
Soft Comput (2007) 11:1115–1122
DOI 10.1007/s00500-007-0154-2

FOCUS

Using computational methodology to price European options
with actual payoff distributions

Chieh-Chung Sheng · Hsiao-Ya Chiu · An-Pin Chen

Published online: 23 March 2007
© Springer-Verlag 2007

Abstract Most option pricing methods use mathemati-
cal distributions to approximate underlying asset behavior.
However, pure mathematical distribution approaches have
difficulty approximating the real distribution. This study first
introduces an innovative computational method for pricing
European options based on the real payoff distribution of the
underlying asset. This computational approach can also be
applied to applications related to expected value that require
real distributions rather than mathematical distributions. This
study makes the following contributions: (a) solving the risk
neutral issue related to price options with real payoff distribu-
tions; (b) proposing a simple method for adjusting standard
deviation based on the need to apply short term volatility to
real world applications; (c) demonstrating an option pricing
algorithm that is easy to apply to cross field applications.

Keywords Option pricing · Actual payoff distribution ·
Expected value

1 Introduction

An option is a tradable contract that confers the right, but
not the obligation, to buy (call) or sell (put) an underlying
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asset at an agreed-upon price during a certain period or on
a specific date. The value of such a contract is termed the
option price or option value. Thus, an option price is the
expected return of the underlying asset’s final settlement
price larger (call) or lesser (put) than the desired value (the
agreed-upon price). Because option value is the expected
return of a usually unpredictable underlying asset, option
pricing methodologies have been widely adopted by cross
fields applications that need to obtain the target’s expected
value under uncertainties. For example, the real options anal-
ysis (ROA) approach was widely adopted for assessing infor-
mation technology investments during the early 1990s
(Clemons 1991; Dos Santos 1991). Thus, improvements in
option pricing methodology can significantly benefit expected
value related applications.

Option pricing methods have been widely researched since
the development of the Black-Scholes model (BS model) in
Black and Scholes (1973). Numerous studies have attempted
to relax the restrictive assumptions of the BS model by using
various methodologies to approximate the real payoff dis-
tribution on assets in a risk-neutral manner and thus obtain
the fair option price. Although it seems natural to obtain
the option price based on real asset payoff distribution, this
idea has rarely been implemented because the real distribu-
tion never behaves risk-neutrally. This characteristic limits
the adoption of option pricing methodology in certain non-
mathematical distribution applications because real world
behavior frequently disobeys mathematical distributions.
Furthermore, the time value decreasing speed of an option
accelerates considerably (non-linearly) as the maturity date
approaches, yielding large pricing error, but high-frequency
(time interval less than 1 min) pricing methodologies have
received little attention. This non-linear variation character-
istic also limits high frequency applications. For example,
applications with time to maturity less than one day are not
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suitable for traditional option pricing methodologies because
its expected value varies significantly as the settlement time
approaches. If an option pricing model can remove the above
limitations, it will be more applicable not only in finance but
also in cross field applications.

Accordingly, this study proposes a computational model
for pricing European options (whose exercise is only permit-
ted on expiry) using the real return of the underlying asset,
and verifies the high-frequency pricing performance based
on empirical investigation. Experimental results indicate not
only that the real distribution pricing method outperforms the
BS model, but also that modern computational methods can
be adopted to implement possibility distribution applications
rather than using mathematical distributions to approximate
the real distribution via closed form formulas. According
to the test results, the proposed model contributes signifi-
cantly to overcoming the limitations of traditional options
pricing models when adopted by numerous cross field appli-
cations. For example, researchers must determine whether
their target index exhibits geometric Brownian motion with
lognormal returns when integrating the BS model (or most
option pricing models) to calculate the desired expected val-
ues, as Benaroch did in his research on IT investment risks
(Benaroch 2002). However, there is no need to justify the
target’s distribution when using the proposed computational
model.

The rest of this paper is organized as follows. Section 2
briefly discusses the traditional option pricing methodolo-
gies. Section 3 then discusses observations of asset real pay-
off distribution and the feasibility of applying the real
distribution map to price European options. The pricing meth-
odology and algorithms are also presented in this section.
Next, Sect. 4 conducts an empirical study to verify effective-
ness of applying real payoff distribution to price European
options. Finally, conclusions and future research directions
are presented in Sect. 5.

2 Backgrounds on option pricing models

Cox and Ross (1976) established the option price as the
expected payoff value discounted at the risk-free interest
rate over the risk-neutral distribution of the underlying asset.
However, applying the real payoff distribution rather than
a mathematical risk-neutral distribution is difficult because
the real distribution never behaves in a risk-neutral manner.
Applying a distribution with non risk-neutral characteristic
will violate put-call parity rules (Stoll 1969) because of the
arbitrage possibilities associated with the derived put and
call prices. A simple example is that if a distribution is risk-
neutral then the mean value µ must equal zero. However,
the µ in a real distribution rarely equals zero. The other

difficulty in the application of real distribution is that it needs
different distribution maps for different time to maturity. For
example, at least n different distribution maps are needed
to valuate the option price if it is n days before maturity.
Thus, if the sampling data is huge then the pricing speed
will be too slow for practical use. Additionally, short-term
asset volatility is rarely consistent with that implied by the
real distribution map, leading to significant pricing errors.
Consequently, real asset return distribution cannot be practi-
cally used to obtain the option price, encouraging researchers
to apply mathematically risk-neutral distributions instead.
The most classical of these approaches is the BS model,
which assumes that the payoff of the underlying asset fol-
lows the geometric Brownian motion and has a lognormal
distribution with constant volatility and risk-free interest rate
before maturity (Black and Scholes 1973). Since the devel-
opment of the BS model, more realistic option pricing meth-
odologies have been developed, including: (a) the stochastic
interest-rate/volatility option model (Merton 1973; Amin and
Jarrow 1992; Bates 1996); (b) jump-diffusion related
models (Bates 1991; Madan et al. 1998); (c) Markovian mod-
els (Rubinstein 1994; Yacine and Andrew 1996); and (d) sto-
chastic-volatility jump-diffusion models (Bates 1996; Scott
1997). However, all these models focus on identifying the
“right” distributions and pricing options using close form
formulas. Consequently, the mathematical distribution never
perfectly fits any underlying asset’s actual payoff distribu-
tion.

In computer science, attempts have also been made to
price options using artificial intelligence models to improve
options pricing performance. The most popular of these
methods is the neural network approach. Unlike classical
mathematical methodologies, a neural network is a non-para-
metric estimation technique which does not make any distri-
butional assumptions regarding the underlying asset. Instead,
this approach develops a model using sets of unknown param-
eters and lets the optimization routine seek the best fitting
parameters to obtain the desired results. For example,
Hutchinson et al. (1994) demonstrated that the neural net-
work approach can be used to price S&P future options.
Andrew Carverhill et al. (2003) followed this line of research
and examined the best method of establishing and train a
multi-layer perceptron neural network for option pricing and
hedging. Meissner-Kawano (2001) also trained neural net-
works using option prices to address the smiling effect
Meissner and Kawano (2001) associated with options‘ implied
volatilities. All these works demonstrate that modern compu-
tational theories can offer alternative options pricing meth-
ods. However, few studies have used real payoff distribution
to price options. Thus, this study focused on determining
options price using the “real” payoff distribution obtained
from a historical sample of the underlying asset.
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Table 1 The real distribution maps compared to the normal distributions

1. The X-Axis is the nature log asset return rate in percentage and the Y-Axis is the possibility value in percentage.

2. The histograms represent the real payoff distribution and the curve lines represent the normal distribution.
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Asset returns of 30 days to maturity
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Asset returns of 10 days to maturity
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Asset returns of 1 days to maturity
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3 Computational approach for pricing
European options

This study proposes a computational method of pricing Euro-
pean options using high frequency time interval with one
minute time ticks. High frequency examples are used to
obtain large samples for verification purposes if the execu-
tion efficiency of this computation method can feasibly be

applied to real world applications. The same concept can
also be applied to price European options regardless of time
interval.

3.1 Observations regarding real distributions

Most option pricing models use mathematical distributions.
For example, the BS model assumes that underlying assets

123



1118 C.-C. Sheng et al.

follow a geometric Brownian motion with lognormal returns.
Meanwhile, other sophisticated option pricing methodolo-
gies like the stochastic volatility model apply a flexible
distributional structure in which the correlation between vol-
atility shocks and underlying stock returns controls the level
of skewness, and use the volatility variation coefficient to
control the kurtosis level (Bates 1996; Scott 1997). How-
ever, none of these mathematical distributions can describe
underlying asset behavior in the real world.

To observe the real behaviour of the underlying assets,
this study used sampling data for the period 03/01/2001–
31/12/20031 from the Taiwan Stock Exchange Capitalization
Weighted Stock Index (TAIEX). Because most mathemati-
cal option pricing models discuss the underlying asset return
distribution using lognormal related distributions (or with
certain modifications), this study calculates the asset return
rate as ln( Pt

P0
) with different times to maturity where P0 is

the original price and Pt represents the price after t days. The
actual distributions are compared with the normal distribu-
tions as listed in Table 1.

From Table 1, the real payoff distribution of the asset
(TAIEX) varies with days-to-maturity. That is, the real dis-
tribution is time variant. The most interesting finding is that
the actual distribution exhibits twin-peak phenomenon in 30,
40 and 50 days to maturity distribution maps. Restated, when
days to maturity exceeds 30, the real asset return rate distri-
bution displays two peaks. This twin peak phenomenon has
received little attention from academics.

The real distribution clearly shows that mathematical dis-
tribution approaches have difficulty obtaining precise option
price (at least for the Taiwan stock market), because the actual
distribution varies according to time to maturity. The time
variant distribution issue limits the use of fixed mathematical
distribution pattern across the entire time to maturity range
because variation in time to maturity requires the option pric-
ing model to apply different distributions. However, it is diffi-
cult for mathematical models to apply different distributions
for different time to maturity. Furthermore, behaviour may
differ among assets and markets, so a mathematical model
must apply different distributions to maximize its pricing per-
formance for different assets or different markets. Another
issue is that the actual payoff distribution, like the time variant
twin peaks distributions is difficult to describe using math-
ematical distributions. This issue also limits the cross-field
applications of using the traditional option pricing models.

1 The tick transaction samples from 2004 to 2006 were lost due to a
hard disk crash. The tick data was real-time collected by our financial
lab server via a real-time data source, making data purchase or recov-
ery difficult. Consequently, the 2001–2003 samples were used for the
demonstration to achieve a consistent sample distribution.

3.2 The computational approach

Option price is the expected value of the payoff discounted at
the risk-free interest rate over the risk-neutral distribution of
the underlying asset. Thus, given the price S and an agreed-
upon price K for the underlying asset applicable during a
certain period T , the option value can be described as fol-
lows:

C = E(max(S − K , 0))

P = E(max(K − S, 0))

where C denotes the call option price, P represents the put
option price, and E(.) is the expected value.

In the real world the price of most assets varies continu-
ously, and this variation is described as volatility σ . An option
pricing model calculates C or P of the underlying asset under
the circumstances (S, K , σ, T, r).

Assume I days of sampling data, with each day contain-
ing J time ticks. Then for each sample of i th day and j th
time tick Xi, j , the tick payoff rate Ri, j is

Ri, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xi+1,1
Xi, j

, if the final settlement price is determined by

the opening price on the final settlement day
Xi+1,n

Xi, j
, if the final settlement price is determined by

the closing price on the final settlement day

Notably, Ri, j can also be represented as ln(Xi+1,1/Xi, j ) or
ln(Xi+1,n/Xi, j ) based on the assumptions of the BS model.
However, the difference of applying logarithm or simple pay-
off rate is minor for high frequency applications. This study
avoids unnecessary use of floating point functions to increase
execution speed.

The payoff rate can be preprocessed and stored in a
database table for further use in achieving a reasonable exe-
cution speed when calculating option prices for practical use.

Assume an option matures the next day and has strike
price S, final settlement price St , exercise price K and current
time-tick j . Given m sampling days (which can only generate
m − 1 sample entries), the call price C can be approximated
as follows:

C(S, K , j) = E(max(St − K , 0))

=

m−1∑

i=1
S× max(Ri, j − K

S , 0)

m − 1

Similarly, the Put price P can be approximated as follows:

P(S, K , j) = E(max(K − St , 0))

=

m−1∑

i=1
S× max( K

S − Ri, j , 0)

m − 1
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Consider the riskless interest rate r with time to maturity τ ,
the Call/Put price can be represented as:

C(S, K , j, r, τ ) =

m−1∑

i=1
S× max(Ri, j − e−rτ K

S , 0)

m − 1
(3.1)

P(S, K , j, r, τ ) =

m−1∑

i=1
S× max( e−rτ K

S − Ri, j , 0)

m − 1
(3.2)

However, when attempting to determine the option price
using (3.1) and (3.2), it quickly becomes obvious that the cal-
culated price does not follow the put-call parity rule because
the mean value µ of a real distribution does not equal zero
(implying the real distribution is not risk-neutral). Notably,
arbitraging opportunities occur when the distribution is not
risk-neutral. Furthermore, the real distribution has its own
volatility which is difficult to change. For example, if a real
payoff distribution is formed based on a ten year period of
sample data and has a standard deviation σ1, but the fore-
casted volatility of the target option is σ2, then the option
must be priced using a distribution with a standard deviation
σ2 rather than σ1. If the intrinsic volatility of the actual payoff
distribution cannot be transformed to fit the short term volatil-
ity, the pricing error will be too large for practical use. Given
the difficulty of changing the mean value without influence
the variance, this study established a computational method
for adjusting both the mean value and variance of an existing
distribution to obtain the desired values while maintaining a
similar distribution to the original.

To obtain risk-neutral characteristics based on the real dis-
tribution, the mean µ of the sampling data must be zero.
By observing the real distribution, if the µ changes from a
positive value to zero, the occurrence probability of rightmost
(larger) sampling data reduces while the leftmost (smaller)
sampling data increases. Based on this phenomenon, a com-
putational method can be developed for adjusting the mean
value of the real distributions by altering the sample occur-
rence possibilities.

The first step is attaching a weighting factor wi to each
sampled payoff rate Ri, j . Each wi is assigned an original
value 1.0, indicating that it has a “sampling count” of 1. The
Call and Put prices thus can be represented as

C(S, K , j, r, τ )=

m−1∑

i=1
S× max(wi (Ri, j − e−rτ K

S ), 0)

m − 1
(3.1a)

P(S, K , j, r, τ )=

m−1∑

i=1
S× max(wi (

e−rτ K
S −Ri, j ), 0)

m − 1
(3.2a)

For each set of sampling data, the mean value µ’ and standard
deviation σ ’ can be calculated as:

Weighting factor value

Ri,j0

w = 1.0 

Fig. 1 Rotating the factor weights clockwise decreases the mean value
of the distribution

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

µ’ =
n∑

i=1
Ri, j ×wi

n∑

i=1
wi

σ ′ =

√
√
√
√
√

n∑

i=1
(Ri, j −µ′)2×wi

n∑

i=1
wi

for the jth tick to maturity

The second step is to adjust the weighting factors to transform
the real distribution into a risk-neutral manner. To achieve
this, it is first necessary to sort the sampled payoff rates and
position them on the X-axis with weighting factor 1. Assum-
ing that the sample appearance probability changes linearly,
the weighting factors can be rotated to modify the distri-
bution, as illustrated in Fig. 1. Consequently, by fixing the
rotation point to X = 0, the weighting factors can be rotated
clockwise to decrease the mean values or anti-clockwise to
increase them.

The weighting factors can be determined by solving the
linear equations through the following steps:

Let
Xa =

n∑

i=1
Ri, j

∣
∣Ri, j ≥0

Xb =
n∑

i=1
Ri, j

∣
∣Ri, j <0

and
Xa2 =

n∑

i=1
(Ri, j )

2
∣
∣Ri, j ≥0

Xb2 =
n∑

i=1
(Ri, j )

2
∣
∣Ri, j <0

(3.3)

Let ma denote the slope of the weighting factors for Ri, j ≥ 0,
while mb represents the slope of the weighting factors for
Ri, j < 0.

Solve

⎧
⎨

⎩

Xama = Xbmb
n∑

i=1
Xi, j (1 − ma Ri, j )+

n∑

i=1
Xi, j (1 − mb Ri, j ) = 0

Then

{
ma = (Xa+Xb)Xb

Xb Xa2−Xb2 Xa

mb = (Xa+Xb)Xa
Xb Xa2−Xb2 Xa

(3.4)

Thus, the weighting factor can be transformed as follows:

wi =
{

1 − ma Ri, j
∣
∣Ri j ≥0

1 + mb Ri, j
∣
∣Ri, j <0

(3.5)

Combining (3.4) and (3.5) yields the following weighting
formula:

wi =
{

1 − (Xa+Xb)Xb
Xb Xa2−Xb2 Xa

Ri, j
∣
∣Ri, j ≥0

1 + (Xa+Xb)Xa
Xb Xa2−Xb2 Xa

Ri, j
∣
∣Ri, j <0

(3.6)

123
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This computational method can transform any distribution
into a risk-neutral distribution while largely preserving the
characteristics of the original, as shown in Fig 2.

After transforming the real distribution into a risk-neutral
distribution, the next step is to adjust its intrinsic volatility.
If the intrinsic volatility after applying formula (3.6) is v, the
forecast volatility is v’; formula (3.6) then can be rewritten as:

wi =
⎧
⎨

⎩

v′
v

× (1 − (Xa+Xb)Xb
Xb Xa2−Xb2 Xa

Ri, j )
∣
∣Ri, j ≥0

v′
v

× (1 + (Xa+Xb)Xav′
Xb Xa2−Xb2 Xav

Ri, j )
∣
∣Ri, j <0

(3.7)

Notably, v′ must be measured using the time to maturity scale
(most option pricing applications use annual volatility). Sup-
posing t days (t is a real number) to maturity and anticipated
annual volatility is σ , v’ can be estimated by:

v′ =
√

t × σ 2

365
(3.8)

Formula (3.7) can transform the real distribution into the
desired volatility without affecting its mean value while main-
taining a similar shape to the original distribution. Figure 3
shows the transformed distribution. The option price thus can
be determined via (3.1a), (3.2a), (3.3), (3.7) and (3.8).

3.3 The algorithm

The full pricing algorithm comprises two parts. The first part
is the algorithm for preparing the distribution map, while the
second part is the pricing algorithm.

3.3.1 The real distribution generating algorithm

This algorithm is used to generate the real distribution map
to accelerate the calculation process. Because the real dis-
tribution is repeatedly reused for the pricing algorithm, it is
optimum to insert new sampling data into the existing distri-
bution maps at the beginning of every trading day (or after
trading hours). This algorithm requires minimal execution
time if updates are daily performed. SettlePrice indicates the
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Fig. 3 Transformed payoff distribution after applying formula (3.7)

opening or closing price for the asset (depending on whether
the final settlement price is determined based on the opening
or closing price on the final settlement day) on the specified
date TransactionDate. The sampling data for the previous
day are gathered in a data set {TimeTicks, TickPrice} that
contains the time tick count and tick price of the underly-
ing asset. The results are stored in the DistributionMap table
with the primary index set to (Transaction_date, Time_Ticks).
The Transaction_date field represents the sampling date, the
Time_Ticks field indicates the time tick counts of the sample,
and the Return_Rate field stores the asset return rate.
Algorithm MakeRealDistribution 

Input: SettlePrice, TransactionDate, {TimeTicks, TickPrice} of previous trading 
day

Output: DistributionMap(Transaction_date, Time_Ticks, Return_Rate) 

Begin

 /* Clear old data to prevent duplication */ 

DELETE FROM DistributionMap  

 WHERE Transaction_date = TransactionDate  

/* Insert new data */ 

 For Each element pair in {TimeTicks, TickPrice} 

INSERT INTO DistributionMap (Transaction_date, Time_Ticks, 

Return_Rate) 

VALUES (TransactionDate, TimeTicks, SettlePrice/TickPrice) 

 End For 

End Algorithm 

In practical use of the DistributionMap, end users can also
write their own programs to generate any desired mathemat-
ical distribution (or combinations) and store the generated
samples into the DistributionMap table for the pricing algo-
rithm to calculate the desired option price. For example, a
researcher may use two lognormal distributions to simulate
the twin-peak distribution as observed for the Taiwan stock
market to verify whether it is worthwhile to apply two lognor-
mal distributions to the BS model to improve the pricing per-
formance. Researchers do not need to worry whether the two
distribution combinations disobey the risk neutral character-
istic before deriving sophisticated mathematical solutions.
This characteristic increases the versatility of the pricing
algorithm for cross field applications.
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3.3.2 The pricing algorithm

This algorithm is used to price a European option with
DistributionMap table generated by MakeRealDistribution.
Suppose that the parameter set (S, K, σ , T, r) used to calcu-
late the option price is (SpotPrice, ExercisePrice, Volatility,
TimeTicks, RisklessInterestRate), the pricing algorithm can
be described as follows:

Algorithm GetOptionPrice 

Input: SpotPrice, ExercisePrice, Volatility, TimeTicks, RisklessInterestRate, 

TimeTicks  

Referenced Table: DistributionMap 

Output: CallValue, PutValue 

Begin 

Define TargetRate = ExcPri/CrnPri – 1 

Define TargetMeanVaue = 0 //Suppose that the transformed distribution is 

//Risk-Neutral 

SELECT Return_Rate, 1.0 as Weight   

FROM DistributionMap 

WHERE DistributionMap.Time_Ticks = TimeTicks 

INTO CURSOR TmpCursor ORDER BY Return_Rate ASC 

//Generate Weighting Factors 

 Let Cnt = record counts of TmpCursor 

Summation from TmpCursor  

Let A = SReturn_Rate for Return_Rate ≥ 0 

Let B = SReturn_Rate for Return_Rate <0  

Let A2 = S(Return_Rate ^2) for Return_Rate ≥ 0 

Let B2 = S(Return_Rate ^2) for Return_Rate < 0 

End Summation   //Formula (3.3) 

Let OriginalSD = the standard deviation of Weight in TmpCursor 

Let DaysToMarurity = transfer Timeticks to days to maturity 

Let TransformedVolatility = Square Root of (DaysToMaturity*Volatility^2)/365 

      //Formula (3.8) 

For Each record in TmpCursor  

Replace Weight With (TransformedVolatility/OriginalSD) * (1 – (( A + B) * B/( 

B * A2-A * B2)) * Return_Rate)For Return_Rate ≥ 0 

Replace Weight With (TransformedVolatility/OriginalSD) * (1 + (( A + B) * A/( 

B * A2 - A * B2)) * Return_Rate)For Return_Rate < 0 

End For     //Formula (3.7) 

SELECT SUM(Weight * (SpotPrice * (1 + Return_Rate) - ExercisePrice))/Cnt 

 FROM TmpCursor 

 WHERE TmpCursor.Weight >= TargetRate 

 INTO VARIABLE CallValue  //Formula (3.1a), processed by SQL 

 SELECT SUM(Weight * (ExercisePrice - SpotPrice * (1 + Return_Rate)))/Cnt ; 

FROM TmpCur  

WHERE TmpCursor.Weight < TargetRate 

INTO VARIABLE PutValue  //Formula (3.2a), processed by SQL 

 RETURN CallValue, PutValue 

End Algorithm 

The above algorithm is carefully optimized for modern
database applications involving SQL syntax and summariz-
ing operations. The elimination of unnecessary floating point
functions also increases the execution speed.

4 Empirical tests

This study uses tick price data for the period from 03/01/2001
to 17/12/2003 to verify the feasibility of using the proposed
computational methods to price TAIEX options using real
payoff distributions. There were 270 data recorded for each
sampling day, and given the sample data set contained
216,810 entries. Data for the period 03/01/2001–31/12/2002
were adopted as the initial distribution map, and pricing
errors in high frequency transactions were verified on the last
trading day of each month during 2003. The trading hours of
the TAIEX run from 9:00 to 13:00. The final settlement price
was taken to be the opening price of the final settlement day.
The verification procedure is presented below:

Step 1: Generate the initial distribution map
Filter out incorrect and duplicated data in the database, gen-
erate the distribution map using the MakeRealDistribution
algorithm, and store it in a database table DistributionMap
(Transaction_date, Time_Ticks, Return_Rate) that gives mar-
ket price data on a per-minute basis between 03/01/2001 and
31/12/2002. Because the trading hours are 9:00 to 13:30, the
first minute (9:01) is taken as Time_Ticks = 1 while the last
(13:30) is Time_Ticks = 270. The Return_Rate Ri, j equals
the tick price of the TAIEX divided by the opening price for
the following day:

Ri, j = Xi+1,1

Xi, j

Step 2: Determine the option price
This study uses an out-of-sample strategy to verify the pric-
ing performance. The nearest three in-the-money and out-
of-the-money call/put option prices were then calculated and
priced using the GetOptionPrice algorithm for every time
tick. The same option prices were also calculated using the
BS model as a comparison. The riskless interest rate was the
monthly fixed deposit interest rate used by the Central Bank
of Taiwan.

Step 3: Estimate the pricing efficiency
The option price is the expected value of St > K for a call
option, or St < K for a put option at maturity. Restated, for an
ideal call price C = max(St − K , 0), the put price should be
P = max(K − St , 0). Consequently, if an individual spends
C dollars to purchase a call option, they should obtain C dol-
lars by holding the option until maturity. The returning ratios
Rc and Rp were calculated for each option price to determine
the pricing efficiency where the ideal value is 1.0:
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Table 2 Pricing error

Computational method Black-Scholes method

Call option, Rc 0.9290 0.9037

Pricing error 7.10% 9.63%

Put option, Rp 0.9874 0.9081

Pricing error 1.26% 9.19%

Rc =
∑

max(St − K , 0)
∑

C
for call options, and

Rp =
∑

max(K − St , 0)
∑

P
for put options.

Table 2 lists the final results. According to the empirical
test, the computational method outperforms the traditional
BS model in pricing performance.

Besides the pricing performance test, the execution speed
was tested using Microsoft Visual FoxPro. The computa-
tional option model examined in this study is sufficiently effi-
cient to price 1,000 option prices in 16 s (approximately 0.02 s
each) where the distribution map contains 216,810 sample
data, and is run on a 1GB RAM Intel Pentium4 2.6 GHz
CPU personal computer system. All analytical results indi-
cate that this computational method provides good pricing
performance and efficient execution speeds when run on
modern personal computer systems.

5 Conclusions

Most modern option pricing models apply mathematical dis-
tributions to approximate underlying asset behavior and
attempt to calculate the desired option price using close form
formulas. The empirical evidence based on observation of
the actual payoff distribution suggests that the real distribu-
tion of a stock index is time variant and cannot be described
using mathematical distributions, meaning the approach of
most options pricing models is ineffective. To optimize the
pricing performance, this study first introduces a computa-
tional model for pricing European options via real distribu-
tions and then demonstrates its practical feasibility using real
world problems. This study solves two key issues in apply-
ing real distribution to options pricing. First, this study uses
weighting factors to adjust the mean value of a real distri-
bution to zero while maintaining its distribution character-
istics in accordance with the put-call parity rule. Second,
this study scales the distribution to adjust its standard devi-
ation to meet the needs associated with applying dynamic
volatility to practical problems. Solving these two issues
makes this computational model highly suitable for cross

field applications where mathematical distribution cannot be
used to obtain feasible solutions, particularly for situations
involving time variant distributions.

Although the proposed computational method is practical
for real world application, room still exists for improvement.
First, the weighting factor rotating method used to adjust
the value of the distribution means can be enhanced. This
study assumes linearly changing weighting factors. Nonlin-
ear modification methodologies require further study.
Second, this study uses a simple method based on adjusting
standard deviation that may not be able to deal with com-
plex applications. Third, the computational method must be
simplified before it can be applied to execution speed critical
applications.
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