functions (i.e. X-SCORE 122, 

F-Score 139, ChemScore 113, LigScore 144, PLP 59, LUDI 145, and HINT 146), only consist of common 

types of protein-ligand interactions, such as van der Waals, hydrogen bonding, and electrostatic 

integrations. These scoring functions are usually usefully in predicting the affinities for most of 

protein-ligand complexes. However, if some unusual factors (e.g. metal-ligand bonding interactions) 
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are necessary for the binding process, these scoring functions may fail in predicting the binding 

affinities. Conversely, the GemAffinity is much better than these comparative functions when these 

complexes have metal ions interacting to bound ligand within 2.2 Å. In addition, Pearson’s 

correlation coefficient of the GemAffinity is reduced to 0.565 if we considered all of hydrogen 

bonds.  
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Figure 4.1.7. Pearson’s correlation coefficients between experimental binding affinities and predicted 
binding affinities using the GemAffinity are 0.60 and 0.58, respectively, on training set (●) and the 
testing set (●). 
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Figure 4.1.8. The comparison of the GemAffinity and other 12 scoring functions on the independent 
data set with 98 protein-ligand complexes. 

Virtual screening 

A scoring function for predicting the binding affinity of a protein-ligand complex should be 
applied to virtual screening for evaluating its screening accuracy. Here, we used two docking 
programs (GEMDOCK and GOLD) and three scoring functions (PLP in GEMDOCK, GoldScore, 
and the GemAffinity) to assess the accuracy on four protein targets (TK, ER, ERA, and HCAII) 
based on the receiver operating characteristic ROC curve (Figure 4.1.9). All of these methods were 
tested using the same reference protein and screening database.  

Among these scoring methods, Experimental results show that the GemAffinity is the best for 
targets ERA and HCAII; and is very comparable to other methods on targets TK and ER. For target 
HCAII 126 (Figure 4.1.2), three residues His92, His96 and His119, which are recognized as highly 
conserved residues, are metal binding residues and the metal-ligand bonding is one of the primary 
binding interactions. The catalytic resides (e.g. His 64, Glu106, and Thr199) are also highly 
conserved residues using Equation 4.1.1. In this garget, the GemAffinity significantly outperforms 
GEMDOCK and GOLD on the target HCAII. The main reason is that the GemAffinity considers the 
metal-ligand interaction as an individual term and divides the hydrogen bonds into conserved and 
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non-conserved interactions for calculating binding affinities. In contrast, the scoring functions of 
both GEMDOCK and GOLD considered the metal-ligand as one kind of hydrogen interacts and 
considered all hydrogen bonds as the same. 
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Figure 4.1.9. The ROC curves of the GemAffinity (red), scoring functions of GEMDOCK (blue), 
and GOLD (green) on the four targets. The curve of random selection was also plotted as the 
reference. 

4.1.4 Conclusions 
We developed a scoring function for predicting binding affinity of a protein-ligand complex by 
analyzing 87 descriptors derived from 891 protein-ligand structures in PDB. This scoring function 
consists of five selected descriptors, including Lennard-Jones potential, metal-ligand bonding, water 
effects, deformation penalties upon the binding process, and the number of highly conserved residues 
with hydrogen bonds, by using a simple stepwise regression method to derive from these 87 
descriptors. The GemAffinity is able to reflect the experimental binding affinities and 
biological-physicochemical meanings in the protein-ligand binding processes. Experiment results 
show that the GemAffinity is much better than 12 comparative scoring methods on predicting 
binding affinities on testing structures. For virtual screening, the GemAffinity is very comparable to 
the scoring functions of GEMDOCK and GOLD on four target proteins. In addition, the 
GemAffinity outperforms ones of GENDOCK and GOLD if the target owns metal-ligand 
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interactions, structural waters, and highly conserved residues with hydrogen interaction. These 
results demonstrate that the GemAffinity is useful to predict binding affinity and to combine with 
other scoring functions to improve prediction accuracy. We believe that the GemAffinity is useful for 
molecular recognition and virtual screening. 
 

4.2 GEMQSAR: A QSAR Model Using Protein-ligand Interaction Consensus 
Profiles and Generic Evolutionary Method 

4.2.1 Introduction 

The dynamic increase of three-dimensional structures for drug targets and the rapid advances in 
technologies of computer-aided drug design provide the foundation for the development and testing 
of structure-based drug design and quantitative structure activity relationships (QSAR). As a result of 
the multidisciplinary effort from artificial intelligence, multivariate statistics and applied 
mathematics researchers, new QSAR methodologies continue to appear in the literature, such as 
comparative molecular field analysis (CoMFA)147 or comparative molecular binding energy analysis 
(COMBINE)148; 149. Although thousands of successful applications have used the above methods of 
QSAR and hundreds of CoMFA studies validate their approaches, the method suffers several 
challenges: 3D QSAR analysis such as CoMFA and COMBINE contain problems such as 
superposition of steric structures or selection of molecular descriptor 148; 149; 150.  

We addressed such issues by developing a new method naturally integrating a well-developed 
molecular docking tool (i.e. GEMDOCK) with evolutionary-based QSAR tools, GEM-PLS151 and 
GEM-kNN, by using protein-ligand interactions. GEMDOCK2; 9; 151 was adapted for protein-ligand 
docking and the protein-ligand interactions were then calculated by the empirical scoring of 
GEMDCOK. We combined the evolutionary-based PLS (GEMPLS) and kNN (GEMkNN) for 
optimization and statistic in QSAR analyses. In the process of QSAR analysis, the features selected 
and reduced for consensus feature set and specific skeleton set were used to identify critical 
functional groups of compounds and key residues in the protein. To evaluate our method for QSAR 
analysis, we have verified the QSAR method on the human acetylcholinesterase (huAChE) dataset152. 
In addition, we have practically applied the method for the first QSAR model of Arthrobacter 
globiformis histamine oxidase (AGHO). 
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Figure 4.2.1. The main steps of GEMQSAR method. It includes GEMDOCK used for the simulation 
of protein-ligand complex and generation of protein-ligand interaction profile, GEMPLS and 
GEMkNN for feature selection and model building. The consensus feature set is generated in the 
modeling steps. 

 

 

 

4.2.2 Materials and Methods 

GEMQSAR was created by integrating a well-developed molecular docking tool (i.e. 
GEMDOCK) with evolutionary-based QSAR tools, GEM-PLS and GEM-kNN, using protein-ligand 
interactions. To find out the significant hot spots in the binding site, we have focused the features on 
atom based protein-ligand interactions. In addition, we have adopted the concept of consensus 
feature set and specific skeleton set to improve the stability and performance of our method. Figure 
4.2.1 shows the main step of our method that involves the following steps:  

(a) Generate the protein-ligand complexes through molecular docking tool, GEMDOCK. 

(d) According to the protein-ligand complex, generate the atom based protein-ligand interactions of 
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each residue in the binding site to be the molecular features set. 

(e) Build preliminary models by GEMPLS and GEMkNN. 

(f) According to the average q2 value of the leave-one-out cross validation correlation for training set, 
select the QSAR method with higher average q2 value for QSAR modeling and generate the 
consensus feature set. 

(h) Build the QSAR model from the consensus feature set and the select QSAR method. 

In order to improve the performance of the method for QSAR model constructing, two 
feature-filtering steps have been introduced into the procedure of the QSAR modeling. The filtering 
steps include the following: 

(a) Generation of consensus feature set. In order to improve the stability of model, GEMPLS or 
GEMkNN was carried out ten times respectively, and ten groups of feature were selected. The 
consensus features were selected by using Equation 4.2.1.  

                                      totaltataliN σμ −≥  (4.2.1) 

If the selected times N of each feature i was greater or equal to the difference between average 
totalμ  and standard derivation totalσ  of selected frequency in total features, the feature i was 

included into the consensus feature set. In the process of model constructing, we have employed the 
collection of selected features from GEMPLS or GEMkNN based on which one has higher average 
q2 value in validation to generate the consensus feature set. The final QSAR model was built using 
the consensus feature set and the QSAR method with higher average q2 value in the preliminary 
models. 

(b) Generation of specific skeleton set. For the inhibitors or substrates of protein target, they 
always shared some conserved moieties of molecular structure and these parts often have no 
substitution groups. Most contribution for the differences of activities comes from the variable 
substitution groups. In order to mine the activity contribution of the variable substitution groups, we 
removed the interaction generated from the conserved moieties in the feature set. The definitions of 
specific skeleton in data set were not shown here (Figure 4.2.2). 
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Figure 4.2.2. The definition of the specific skeleton set. In the compound set of huAChE, the 
compounds shared some conserved moieties of molecular structure and these moieties always had no 
substitution groups. The red labeled parts of the compound are defined as the specific skeleton set in 
this study.  

  

Generation of molecular descripotrs 

All 3D chemical structures of data sets were generated using CORINA 3.0. The human AChE 
(huAChE) from Guo, J., et al. and the Arthrobacter globiformis histamine oxidase (AGHO) 
compound sets were used to develop the QSAR models. The human AChE (huAChE) compound set 
from Guo, J., et al.,152 was used to evaluate GEMQSAR method. There are sixty-nine compounds 
with IC50 values measured with huAChE assay in the set, and the compounds are divided into four 
groups mainly. Within the set, fifty-three compounds were selected for the training set and sixteen 
compounds for the testing set to validate the result of our method (Table 4.2.1 and Table 4.2.2). The 
AGHO compound set containing twelve compounds with Km values measured in AGHO enzyme 
assay (data from Dr. Chiun-Jye Yuan) was selected for the training model (Table 4.2.3). One 
derivative structure was selected for validation using the AGHO enzyme assay. 

GEMDOCK was adapted to perform the process of huAChE and AGHO. GEMDOCK docked 
each compound in the compound set against the binding cavity, and generated the protein-ligand 
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interactions (hydrogen bonding, van der Waals and electrostatic interactions) of each compound by 
empirical scoring function of the docked conformation. The structure of the binding cavity for 
huAChE and AGHO, including amino acids enclosed within a 8 Å radius sphere centered on the 
bound ligand, was used. Our previous work 9; 66 has showed that the docking accuracy of 
GEMDOCK was better than some other docking tools, such as GOLD 5 and FlexX 3, on a diverse 
data set of 100 protein-ligand complexes proposed by Jones et al5.  The  accuracy of GEMDOCK 
were also better than GOLD, FlexX, and DOCK on  the ligand database from Bissantz et al. (2000) 
for TK 28 and ER-antagonist receptor 9. GEMDOCK parameters in the flexible docking included the 
initial step sizes (σ=0.8 and ψ=0.2), family competition length (L = 2), population size (N = 300), 
and recombination probability (pc = 0.3). 

 

Table 4.2.1. Chemical Structures in huAChE training set152 

Y N
R3

R2
R1

X N

 

R1 R2 R3 -X- -Y- 
Ligand 

ID 
IC50(nM) pIC50 

-H -H -H -(CH2)2- -O- 1 55 7.26 

-CH3 -H -H -(CH2)2- -O- 2 7.8 8.11 

-CH3 -OCH3 -H -(CH2)2- -O- 3 5.8 8.24 

-OCH3 -H -H -(CH2)2- -O- 4 7.2 8.14 

-H -H -OCH3 -(CH2)2- -O- 5 7.1 8.15 

-H -NH-CO-CH3 -H -(CH2)2- -O- 6 2.8 8.55 

-H -NH-SO2-Ф -H -(CH2)2- -O- 7 14 7.85 

-H -4-morpholino -H -(CH2)2- -O- 8 0.8 9.10 

-H -NH2 -H -(CH2)2- -O- 9 20 7.70 

-H -Br -H -(CH2)2- -O- 10 50 7.30 

-H -CN -H -(CH2)2- -O- 11 101 7.00 
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-H -CO-NH2 -H -(CH2)2- -O- 12 8.8 8.06 

-H -H -H -(CH2)3- -O- 13 900 6.05 

-H -H -H -O-CH2- -O- 14 2600 5.59 

-H -H -H -NH-CH2- -O- 15 320 6.49 

-H -H -H -(CH2)2- -S- 16 99 7.00 

-H -H -H -(CH2)2- -CH=CH- 17 220 6.66 

-H -H -H -(CH2)2- -NH- 18 120 6.92 

-CH2-CH2-CO-NH- -H -(CH2)2- -O- 19 0.57 9.24 

-NH-CO-CH2- -H -(CH2)2- -O- 20 0.95 9.02 

-N(CH3)-CO-CH2- -H -(CH2)2- -O- 21 0.48 9.32 

-H -NH-CO-CH2- -(CH2)2- -O- 22 3.6 8.44 

O

O
O

N
+

 

23 250 6.60 

Y N
+

S

O

O

W
X R

z

 

-W- -X- -Y-Z- R 
Ligand 

ID 
IC50 (nM) pIC50 

-(CO)- -CH2-CH2- -CH-CH2- -CH2-Φ 24 8 8.10 

-(CO)- -CH2-C(OH)- -CH-CH2- -CH2-Φ 25 43 7.37 

-(CO)- -CH2C(OH)CH2CH2- -CH-CH2- -CH2-Φ 26 380 6.42 

-(CO)- -CH2CH2CH2CH2- -CH-CH2- -CH2-Φ 27 110 6.96 

-(CO)- -CH2C(OCH3)- -CH-CH2- -CH2-Φ 28 120 6.92 

-(CO)- -CH- -C-CH2- -CH2-Φ 29 520 6.28 
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-C(OH)- - -CH-CH2- -CH2-Φ 30 19580 4.71 

- -CH- -C-CH2- -CH2-Φ 31 2670 5.57 

-(CO)- -CH2-CH2- -CH-CH2- -(CH2)2OCH3 32 53 7.28 

-(CO)- -CH2-CH2- -CH-CH2- O
NO2

 
33 32 7.49 

-(CO)- -CH2-CH2- -CH-CH2- 
O  

34 28 7.55 

-(CO)- -CH2-CH2- -CH-CH2- 
O

O

 
35 79 7.10 

-(CO)- -CH2-CH2- -CH-CH2- -CH2CH2-O-Φ 36 390 6.41 

-(CO)- -CH2-CH2- -CH-CH2- -CH2-CN 37 1000 6.00 

S

O

O

O

N
+

R1
 

-R1 
Ligand 

ID 
IC50(nM) pIC50 

-CH3 38 900 6.05 

-CH2CH3 39 280 6.55 

-CH2CH=CH2 40 540 6.27 

 
41 110 6.96 

 
42 40 7.40 

-R1 
Ligand 

ID 
IC50(nM) pIC50

-CH2CH2-O-CH2CH3 43 7 8.15 
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F

 
44 2.6 8.59 

O

O

 
45 1000 6.00 

S

 
46 6 8.22 

O
NO2

 
47 4.5 8.35 

N
+

R1

O

 

-R1 
Ligand 

ID 
IC50(nM) pIC50 

O

O

 
48 100 7.00 

O

O

 
49 41.5 7.38 

O  
50 139 6.86 

O  
51 50 7.30 

N

O

O
 

52 120 6.92 

N N
 

53 22 7.66 
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Table 4.2.2. Chemical structures in the huAChE testing set152 

Y N
R3

R2
R1

X N

 

R1 R2 R3 -X- -Y- 
Ligand 

ID 
IC50(nM) pIC50 

-H -OCH3 -H -(CH2)2- -O- 54 8.3 8.08 

-H -NH-CO-Φ -H -(CH2)2- -O- 55 9.4 8.03 

-H -OH -H -(CH2)2- -O- 56 26 7.59 

-H -H -H -(CH)2- -O- 57 210 6.68 

-H -H -H -NH-(CH2)2- -O- 58 810 6.09 

-H -H -H -(CH2)2- -N=CH2 59 340 6.47 

-CH2CONH- -H -(CH2)2- -O- 60 0.33 9.48 

Y N
+

S

O

O

W
X R

z

 

-W- -X- -Y-Z- R 
Ligand 

ID 
IC50(nM) pIC50 

-(CO)- -CH2C(OH)- -CH-CH2- -CH2-Φ 61 190 6.72 

-(CO)- -CH2- -C(OH)-CH2- -CH2-Φ 62 90 7.05 

-(CO)- -CH2- -C=CH- -CH2-Φ 63 750 6.12 

- -CH2- -CH-CH2- -CH2-Φ 64 30000 4.52 

-(CO)- -CH2CH2- -CH-CH2- -CH2COOCH3 65 54 7.27 

S

O

O

O

N
+

R1
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-R1 
Ligand 

ID 
IC50(nM) pIC50 

-(CH2)2CH3 66 2570 5.59 

-(CH2)2OCH3 67 30 7.52 

-CH2-Φ 68 4.6 8.34 

O

O N
+

O

 

69 240 6.62 
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Table 4.2.3. Chemical structures in the AGHO training set 

Ligand Structure pKm
 a Predicted Km

 b 

Phenylethylamine 

CH2CH2NH2

 
1.77 1.69 

Tryptamine 
N

CH2CH2NH2

 
2.44 2.37 

Phenylpropylamine 

CH2CH2CH2NH2

 
2.06 2.10 

Phenylbutylamine 
CH2CH2CH2CH2NH2

 
2.60 2.58 

Histamine 
N

N
CH2CH2NH2

 
1.03 1.03 

3-Methoxy- 

phenylethylamine 

CH2CH2NH2

OMe  

1.80 1.94 

4-Methoxy- 

phenylethylamine 

CH2CH2NH2

OMe  

1.78 1.74 

Octopamine 

OH

OH
NH2

 

0.91 0.93 

2,3-Dihydroxy- 

phenylethylamine 

CH2CH2NH2

OH

OH  

1.73 1.75 

2,4-Dihydroxy- 

phenylethylamine 

CH2CH2NH2

OH

OH

 

1.69 1.64 
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Dopamine 

CH2CH2NH2

OH
OH

 

1.48 1.55 

Tyramine 

CH2CH2NH2

OH  

1.77 1.76 

a Values for apparent log(1/Km) are expressed in mM. 
b Values for predicted log(1/Km) by GEMQSAR analysis. 

 

Structural Model of huAChE 

The past QSAR studies of AChE inhibitor many were based on using ligand-based design 
methods such as CoMFA153; 154; 155; 156; 157. To simulate the protein-ligand interactions, we have 
modified an induce-fit structure of huAChE from crystallized structure to be the target protein and 
the docking simulation of protein-ligand complex would be considered for the QSAR model 
constructing. 

The AChE X-ray crystallized structures we used in the study were huAChE (PDB entry 1B41158) 
and tcAChE (PDB entry 1EVE159). The crystallized structure of huAChE (1B41) has no ligand 
complex with the protein and the structure of tcAChE (1EVE) has the co-crystallized inhibitor, E20 
complex with the protein. The sequence identity between the two proteins is 57% and the root mean 
square deviation (RMSD) between the structures of huAChE and tcAChE are 0.88 Å for the set of all 
Cα atoms in the whole protein. To similate the binding conformation of the co-crystallized E2020 
inhibitor relative to the huAChE structure, we have aligned the huAChE structure to the tcAChE 
structure by a maximal overlap of Cα atoms for the huAChE/tcAChE residues within the proteins. 
Because the absence of a solid understanding of the roles of solvent molecules in the huAChE active 
site, we did not take all waters into consideration. After ascertaining the binding conformation of 
E2020 inhibitor relative to the huAChE structure, the hydrogen atoms were added to the 
huAChE-E2020 complex via SYBYL7.0. The energy optimized procedure by Tripos was then 
performed to the huAChE-E2020 complex force field, which had a termination gradient of 0.05 
kcal/mol*Å via SYBYL7.0. The resulting structure of protein was extracted for the docking 
simulation of protein-ligand complex to be considered for the QSAR model construction. Further, 
the structure of the binding cavity for huAChE, including amino acids enclosed within a 8 Å radius 
sphere centered on the bound ligand, was used. 
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Structural Model of AGHO 

There is no X-ray crystallized structure of AGHO so far. In order to simulate the protein-ligand 
interactions in the binding site of AGHO, we have constructed a homology modeling of AGHO. First 
we obtained the amino acid sequence of AGHO from the SwissProt/TrEMBL. Subsequently the 
amino acid sequence was used to search for the template by BLAST160, and we selected the AGAO 
structure (PDB entry 1IU7161) to be the template. The sequence identity between the AGHO and 
AGAO is 61%, suggesting a high structural homology. 

In preparation for the template structure, we selected the structure of AGAO A chain (PDB 
entry 1IU7) to be the template, and removed the Cu2+ ion and H2O molecules from the crystal 
structure. There was a special cofactor, 2.4.5-trihydroxyphenylalanyl quinine (TPQ) in the protein, 
and it was generated from an intrinsic tyrosine in the amino acid sequence by a self-processing 
technique that required the Cu2+ ion and molecular oxygen162. We have modified the TPQ to tyrosine 
by removing the O atoms from the side-chain of TPQ. Subsequently, the homology modeling of 
AGHO was constructed according to the amino acid sequence of target protein and the structure of 
template by SWISSMODEL163. 

The root mean square deviation (RMSD) between the target protein structure and template 
structure is 0.15 Å for the set of all Cα atoms in the whole protein, indicating the good overall 
alignment and substantial structural homology. To ascertain the orientation of Cu2+ ion relative to the 
modeling structure, we have aligned the modeling structure to the AGAO (PDB entry 1IU7) structure 
by a maximal overlap of Cα atoms for the residues within the two proteins. To modify the tyrosine to 
TPQ, we modified the hydrogen atoms of the side-chain of tyrosine to oxygen in position 2, 4 and 5. 
Because the absence of a solid understanding of the roles of individual solvent molecules in the 
AGHO active site, we did not take all waters into consideration. In order to mimic the structural 
character of AGHO, we aligned the modeling structure to the structure of AGAO A chain (1IU7A) 
and AGAO B chain (1IU7B) respectively, and then we adopted the relative coordinate after 
alignment of each monomer. 

After the modification, hydrogen atoms were added and the charge of Cu2+ was assigned to the 
structure via SYBYL7.0. The structure of model was then optimized by Tripos force field, having a 
termination gradient of 0.05 kcal/mol*Å in SYBYL7.0. The resulting structure of protein was 
extracted for the docking simulation. The structure of the binding cavity for AGHO, including amino 
acids enclosing within a 8 Å radius sphere centered on the catalytic cofactor (TPQ), was used. 

To evaluate the performance of GEMDOCK on CuAOs, the molecular recognition of known 
substrate, phenylethylamine161 was performed for the active site of AGAO (PDB entry 1IU7). There 
is no co-crystallized protein-ligand complex of AGAO thus; we defined the binding site by the 
catalytic cofactors (TPQ). The coordination of amino acids within the sphere of 8 Å relative to the 
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cofactor, 2.4.5-trihydroxyphenylalanyl quinine (TPQ382) is obtained as the binding site of AGAO. 
The docked ligand at the active site of AGAO formed the hydrogen bonding interactions with the 
cofactor TPQ382-O5, D298-OD2 (general base) and I379-O by the function group –NH2 of the 
ligand. The aromatic ring of the docked ligand stayed in the hydrophobic pocket of AGAO. These 
interactions correspond to the necessary interactions of ligand binding in CuAOS as described in 
other literatures. The result of molecular recognition revealed that GEMDOCK could generate 
reasonably bound poses in CuAOs. 

GEMPLS 

GEMPLS is a hybrid approach that combines genetic algorithm (GA) as a robust optimization 
technique with PLS as a powerful statistical technique for the variable selection and model evolution. 
GA operates on a population of potential solutions applying the principle of survival of the fittest to 
produce successively better approximations to optimum solution. PLS deals with strongly collinear 
input data and makes no restriction on the number of variables used. In GEMPLS, the chromosomes 
consist of some randomly selected features and the latent variables (lv). The squared cross-validated 
correlation coefficient q2 in the PLS analysis is used as an objective function to provide a 
measurement of how the internal predictability with respect to the selected features of the 
chromosome. And GA will find the fittest features with the highest q2 in the PLS analysis.  

The main steps involved in GEMPLS include the following: (a) initiation and evaluation of the 
initial population, (b) selection of the reproductive population, (c) crossover and mutate the 
reproductive population, (d) evaluation of the child population, (e) reinsertion of the child population 
to form the population in the next generation. The cycle of above four steps (from step (b) to (e)) is 
repeated until the number of generations reaches the possible maximum. In order to improve the 
performance of GEMPLS for QSAR model building, a number of refinements have been introduced 
into GEMPLS. The refinements include the following:  

(a) An extra bit lv, representing the number of latent variables, is appended to the original 
chromosome of GA and expected to efficiently solve the problem of the optimum number of 
latent variables though evolutionary process  

(b) Adopt Mahalanobis distance to discriminate significant features. Mahalanobis distance is a very 
useful way of determining the deviation of a sample from the mean of the distribution in 
multivariable calculus. Therefore, the Mahalanobis distance is adopted to identify significant 
features from all of those.  

∑−
−−=

12 )()'( μμ vvM  (4.2.2) 

M is the Mahalanobis distance from the feature vector v (column vector of data matrix here) to the 
mean vector µ, where Σ is the covariance matrix of the features. 
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(c) Cooperate with biased mutations to lead the evolution. We have recommended that uniform 
mutation is cooperating with biased mutation to lead the evolution of GA toward a significant 
feature set and to reduce the interference of noise features. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

×−+=
1

)( minmaxmin
s

is
i N

pNPPPP  (4.2.3) 

Pi is the probability of setting feature bit i to 1, pi is the position of feature i in the descending order 
of Mahalanobis distance of all features, Pmin and Pmax are the minimum and maximum values of Pi, 
and Ns is the number of significant features. Pi is derived from pi only when pi is ahead of Ns, 
otherwise Pi is set to Pmin. In other words, the significant feature i with higher Mahalanobis distance 
will obtain the higher Pi. In this study, the corresponding parameters are defined as: Pmax = 0.8, Pmin 
= 0.2 

GEMkNN 

GEMkNN is a hybrid approach that combines GA as a robust optimization tool with kNN as a 
pattern recognition method to evaluate the discriminative ability of the subset (kNN is a conceptually 
simple, nonlinear approach to pattern recognition problems). In GEMkNN, the chromosomes consist 
of some randomly selected features and the number of selected similar molecules (k). The similarities 
between compounds are evaluated by Euclidean distance. The squared cross-validated correlation 
coefficient q2 in the kNN analysis is used as an objective function to provide a measure of how the 
internal predictability with respect to the selected features of the chromosome. The GA will find the 
fittest features with the highest q2 in the kNN analysis. 

The main steps involved in GEMkNN are the same as in GEMPLS, and the same refinements of 
GEMPLS included (a) adopt Mahalanobis distance to discriminate significant features (Equation 
4.2.2) and (b) cooperate with biased mutation to lead the evolution (Equation 4.2.3) also have been 
introduced into GEMkNN. 

Model evaluation 

The predictability of QSAR model was assessed by the conventional cross-validated correlation 
coefficient (q2), the cross-validated SDEP (SDEPcv), and external SDEP (SDEPex): 
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where yi is the observed biological activity of compound i, ypred,i is the predicted biological 
activity of compound i in the validation set, y  is the average biological activities of the data set, 
and N is the total number of compounds. 

After deciding the optimum number of latent variables, the corresponding highest q2, lowest 
SDEP can be used to assess the predictability of QSAR model, i.e. the model with more remarkable 
predictability can provide the higher q2 and the lower SDEP between the observed and predicted 
biological activities. 

 

4.2.3 Results and Discussion 

The GEMQSAR method combined GEMDOCK and QSAR tools, GEMPLS and GEMkNN 
was validated with 69 huAChE inhibitors and practically applied in the analysis of protein-ligand 
interactions on AGHO. The consensus feature profile and specific feature set were adapted for 
identifying critical functional groups of compounds and key residues in the protein. 

QSAR model of huAChE 

Evaluation of GEMDOCK on AChE 

In order to evaluate GEMDOCK on AChE, we have docked the crystallized ligand (E20) of 
tcAChE into its reference protein (1EVE). The RMSD value between the docked conformation and 
the crystal structure of reference protein (1EVE_E20) is 1.73 Å. To evaluate the performance of 
docking tool on modeled huAChE, we compared the docked poses of 1EVE and modeled huAChE. 
In the complex of tcAChE (1EVE ), the ligand E20 forms a stable stack force with W84, W279 and 
F330. The nearest distance between the atom N of ligand and the water is 2.90 Å. The docked ligand 
forms a stable stack force with W84, W279 and F330, and the nearest distance between the atom N 
of ligand and the water is 3.69 Å. 

Validation QSAR model of huAChE 

GEMPLS and GEMkNN have been employed in the raw feature sets and the specific feature set 
that removed the conserved moieties for huAChE inhibitors. In the whole feature set, the result of 
cross-validated correlation coefficient (q2) in GEMkNN (0.66) is better than GEMPLS (0.63) (shown 
in Table 4.2.4). The number of total features reduced from 223 to 217 with specific skeleton set and 
the q2 value of GEMkNN improved to 0.74 better than GEMPLS. The r2 value of testing set 
improved in both GEMPLS and GEMkNN. The average q2 value of cross-validated correlation 
coefficient of GEMkNN is better than GEMPLS in the preliminary huAChE models. Thus, 
GEMkNN has been employed in the QSAR model construction of huAChE.  
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Table 4.2.4. The performance of GEMPLS and GEMkNN relative to different protein-ligand 
interactions profiles in the huAChE set 

Whole Interaction Profile a Specific Interaction Profile 
b  

GEMPLS GEMkNN GEMPLS GEMkNN 

No. of features 
(atoms) c 

223 223 217 217 

Average of q2 d 0.627 0.657 -2.607 0.737 

Average of r2 e 0.402 0.123 0.466 0.724 

Standard 
derivation of q2 f 

0.015 0.018 0.093 0.018 

Standard 
derivation of r2 g 

0.125 0.095 0.050 0.119 

No. of selected 
features (atoms) 

36.2 36.1 33.8 34.7 

a The interaction profile between protein and whole atoms of ligand 
b The interaction profile between protein and the specific skeleton of ligand 

c The number of feature in origin molecular feature set. 
d The average q2 values in 10 times in training set.  

e The average r2 values in 10 times in testing set. 
f The standard deviation of q2 values in 10 times in training set. 
g The standard deviation of r2 values in 10 times in testing set. 

 

With the method flow shown in Figure 4.2.1, we constructed the QSAR model of huAChE by 
GEMQSAR. First, we rebuild the QSAR model from the specific feature set and consensus features 
selected in the preliminary models. The average q2 values of leave-one-out cross validation is 0.82 
and the average correlation of r2 = 0.72 between the predicted values and the experimental values. 
For constructing a specific QSAR model, we have adopted the one that the q2 value is most close to 
the average q2 value in 10 times of model training. This is because we hope to select a steady model 
and to avoid over-fitting in QSAR model building. At last we adopted the model with a 
leave-one-out cross validation of q2 = 0.82 and a correlation of r2 = 0.78 between the predictive 
values and experimental values (the values shown in Table 4.2.5).  

Table 4.2.6 shows the comparison of our method and previous research of Guo et. al. Guo et. Al, 
who generated their model by the PLS method from the predicted protein-ligand complexes docked 
by GOLD having q2 and r2 values in their training set of 0.72 and 0.63. GEMQSAR used PLS and 
kNN to generate the relationships of the atom-basedd protein-ligand interactions of huAChE. The 
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generic evolutionary method performed feature selection in the model building improved the 
accuracy of the training model and the q2 and r2 values in the training set of our method were 0.82 
and 0.72 respectively. Without the feature selection step, our method only generated a model with q2 
and r2 values of 0.74 and 0.72 which are close to the results of Guo et. al,. The feature selection step 
improved the QSAR method not only as shown in training but also as shown in prediction ability. 
The r2 values between the experimental and the predicted values of huAChE testing set of GEMkNN 
and Guo et. al. are 0.78 and 0.69 (Figure 4.2.3) 

 

Table 4.2.5. The performances of GEMQSAR with different features in the huAChE set 

Interaction Profile a 
Consensus Feature Profile 
b 

 

Whole c Specific d  Whole Specific  
No. of features (atoms) 223 217 156 92 
Average of q2 0.66 0.74 0.70 0.82 
Average of r2 0.12 0.72 0.06 0.72 
Standard derivation of q2 0.018 0.018 0.009 0.006 
Standard derivation of r2 0.095 0.119 0.050 0.056 
No. of selected features 
(atoms) 

36.1 34.7 29.8 23.5 

a The feature set of all the protein-ligand interactions. 
b The consensus protein-ligand interaction profile. The feature set that consensus from the features of 
preliminary models  

c The interaction profile between the protein and all ligand atoms 

d The interaction profile between the protein and the specific skeleton of ligand 

Table 4.2.6. Comparison of GEMQSAR methods and results of Guo et. al. 
 GEMQSAR Guo et. al.  
Docking 
Tool 

GEMDOCK GOLD 

Basis Atom-based interactionsc 
Residue-based 
interactionsd 

q2 a 0.82 0.72 
r2 b 0.72 0.63 

a The mean q2 value of 20 independent QSAR models in the training set . 
b The mean r2 value of 20 independent QSAR models in the testing set . 
c The interactions containing electrostatic, hydrogen bonding, and van der Waals interactions . 
d The interactions containing electrostatic and van der Waals interactions. 
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Figure 4.2.3. The comparison of the experimental IC50 values and predicted IC50 value of the testing 
set for huAChE QSAR model. The r2 of the prediction of testing set for huAChE QSAR models 
generated by GEMQSAR and Guo et. al. are 0.78 and 0.69, respectively. 

 

The comparisons of the result of the huAChE model in the whole features and consensus 
features are shown in Table 4.2.5. GEMkNN was selected to build the final huAChE model because 
it generated a higher accuracy than GEMPLS on the huAChE data set. The consensus features 
selected by GEMkNN are 156 interactions in huAChE. Compared to the average q2 values when 
considering all interactions versus only consensus interactions, GEMkNN built the better QSAR 
model at considering only the consensus interactions. The model built from the consensus features 
has higher correlation with the training set (q2 = 0.70) and more consistent in model building 
(standard derivation of q2 = 0.009). When considering the interactions from specific atoms in the 
ligand structure, the training q2 and the consistency of model building further improve to 0.82 and 
0.006 (standard derivation). These evidences demonstrated that GEMQSAR method with consensus 
features could generate a more consistent and better predicting QSAR model on huAChE.  

Table 4.2.7 listed the selected features and their roles for the binding of huAChE. Several 
residues have been found very important in previous studies 152; 153. Residue Y72 could form a wall 
to stabilize ligand and W86 forms π-π interaction with choline. N87 and Y337 contribute to the 
electrostatic forces in the active site. Residues Y124 and F338 provide hydrophobic contacts with 
ligand. S203 and H447 are significant in huAChE, which are the catalytic triad in the enzyme 
catalysis. In previous studies 153, residue H287 was found to possibly affect the binding affinity of 
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AChE inhibitors and W286 might play the same role as H287. Residue Y341 forms the local pocket 
in the active site. The QSAR analysis for huAChE demonstrated that our method could mine 
significant features for influencing the binding affinity. The comparisons of previous works also 
indicated that the QSAR model built by our method not only has well predicted performances but 
also generates consistent models. 

 

Table 4.2.7. Important atoms in the huAChE by the GEMQSAR 
Residues Atom Type Description152; 153 
TYR72 CD1 Forms a wall to stabilize ligand ring 
TRP86 CH2 Forming π-π interaction with choline 
ASN87 CA Electrostatic contributors in the gorge area 
TYR119 CA - a 
GLY120 N - 
TYR124 CE1、CE2 Provide hydrophobic contacts 
GLY126 CA - 
SER203 CB Catalytic triad 

TRP286 CG、NE1、CZ3 
Probably helpful in enhancing the activity of ligand with 
polar groups 

SER293 O - 
ARG296 N、CA、C - 
TYR337 C、O、CD2、CE1 Electrostatic contributors in the gorge area 
PHE338 C Provide hydrophobic contacts 
TYR341 CB The residue in the local pocket 
HIS447 CD2 Catalytic triad 
GLY448 O - 
a not available. 

 

The application of AGHO QSAR model  

Our method has been employed to practical application of QSAR analysis for AGHO. AGHO is 
one of CuAOs (EC 1.4.3.6). In prokaryotic organisms, these enzymes are utilized for growth on 
amine. In human, these enzymes have been found to be correlated with heart failure147 and chronic 
medical condition in diabetic patients164; 165. The training set of AGHO has twelve known substrates 
with Km values (Table 4.2.3).  

GEMDOCK generated the poses of 12 compounds for modeled AGHO binding sites and 
generate 131 raw interaction features (included hydrogen bonding, van der Waals and electrostatic 
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interactions). Then GEMPLS and GEMkNN were employed for building ten preliminary QSAR 
models, respectively. On the all protein-ligand features of AGHO, the average q2 of cross-validation 
for GEMPLS and GEMkNN is 0.98 and 0.82 in the training set, respectively (Table 4.2.9). When 
applying the specific skeleton set for QSAR analysis, the average q2 of cross-validation of GEMPLS 
and GEMkNN is 0.89 and 0.38. We selected GEMPLS for generating the consensus feature set and 
building the AGHO model from the preliminary QSAR analyses. The average q2 values of 
leave-one-out cross validation of training set for AGHO is 0.98 and standard deviation of the q2 

values 0.001 by GEMPLS method. After rebuilding ten consensus models by GEMPLS, we adopted 
the AGHO model with a leave-one-out cross validation of q2 = 0.98. The predicted Km values show 
in the Table 4.2.10. Analyzing the relationships of substitution groups and affinity, the affinity of 
AGHO substrates is related to the hydrophobicity of compound structures. To explore the 
relationship between affinity and substitution groups, we created a set of derivative structures from 
12 known compounds and used the AGHO QSAR model to predict the potential affinities. The 
derivative structures focused on the two main factors for hydrophobicity, (a) the length of 
substitution group (Figure 4.2.4A) and (b) the size of aromatic ring (Figure 4.2.4B). The predicted 
values of derivative structures show the trend of affinity would increase with the extension of 
substitutions and ring size (Table 4.2.11). In order to validate GEMQSAR analysis, two compounds, 
2-(1H-benzo-indol-3-yl)ethanamine and phenylmethanamine were selected into the biological assay 
(Figure 4.2.4). The biological assay identified a new substrate structure, phenylmethanamine with 
pKm value 1.26 which is very close to the predicted pKm value 1.08 (shown in Figure 4.2.4A). The 
discovery of a new substrate demonstrated the robustness and prediction power of GEMQSAR 
analysis method. 
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Figure 4.2.4. The relationships of the binding affinity with (A) the extension of substitutions, and (B) 
size of ring. (A) The relationship of length of -CH2- substitution and affinity predicted by AGHO 
QSAR analysis (B) The relationship of ring size and affinity predicted by AGHO QSAR analysis. 
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The biological assay identified a new substrate structure, phenylmethanamine with pKm value 1.26 
which is very close to the predicted pKm value 1.08. 

Table 4.2.9. The performance of GEMPLS and GEMkNN relative to different protein-ligand 
interactions profiles in the AGHO set 

Whole Interaction Profile a Specific Interaction Profile 
b 

 

GEMPLS GEMkNN GEMPLS GEMkNN 

Number of 
features (atoms) 

131 131 94 94 

Average of q2 0.98 0.82 0.89 0.38 

Standard derivation of q2 0.001 0.008 0.069 0.031 

No. of selected features (atoms) 11 16.5 13 33.5 
a. The interaction profile between protein and whole atoms of ligand 
b. The interaction profile between protein and the specific skeleton of ligand 

 

Table 4.2.10. The performances of GEMQSAR using four different features in the AGHO set 
Interaction Profile a Consensus Feature Profile b  
Whole c Specific d  Whole Specific  

No. of features (atoms) 131 94 34 52 
Average of q2 0.98 0.89 0.98 0.95 
Standard derivation of q2 0.001 0.069 0.001 0.007 
No. of selected features (atoms) 11 13 12.9 12.8 
a The feature set of all the protein-ligand interactions. 
b The consensus protein-ligand interaction profiles derived from 10 preliminary models  
c The interaction profiles between the protein and all atoms of a ligand 

d The interaction profiles between the protein and the atoms on the specific skeleton of a ligand 
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Table 4.2.11. Chemical structures of AGHO derived substrates with different lengths of substitution 
groups 

Structure Ligand  R Predicted pKm a 

-CH2NH2 2.19 
-C2H4NH2 2.37 
-C3H6NH2 2.81 

 

Tryptamine 

-C4H8NH2 2.32 
-CH2NH2 1.08 
-C2H4NH2 1.69 
-C3H6NH2 2.10 

 

Phenylethylamine 

-C4H8NH2 2.58 
-CH2NH2 1.32 
-C2H4NH2 1.75 
-C3H6NH2 2.04 

 

2,3-Dihydroxy-phenylethylamine

-C4H8NH2 2.08 
-CH2NH2 1.32 
-C2H4NH2 1.64 
-C3H6NH2 1.82 

 

2,4-Dihydroxy-phenylethylamine

-C4H8NH2 2.37 
-CH2NH2 1.29 
-C2H4NH2 1.55 
-C3H6NH2 1.87 

 

Dopamine 

-C4H8NH2 2.02 
-CH2NH2 1.17 
-C2H4NH2 1.76 
-C3H6NH2 2.00 

 

Tyramine 

-C4H8NH2 1.99 
a The predicted log(1/Km) values from the final model generated by GEMQSAR. 

 

The AGHO QSAR analysis selected 14 interaction features for describing the affinities of 
AGHO substrates (detail shown in Table 4.2.12). The importance of residues in AGAO has been 
studied in previous researches 166 but there are few researches focused on AGHO. The sequence 
identity between the AGHO and AGAO is 61%, suggesting a high structural and functional 
homology between them. Most selected residues in AGHO QSAR analysis are conserved on the 
AGHO and AGAO. We used the homologous residues of AGAO to understand the functions of 
selected residues in AGHO. Residues Ala155, Pro156, Tyr315, Tyr321, and Phe426 correspond to the 
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residues of the hydrophobic pocket in binding site of AGAO and they could form the van der Waals 
contact interactions in ligand binding.  

 

Table 4.2.12. List of important atoms in the AGHO QSAR analysis 

Selected Residues Atom Type Description[] 

PHE125 CD2 -a 

ALA155 O The residue in the hydrophobic pocket 

PRO156 N The residue in the hydrophobic pocket 

TYR315 OH The residue in the hydrophobic pocket 

ASP317 OD1 The general base in the active site 

TYR321 CE1、CZ The residue in the hydrophobic pocket 

VAL398 C、CB - 

ASN400 CA、CG、OD1 The conserved residue in CuAOs 

PHE426 CD2、CE2 The residue in the hydrophobic pocket 

a not available. 

 

4.2.4 Conclusions 

We employed GEMDOCK to generate the atom-based protein-ligand interactions as features, 
which are used by GEMPLS and GEMkNN to construct the QSAR models. The QSAR analysis 
method has been verified on huAChE QSAR analysis with q2=0.82 and r2=0.72 values therefore 
showing improvement over previous QSAR studies that apply the consensus features for modeling. 
The comprehensive results show good performances for QSAR analyses of huAChE and AGHO and 
in the process of QSAR model construction, generating the consensus feature set improves the 
quality and stability of QSAR analysis. On the application of AGHO, the new substrate structure of 
phenylmethanamine was identified by QSAR analysis and validated by further enzyme assay. These 
verifications and applications show that GEMQSAR method is adaptable to QSAR analysis and 
useful to mine the important interactions related to activities. 
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計畫成果自評(Self-evaluation of The Project Achievements) 

We have published eight journal papers, one conference paper, five posters and won the 2007 
national innovation award. Eight masters were supported by this research project. The details are 
described as bellow. 
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"GEMDOCK: An Integrated Environment for Computer-aided Drug Design and Its 
Applications", Taiwan 

Journal papers: 
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2. M.-C. Yang, H.-H. Guan, M.-Y. Liu, Y.-H. Lin, J.-M. Yang, W.-L. Chen, C.-J. Chen, and Simon 
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Proteins: Structure, Function, and Bioinformatics, vol. 71, pp. 1197-1210, 2008. (SCI, IF: 3.73) 

3. Y.Y. Yao, K.L. Shrestha, Y.J. Wu, H.J. Tasi, C.C. Chen, J.-M. Yang, A. Ando, C.Y. Cheng, Y.K. 
Li*, "Structural simulation and protein engineering to convert an endo-chitosanase to an 
exo-chitosanase," Protein Engineering, Design & Selection, 2008, in press. (SCI, IF: 3.0)  

4. C.-H. Tung, J.-W. Huang and J.-M. Yang*, "Kappa-alpha plot derived structural alphabet and 
BLOSUM-like substitution matrix for fast protein structure database search," Genome Biology, 
vol. 8, pp. R31.1~R31.16, 2007. (SCI, IF: 7.17) 
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domains and SCOP superfamilies," Nucleic Acids Research, pp. W438-W443, 2007. (SCI, IF: 
6.31) 

6. J.-M. Yang, Y.-F. Chen, Y.-Y. Tu, K.-R. Yen, and Y.-L. Yang*, “Combinatorial computation 
approaches identifying tetracycline derivates as flaviviruses inhibitors,” PLoS ONE, pp. e428.1- 
e428.12, 2007.  

7. J.-M. Yang* and T.-W. Shen, "A pharmacophore-based evolutionary approach for screening 
selective estrogen receptor modulators," Proteins: Structure, Function, and Bioinformatics, vol. 
59, pp. 205-220, 2005. (SCI, IF: 3.73) (Times Cited: 13) 

8. J.-M. Yang* Y.-F. Chen, T.-W. Shen, B. S. Kristal, and D. F. Hsu, "Consensus Scoring Criteria 
for Improving Enrichment in Virtual Screening," Journal of Chemical Information and 
Modeling, vol. 45, pp. 1134-1146, 2005. (SCI, IF: 3.2) (Times Cited: 25) 

Conferences Papers: 
1. K-C Hsu, Y-F Chen, and J-M Yang*, "Binding affinity analysis of protein-ligand complexes," 

2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 167-171, 
2008.  
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Posters 
1. Y.-F. Chen, L.-J. Chang, J.-M. Yang*, "Integrating GEMDOCK with GEM-PLS and GEM-kNN 

for QSAR modeling of huAChE and AGHO," in 15th Annual International Conference on 
Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference on 
Computational Biology (ECCB), Vienna, Austria, 2007. 

2. C.-H. Tung, T.-K. Yang, and J.-M. Yang*, "Structural Binding Pocket Clustering and 
Protein-Ligand Interaction Analysis for ATP-binding Proteins," in 15th Annual International 
Conference on Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference 
on Computational Biology (ECCB), Vienna, Austria, 2007. 

3. J.-M. Yang, Y.-F. Chen, C.-Y. Chen and Y.-L. Yang, "Identifying Two Tetracycline-Derivates as 
Effective Novel Inhibitors on the Propagation of Dengue Virus Type 2 Using Virtual Screening 
against the Envelope Protein", in Annual Conference on Biotechnology, Hsinchu, Taiwan, 2006 
(Excellent work) 

4. C.-N. Ko, Y.-F. Chen, Y.-J Chen and J.-M. Yang, "Cluster analysis of Structure-based Virtual 
Screening by Using Protein-ligand Interactions and Compound Structures", in Annual 
Conference on Biotechnology, Hsinchu, Taiwan, 2007 (Award) 

5. Y.-T. Chen and J.-M. Yang,"A New Profile Method for Predicting Protein-ligand Binding Site", 
in 2008 Annual Conference on Biotechnology, Hsinchu, Taiwan, 2008 (Award) 

 
Databases and web-based services 

GEMDOCK: http://gemdock.life.nctu.edu.tw/dock/ 
Binding site analysis: http://gemdock.life.nctu.edu.tw/cavity_web/ 
3D-BLAST: http://3d-blast.life.nctu.edu.tw/ 

 
Awards in the past three years 
Table 1. The awards of principal investigators during 2005-2008 

Name of PI Date Prize 

J.-M. Yang 2006 獲得國立交通大學 2006 年傑出人士榮譽獎勵 

J.-M. Yang 2007 國家新創獎 

J.-M. Yang 2007~ 生物資訊協會理事 

J.-M. Yang 2005 指導研究生獲資訊學會碩博士論文獎佳作獎 

 



 
 

166

 

Table 2. The awards of graduate students joined in this project 

Student Professor Date Prize 

陳佑德 J.-M. Yang 2008 
交通大學生物科技學院 2008 生物科技

學術壁報競賽優等 
陳彥甫 
陳右儒 J.-M. Yang 2007 國家新創獎第三名 

陳彥甫 J.-M. Yang 2007 
2007 年生物科技學術研討會暨壁報比

賽（優等） 

董其樺 J.-M. Yang 2007 
2007 年生物科技學術研討會暨壁報比

賽（優等） 

董其樺 J.-M. Yang 2006 
2006 年生物科技學術研討會暨壁報比

賽（優等） 

陳彥甫 J.-M. Yang 2006 
2006 年生物科技學術研討會暨壁報比

賽（佳作） 
董其樺 J.-M. Yang 2005 資訊學會最佳碩博士論文 

 
Table 3. Summary of conferences that our students have joined during 2005-2008 

Student Professor Date Conference 

許凱程 J.-M. Yang 2008/05 
The 2nd International Conference on Bioinformatics and 
Biomedical Engineering (iCBBE2008) 

董其樺 J.-M. Yang 2007/08 The 15th Annual International Conference on Intelligent Systems 
for Molecular Biology (ISMB) 

陳彥甫 J.-M. Yang 2007/08 The 15th Annual International Conference on Intelligent Systems 
for Molecular Biology (ISMB) 

 
In summary, we believe that we have achieved fruitful results in this project. This project covers 

virtual screening, pharmacophore identification, post-analysis of virtual screening, and prediction of 
binding affinity and QSAR analysis. These four parts construct an efficient and fast platform for drug 
discovery. We consider that the achievements in this project will be advantageous and valuable to 
researchers to study computer-aided drug design. 
 
 
 


