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ABSTRACT

In this project, we proposed two algorithms for
the application of video surveillance: (a) a
camera coordination system for surveillance and
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(b) human body pose estimation method. For the
camera coordination system, we coordinate
multiple PTZ cameras to capture the face
Given the
positions and orientations of people’s faces in

pictures of monitored targets.
the 3-D space, this system dynamically controls
the panning, tilting, and zooming of all PTZ
cameras, trying to acquire better shots of targets’
faces. The adopted criteria include people’s
facing directions with respect to the cameras and
the resolutions of the facial images. Unlike other
approaches, we do not limit our PTZ cameras to
the capture of only one target at one time.
Instead, the proposed system coordinates all PTZ
cameras to capture as many high resolution
frontal faces as possible. With this system, the
faces in the scene can be better captured and the
identity of each monitored target can be well
discerned. For human body pose estimation
method, we propose a 3D human body pose
estimation method for a multi-camera motion
capture system. The reconstructed human body
is transformed into a high dimensional space
using our modified Laplacian Eigenmap. In this
eigenspace, the body parts can be segmented
the 3D

skeletons of the human body are extracted to

more efficiently and easily. Then,

obtain the kinematic information. Finally, pose
estimation is performed by fitting a prior 3D
model to the extracted skeleton via particle
swarm optimization (PSO). Furthermore, with
our proposed human model, the motion
constraints can be easily combined with the
optimization process. Temporal consistency of
the pose estimation results is also achieved by
adding temporal constraints over PSO. Our
method can deal with various kinds of motion

and has robust pose estimation results.

Keywords: Camera calibration, dynamical PTZ



control, Camera coordinate, pose estimation
function, modified Laplacian Eigenmap.

1. INTRODUCTION

In this project, we proposed two algorithms for
the application of video surveillance: (a) a
camera coordination system for surveillance and
(b) human body pose estimation method.

For the camera coordination system, we
develop a surveillance system that tries to
simultaneously observe as many high-resolution
faces as possible. In Fig.1, we illustrate the task
of the proposed system. In this example, there
are 9 people in total. The triangles denotes PTZ
cameras, the circles indicate people’s locations,
and the arrows represent the orientation of
people’s face. The proposed system will
automatically assign these four PTZ cameras to
take care of different groups of people so that the
multi-camera system can capture as many
high-resolution facial images as possible at

every moment.

E—
v < v

Fig. 1 Illustration of camera coordination

For human body pose estimation method, we
propose a markerless motion capture system
equipped with multiple cameras. First, a 3D
body
reconstructed from multiple video streams. A

human represented by voxels s
modified Laplacian Eigenmap algorithm is used
to transform the 3D voxel data into a high
manifold

embedding method, different body parts are

dimensional  space.  With  this
mapped into discriminative branches and can be
easily segmented. Unlike other approaches, this
approach relieves the dependence on human

model and the training database. After the
segmentation of body parts, skeletons are
extracted to describe the kinematic motion of the
human body. Human shapes are usually
deformed while skeletons can encode most of the
motion information. As the skeletons are
extracted from the 3D human bodies, we use the
particle swarm optimization (PSO) technique to
deal with the pose estimation problem. The
experimental results show that our system can
handle various kinds of poses and can ensure the

temporal consistency and motion constraints.
2. BACKGROUNDS
2.1 Multi-camera coordination system

Although
systems have already been proposed, we have

several multi-camera surveillance
not found any multi-camera system that offers
similar functionalities as ours. Hence, we only
mention a few articles that have discussed some
issues similar to ours.

In [1] and [2], Micheloni proposed a system
that contains a few static cameras and PTZ
cameras. The resolution of PTZ camera is higher
than that of static camera. When a target appears,
they estimate the 3-D location of the target and
automatically control the pan angle and tilt angle
of the PTZ cameras to capture the target’s
high-resolution images. In their approach, each
PTZ camera focuses on the tracking of a single
target.

In [3], the proposed system also contains
multiple static cameras and PTZ cameras. The
static cameras are used to estimate the 3-D
positions of the detected targets. Face detection
is also used to determine whether a human face
exists. Once if a face exists, then they control a
PTZ camera to capture a close-up of that face. In
[4], the authors use pairs of static cameras to
estimate the depth information. The face position
of the target is estimated by combining the depth
information with the face detection results.
Similarly, once if a face is detected, a PTZ
camera is controlled to capture a clearer facial
picture of the target.

In [5] and [6], the authors proposed a
camera network composed of multiple static and
PTZ cameras. Similarly, they use PTZ cameras



to capture people’s high-resolution images, with
each PTZ camera monitoring a single person at
one time. A scheduling algorithm is proposed to
control the movement of all PTZ cameras so that
each pedestrian will be captured at least one time
before the pedestrian leaves the scene. The
performance of their system is evaluated over a
virtual train station scene which is synthesized
by computer animation.

2.2 Human body pose estimation method
As for the human body pose estimation method,
we mainly discuss markerless motion capture
systems, which have drawn much attention in
recent years. A markerless approach can be
decomposed  into  several  submodules:
initialization module, tracking module, pose
estimation module, and recognition module.

In the proposed motion capture system, we
mainly focus on the initialization module and the
The module of

initialization aims to obtain reliable prior

pose estimation module.

knowledge for pose estimation and recognition.

Due to error propagation, incorrect prior

knowledge may lead to incorrect pose estimation.

In the following paragraphs, we’ll first introduce
a few algorithms that are related to initialization
and pose estimation. In this project, we focus on
model-based pose estimation for multi-camera
systems.

In [7], the reconstruction of a “visual hull”
based on images from multiple cameras is
introduced. In this approach, a visual hull is
defined as the 3D shape formed by the
intersection of visual cones projected from the
2-D silhouettes. The visual hull of an object can
be thought to be a close approximation of the
object based on the observations from different
viewpoints.

Regard the 3-D shape human model, Mikic
[8] adopted a twist framework that has been used
to model the kinematic chains for robots. Sixteen
rotation axes and five kinematic chains of the
body joints are formulated using twists and
Relative to the
torso-centered coordinate system, the rotation

product of exponentials.
and shift of the other body parts can be easily
manipulated. Pose estimation is performed by
first doing template fitting and then using

Bayesian network for refinement. However, the
initialization based on template fitting cannot
deal with self occlusion and the target person has
to dress in tight clothes.

Instead of using shape models, Menier [9]
adapted skeleton models to fit medial axis points
extracted from visual hulls. This approach
reduces the dependency on the dimension of
human body, and these 3D medial axis points
represent the observed skeleton data. A generic
skeleton model is then fitted with the observed
skeleton data based on maximum a posteriori
(MAP) estimation. The pose estimation of the
first frame is based on the fitting process, while
non-parametric belief propagation is used to
predict the pose of the following frames.

Due to the high dimensionality of the search
space and the complexity of the fitness
evaluation function, some researchers have
adopted the particle swarm optimization (PSO)
[10] method to perform pose estimation.
Robertson [11] applied PSO to perform skeleton
model fitting in a conference room environment,
where the pose estimation is required only for
the upper body. PSO is chosen for its ability to
deal with nonlinear and non-convex optimization
problems. Hierarchical and parallel PSO fitting
is proved to be robust and computationally
inexpensive.

As mentioned earlier, model based motion
have the
complexities reduction and robustness. However,

capture systems advantages of
a good initialization is required to ensure that the
system commences with a good body parts
More

initialization approaches based on manifold

labeling and initial guess. reliable
learning have been proposed recently.

In manifold learning, manifold embedding
is a topic about how to find a transformed space
for the manifold that preserves the connectivity
and algebraic properties. Several approaches,
such as Laplacian Eigenmap [12], have been
proposed in this field. In [13] Sundaresan
proposed a segmentation approach for pose
estimation based on Laplacian Eigenmap. In this
approach, different branches in the normal space,
such as separated body parts, are transformed

into distinguishable 1-D smooth curves in the



embedding space. This property makes the
segmentation of 3-D human body a lot easier.

3. TECHNICAL ILLUSTRATION —
CAMERA COORDINATION SYSTEM

3.1. Problem Formulation

Unlike the articles mentioned in Section 2.1, we
aim to capture as many frontal high-resolution
facial images as possible during the presence of
the monitored targets. In the proposed algorithm,
PTZ cameras are allowed to cover more than one
target at each time, as long as the captured facial
images are sufficiently clear. In the proposed
algorithm, we design our camera coordination
system based on two major criteria: frontal shoot
and high-resolution shoot.

To formulate these two criteria, we define
the shoot angle 0, and the face width Wj;. In 0;
and Wy, the subscript i denotes the i-th PTZ
camera, while the subscript j denotes the j-th
person. As shown in Fig. 2(a), the shoot angle 0;;
represents the angle between the blue dotted line

?mij and the green arrow M . cam,
indicates the line connecting the i-th PTZ camera
and the i-th target, while Fce; indicates the
facing orientation of the j-th target. As the j-th
target is looking toward the i-th camera, we have
a smaller shoot angle. On the other hand, as
shown in Fig 2(b), the shot face width Wj
represents the width of the j-th target’s face in
the image captured by the i-th camera. A larger
value of Wj; indicates a better observation of the
j-th target in the the i-th camera image.

i-th Camera
V.. 6 Wi
j-th Target
i-th Target | J arge D
(a) (b)

Fig. 2 Definitions of (a) 0; and (b) W

To simplify the computation of 6; and Wy,
all 3-D vectors are projected onto the ground
plan to form 2-D vectors. In the simplified forms,

the shoot angle and the face width are defined as

follows.
cam..- face .
6..=acos( y J )
i H 1
cam..||| face .
y J
_ . Face width in 3D space
Wij=/xi D, @)

y

_ Image width
where [F OVZJ . In the definition of
2-tan

Wi, fii denotes the focal length of the i-th PTZ
camera in the horizontal direction, Dj is the
distance between the i-th camera and the j-th
target, and FOV; is the field of view of the i-th
PTZ camera.

Basically, we prefer to capture a facial
image with a smaller shoot angle but a larger
face width. We further apply two mapping
functions Ng( ) and Ny( ) over 0; and Wj to
convert them into two normalized measures.
These two mapping functions are defined as

follows.
r,-k 1+r
—9—x+(—‘9)k, O<x<th,
N,(x)=1 th, 2 €)
0 , otherwise
0 ,x<thmm
~ "W'k )W-k-l‘h . L(I—rW)k
Ny} h—h —tZﬂ n ) * Pin =¥ (4)
max nmin max nun
147, |k
()
T ,thh]mx

In (3) and (4), k£ is a positive constant that
controls the dynamic range of Ng( ) and Ny( ). 7y
and ry are real numbers within the range [0, 1]
and they control the slopes of Ng( ) and Ny( ). thg,
thyin, and th,,, are pre-defined thresholds. th,
represents the worst situation that can be allowed
for capturing the frontal face. th,,;, represents the
minimum face width for clear observation. On
the other hand, when the face width is wider
than th,,, we think the facial image has
achieved the level of perfect observation. These
thresholds can be varied by the users for
different applications.



With the definitions of Ngand Ny, we then
define the evaluation function Eval( ) for the
face capture of the j-th target by the i-th camera.

m n
Eval(AP):iEIjzlapl.j.Ng(HU. )NW(WI]') . 3)
In (5), m is the number of cameras and n is the
number of targets. AP denotes a set of camera
assignments

AP:{apij}, i=1,2,...,m, j=1,2,...,n , (6)
with ap;’s representing the binary assignment
parameters. ap;;is equal to 1 if the i-th camera is
assigned to monitor the j-th target, and ap; is
equal to O otherwise. Hence, for a camera
assignment AP, Eval(AP) represents the overall
observation levels of the n targets by all m
cameras. When more targets can be better
observed by their corresponding cameras, with
smaller shoot angles and larger face widths, we
have a larger Eval(AP). Hence, the goal of the
proposed camera coordination system is simply
to find the optimal camera assignment that
reaches the largest Eval(AP). Moreover, as these
n targets keep moving within the monitored
scene, we need to adaptively adjust the
assignment of cameras to achieve the most
preferable observation.

Besides, to simplify the problem, we also
add one extra constraint over (5). The constraint
is

m

iz:lapl.k =1, k=1,2,...,n ) 7)
This constraint implies that we only take into
account the camera view that is assigned to the
target even though that target may also appear in
some other views.

3.2. Significance Weight
In theory, we can always find an optimal AP for
the evaluation function at any time instant.
However, people’s behavior is highly versatile.
It is very likely that even with the optimal
camera assignment we still cannot clearly
capture all people’s faces at some time instants.
The proposed system cannot guarantee that all
people’s faces are always clearly observed.

To deal with this problem, we assign each
target a significance weight to represent the

priority of that target. This weight will increase
if the target hasn’t been clearly observed in the
past few moments. On the contrary, if that target
has already been clearly observed for a while,
we decrease its significance weight.

The adjustment of significance weight
includes three different states: raise, hold, and
decline. When the face of a target cannot be
unclearly captured, we linearly increase its
significance weight. When the weight is raised,
the system will pay more attention to that target
and it’s more likely that the target can be better
observed. Once if the system has adjusted its
camera coordination to take clear facial picture
of that target, the significance weight will be
held at a high value for a while. This “hold” state
is make sure the target’s face can be clearly
observed for a long enough period, but not just a
After the hold state, the
significance weight of the target is then

short glimpse.

decreased gradually to zero as long as the
target’s face can be clearly captured. An
example of the switching of these three states is
illustrated in Fig. 3.

jonifican
A Slg, lﬁca ce = [nitial State
weight )
- Raise State
Hold State
= Decline State
/ \/
1 1
1 1 1 \
1 1 1 1
1 1 1 1
1 1 1 1
1 | | ! »
<92 <922 time
Fig. 3 Variation of significance weight

To realize the concept of importance weight,
we add penalty term into the definition of Eval( ),
as expressed below.

Eval(4P )=§1él””y(]v9(%)Nw(Wzy)"’sz)’ ®)

where the penalty term pvj; is defined as
pvy =cfy-sw, k. (€))

In (9), sw; stands for the significance weight of
the j-th target, cf; represents the clear factor of
the j-th target with respect to the i-th camera,
and k is a controlling scalar. The clear factor cf;;



is equal to O if the j-th target can be clearly
observed by the i-th camera. Otherwise, cf; is
equal to 1. With the inclusion of the penalty term,
the camera coordination system can pay more
attention to these targets with larger significance
weights automatically.

3.3. Modified Discrete Binary PSO

Unfortunately, Equation (8) has a nonlinear and
non-differentiable form. To find the optimal AP,
classical optimization algorithms, like the
gradient decent algorithm, cannot be used.
Instead, we adopt the particle
optimization algorithm [14]. In the PSO method,

a set of particles is generated and each particle

swarm

represents a trial solution of the problem. All
particles have their own memory, and these
particles communicate with each other to get the
best global position. Due to the binary natural of
the assignment parameters, we actually adopt the
discrete binary particle swarm optimization
algorithm proposed in [15]. However, since we
have added one constraint in the evaluation
function, we further make some modifications
over the discrete binary particle swarm
optimization algorithm to tackle the problem.

In the modified DBPSO, each particle
represents a possible AP. In the original form of
PSO, particles are randomly generated in the
initial stage. However, this causes a large
number of iterations. To speed wup the
computations, we generate a reasonable initial
guess about AP. This is achieved by performing
clustering over targets’ positions and orientations.
In the clustering process, targets with adjacent
positions and similar face orientations are
assigned to the same camera. Here, we define
the feature vector of each target to be
(ﬂX',/%Y',IR,...,IPm)’ (10)
system based on two major criteria: frontal shoot
and high-resolution shoot.

F=oT o {B-7) e {B-7).an

In (11), vit is the velocity at the previous
moment, @ 1is the inertia factor, ¢; and ¢, are
P are random numbers

scalars, and P and

generated from the uniform distribution over

[0,1]. Equation (11) is repeatedly computed until
the stop criterion is reached.

In the DBPSO algorithm, the definition of
velocity is different from that of the original
PSO. Assume * denotes an n-bit string and xk
represents its k-th bit, which can only be 0 or 1.
Assume the—position of the i-th particle is
denoted as i and its d-th bit as xid. Each bit
has its own velocity vid. In the original PSO
algorithm, the velocity of a particle indicates the
movement of that particle. However, in the
DBPSO algorithm, the definition of velocity
represents the tendency of being 1. The larger
the velocity is, the more likely that bit will
become 1. Besides the modification over
velocities, the previous best position and the best
global position are to be considered in the
bitwise manner. Assume we denote pid as the
previous best d-th bit of the i-th particle, and
denote pgd as the best global d-th bit. Then the
equation is modified to be

i = o (P ) o (=) 12)

and the d-th bit of the i-th particle is updated
based on the following rule:

if(rand(O,l) < S(v,.’d”)) then x.'' =1
else x.7' =0 (13)
In (13), rand(0,1) is a random number selected

from a uniform distribution over [0, 1], and S is
the sigmoid function defined by

1
l+e™ (14)

S(v)

In our algorithm, we basically follow
(12)~(14), with

representing a possible camera assignment.

Equations each particle

Equations (12) and (13) are now rewritten as

t+1

Viii :a)‘)lt/ +Q '(pk,g/ —ap,’(,!./.)—i-q)z '(pg,,-/ _ap/i,i/)(ls)
and

if(rand(O,l) < S(v,’:l} )) then ap;’; =1
+l 0

k.ij

(16)

else ap



The inertia factor is chosen to be some value
within [0.8, 1].

However, due to the inclusion of the
constraint (7) in the evaluation function (8), the
DBPSO algorithm needs further modification. In
DBPSO, the d-th bit of the i-th particle is
updated based on (13). However, after the
update, the new particle may violate the
constraint (7). To fix this problem, we slightly
modify the DBPSO algorithm based on the
following concept.

Assume for the k-th target, its corresponding
assignment bits are denoted as
{ap,,,ap,; »...,ap,, } . If more than one ap,,
is set to 1. Then we retain the assignment bit that
has the highest possibility to be 1, while set the
other assignment bits to zero. In our approach, if
the previous best value or the best global value
of an assignment bit is 1, that assignment bit has
the highest probability to be 1. If more than one
assignment bits have the highest probability to
be 1, then we randomly pick up one of them to
be 1 and set the others to 0.

On the other hand, if none of the assignment
bits are set to 1, we still apply the same strategy
to correct the assignment. That is, if the previous
best value or the best global value of an
assignment bit is 1, that assignment bit will have
the highest probability to be 1.

4. TECHNICAL ILLUSTRATION -HUMAN
BODY POSE ESTIMATION

In the other way, we proposed an efficient
initialization process and a robust markerless
pose estimation system. The goal of pose
estimation is to capture the motion of a specific
person. The motion of the articulated body parts
is described using some parameters of a generic
human model. Using images from a set of
synchronized and calibrated cameras, we can
reconstruct the visual hull based on volume
intersection. Then the 3D wvoxel data are
transformed into an embedding space using our
modified Laplacian Eigenmap technique. Body
parts segmentation is done in the eigenspace and
the skeletons of the body parts are extracted
individually. Finally, we fit the human model

into the skeleton data using the PSO algorithm.
Pose estimation is then iteratively performed for
optimization. In Fig. 1, we show the flowchart of
the proposed system.

4.1. System initialization

The performance of a model-based system

heavily relies on the accuracy of the

initialization results. The embedding-based
initialization exploits the manifold embedding
methods and has the advantage of lower model
dependency. Inspired by Sundaresan’s method
[13], we
Eigenmap to efficiently extract the kinematic
In the

following sections, we’ll explain more details

develop a modified Laplacian

information from the wvisual hull.

about Sundaresan’s method and our initialization
method.

4.1.1 Proposed initialization method

Inspired by Sundaresan’s algorithm, we develop
our initialization method based on a
modification of the Laplacian Eigenmap.

Given n points v;, Vv,.., v, in the p
dimension, Laplacian Eigenmap aims to find its
transformation u;, u,, ..., u, in the r dimension

to minimize the object function:
2
== [ £ (7

where E is the adjacency matrix of the graph
constructed from vy, ...,v,. That is, if v; is in the
neighborhood of w;, then Ej is equal to 1.
Otherwise, Ej is set to zero.

Besides (17), an extra constraint is added for
the minimization of the object function. The
constraint says

u'Du=1
(18)

where U = [”1 un]T

D is a diagonal matrix, whose element Dy
represents the degree of Node i. This constraint
is to normalize the scaling factor when manifold
embedding is performed. We can unroll
Equation (18) to obtain the

constraints:

following



u, Dy, +uy Doy +.oo4+u, D, =1

nn

u, Dy +uypyDyy +o+u,,D =1 (19)

u, Dy +uy, Dy, +...+u, D, =1

p
In (19), we observe that nodes with more
neighbors tend to converge to positions around
the origin after the transformation.

As mentioned above, the segmentation of
trunk is a major difficulty in Sundaresan’s
method. Since the nodes in the trunk tend to
have bigger values of Dj, this fact makes the
transformed values of the trunk voxels spread
around the origin of the eigenspace. Having
exploited this property of Laplacian Eigenmap,
we manage to assign trunk voxels with bigger
values of D;; so that their transformed data will
shrink even closer to the origin. Once these
nodes are shrunk to the origin of the 6-D
eigenspace, the segmentation of the limb parts
will become much easier.

Furthermore, to prevent mistakenly
shrinking the other thick parts of the human
body, like the head, color is used as the auxiliary
information. For each 3-D voxel and its
neighbors, we project them back into the image
plane of each camera and record the colors at the
projected positions. If the colors of two voxels,
say v; and v;, are similar for most cameras, we
increase the value of E; to enhance the
connectivity. By this way, we can weaken the
connection of the nodes between head and torso.
When nodes belonging to the torso are shrunk to
the origin, we can still preserve the
distinguishable branches of the other body parts.

In summary, our body part segmentation
method is briefly described as below:

A. Modified Laplacian Eigenmap
A.1 Graph Construction

Given n voxels vy, ...,v, in the visual hull, we
construct an adjacency graph G for these
voxels. Each element Ej of E records the
relationship between Node i1 and Node j. For
position information, if two nodes are
6-connection neighbors, Ej gets one point.
For color information, we project each voxel
into the image planes and calculate the

similarity between their colors. In our
simulation, there are eight cameras in total in
the scene. If for some camera the value of d,
as defined below, is less than some threshold,
one vote is recorded.

d=\(;-1) +(g,~g,) +(b,~b)* (20)

Therefore, at most 8 votes can be recorded for
each 6-connection neighbor of a node. The
extra bonus on Ej; is added based on the
following rule:

a total _votes =8
E,=E;+ b thy <total _votes < th, Q1)

c total _votes < th,

O<b<a<l -1<c¢<0

Since the original value of Ej; is at most 1 for
the position information, the bonus for the E;
due to the color information is restricted to be
no more than 1. Please note that the color
information is only auxiliary. This is because
different colors don’t necessarily mean
different body parts. Here, we simply use
color information to prevent a mistaken
shrinkage of the head part.

A.2. Shrinking of Nodes

After having constructed the adjacency graph,
we impose more weights on those voxels that
have more connections to their neighbors. For
a Node i, its degree is defined as Z E;.
Once we increase the weights of thedd Todes
that have larger degrees, the transformation of
these nodes will shrink toward the origin in
the eigenspace.

. Body Part Segmentation

Since the trunk voxels will be roughly
mapped to the origin of the eigenspace based
on the modified LE, a simple but efficient
termination method can thus be developed for
body part segmentation. In the following, we
briefly explain the process of body part
segmentation.

B.1. Spline Initialization

The process of spline initialization is the



same as Sundaresan’s method.

B.2. Spline Propagation

Starting from the end of the (P+1) nodes, the
selected. Unlike
Sundaresan’s method, we don’t have to count

nearest N points are
the number of outliers. The site values are
also fitted using a 6-D spline.

B-3. Spline Termination

The process of spline propagation continues
until the distance between the end of the
spline and the origin is less than a pre-defined
threshold.

In Fig. 4, we show the comparison between
the Sundaresan’s method and ours. It can be seen
that our method map the trunk part to the origin
of the eigenspace. Hence, after spline fitting, the
trunk is well detected and the limb parts of the
human body, especially the left arm, can be
successfully extracted.

Once the segmentation of human body parts
is done, we can extract the skeleton of the visual
hull. Skeleton extraction has the advantage of
feature reduction. Furthermore, skeletons encode
the information of kinematic motion and won’t
deform in any pose.

In our approach, each body part is
individually transformed into a 1-D eigenspace
based on the LE algorithm. The smallest nonzero
eigenvalue represents the most important
dimension that corresponds to the trend of the
body part. Spline fitting is performed and the site

values that encode the geometric relation in the

normal space are calculated along this dimension.

The skeleton extraction is then performed by
finding a 3-D spline A which minimizes (22)

S b-ns) @

v;esome body part

B 2™ body part
3" body part

B 4" body part

5" body part
6" body part
B unfitted

(a) (®)

015 i

004 0m 9@ oo o oot om0 ooe’ o5 O O

(©) (d)

(e) ®

¥ 8 58 8 8 3 8 8

(® (h)

Fig. 4: Comparisons between Sundaresans

method and ours (a) input image (b) the color
representation for the segmentation results
(c)(e) the segmentation result in the 6-D
original LE (g) the
segmentation result in the normal space using

eigenspace  using

original LE (d)(f) the segmentation result
based on our modified method (h) the
segmentation result in the normal space using
our modified method.

In Fig. 5, we show an example of the skeleton

extraction process.

5 B 5 B 8B 3 &8 8

(a) (b)
Fig. 5: The skeleton extraction result using the
proposed method (a) one of the eight input
images (b) the extracted skeleton



4.2 Pose estimation

After skeleton extraction, the posture of the
specific person is estimated using a prior human
model. The joints of the human model have their
individual degrees of freedom (DOF). In total,
there are usually 20 or more parameters. Thence,
the fitting of the human model to the skeleton
data is an optimization problem in a very high
dimensional search space. In this case, it is very
challenging to simultaneously find the optimal
solution for the current skeleton data and to
ensure the temporal smoothness over time. In the
following section, we will discuss the adopted
3-D human model and the proposed pose
estimation technique.

4.2.1 3-D human model

Our human model is a 3-D skeleton model. Here,
we adopt the popular twists and exponential
products  formulation. This mathematical
framework helps us in describing the kinematic
chains in the human body. The concept for
kinematic chains is introduced by Murray [16]
and is generalized to the application of 3D
human models by Mikic [8].

In our model, a human body is a 3-D
skeleton composed of 12 segments and 23
parameters. It is based on the twists formulation.
The position of each point can be described
using exponential products.

In Mikic’s design, the rotation axis of the
torso is an arbitrary unit vector ®, in the world
coordinate [8]. However, it is not easy to control
the orientation of the human model. The
orientation of the human model determines
right-hand side. This

information is important since the motion

which part is the

constraints for the right side and the motion
constraints for the left side are somewhat
different. With the motion constraints, we can
make our pose estimation more natural and
reasonable. Unfortunately, Mikic’s method does
have some problem in defining the orientation of
the model.

To determine the right side from the left
side, Mikic switches the right side and left side
of the human model and compares their fitting
errors. For the case in Fig. 5, it happens that the

smaller fitting error actually corresponds to the
wrong decision. A more natural thinking is that if
we can make the model self-spin, the orientation
of the human body can be easily manipulated
and decided. Hence, we redefine the rotation
axis of the human body as the torso stick of the
model. Furthermore, the neck position and the
torso center control the incline of the human
model. With self spin, the human model can
easily spin to the correct orientation to obtain
less fitting error.

4.2.2 PSO based pose estimation
PSO (Particle Swarm Optimization) has the
advantages of being capable of dealing with
non-concave and nonlinear cost functions.
Moreover, its computational cost is usually very
light. This PSO method provides a powerful tool
for dealing with an optimization problem in a
high-dimensional search space. Inspired by [11],
we apply PSO to the fitting of the 3D skeleton
model to the extracted skeleton data.

In the process of pose estimation, we fit the
3-D skeleton model defined to the extracted and
labeled skeleton. The
composed of 12 line segments while the

skeleton model is

extracted skeleton data consist of many nodes in
the 3-D space. Our goal is to find the minima of
the evaluation function. The evaluation function
is defined as the Euclidean distance between the
human model and the extracted skeleton.

In the proposed pose estimation algorithm,
a swarm of particles and an evaluation function f
are defined in the search space with the
dimensionality of D. Each particle is represented
as a vector p;= [pi Piz2 --- piD]T with D elements.
Furthermore, every particle has its associative
velocity vi=[v; vi ... ViD]T to guide its motion.
In every iteration, the value of the evaluation
function is computed and recorded for each
particle. Two kinds of information are evaluated.
The first kind of information is the best position
so far for each particle, recorded as b;. This b; is
to keep the information of self experience. The
second kind of information is the globally best
position, denoted as gb. gb is evaluated by
finding the minimal value of f'so far. The new
location of each particle is then updated using
the information of self experience and the



globally best position. Gradually, most particles
will converge to the optimal position which has
the minimal value of f{(p).

Besides the use of the PSO method, we also
need to ensure the temporal consistency between
frames. The motion changes between the current
frame and its previous frame should be smoothly
changing. To ensure the temporal consistency,
we propagate the values of the estimated
parameters from the current frame to the next
frame. In other words, we restrict the values of
the parameters for the next frame to be within
some range around the estimated parameters at
the current frame. However, since an incorrect
estimation may also propagate over time, we add
a re-initialization mechanism for each frame.
When the fitting error is larger than some
pre-defined threshold, we will re-initialize the
whole pose estimation process based on the
current frame only. This can prevent the
propagation of errors.

5. SIMULATION RESULTS

5.1 Multi-camera coordination system

Fig. 6 shows a few sets of images captured at
different time instants. In our experiments, the
test videos are synthesized by ObjectVideo
Virtual Video (OVVYV) [17], which is a publicly
available visual surveillance simulation test bed.
By using OVVYV, we can easily design various
kinds of scenario and camera setups. In Fig. 4,
there are nine people walking around in the
scene. Each person is assigned a color and we
use this color to plot a bounding box for that
person. The synthesized scene is captured by
four static cameras and four PTZ cameras,
locating at different positions. In each figure, the
left four frames denotes the pictures captured by
the static cameras, while the right four frames
are the pictures captured by the PTZ cameras.
The use of static cameras can help the reader to
easily realize the relations among these nine
people; while the images captured by the PTZ
cameras demonstrate the results of camera
coordination.

Table 1 The statistical results of all test
sequences

Average Unclear
Score Rate

SEQ-1(9) 7.5355 0.0200
SEQ-2 (9) 5.0644 0.0393
SEQ-3 (6) 7.6656 0.0056
SEQ-4 (6) 8.0526 0.0017
SEQ-5 (7) 8.3151 0.0138
Average 7.3266 0.0161

Time 135

Fig. 6 Experimental results of the test sequence
SEQ-1

Table 1 shows the statistical results of all
experimental sequences. The “average score” is
the average score for all people in a sequence.
“Unclear Rate” is the average ratio of the
zero-score time over the total time. The highest
average score is 10 and the lowest is 0. Here, the
frame size of each camera is 320x240 for all
experiments. We let the value of th,.y, thy,, and
thy be 50, 15, and m/2, respectively for all
experiments. The upper bound of the unclear
period is set to 20.



5.2 Human body pose estimation

In our simulation, we use ObjectVideo Virtual
Video (OVVV) [17] to simulate a synthesized
which
cameras. We test 9 sequences in total, as listed in

environment, contains eight virtual
Table 1. Some simulation results are shown in
Fig. 7. In Fig. 7, we can clearly see that the
proposed method can faithfully generate the
corresponding skeleton models based on a set of

images collected from multiple cameras.

Fig. 7: The pose estimation results for 4 different

sequences.

6. CONCLUSIONS

In this project, we proposed two algorithms for
the application of video surveillance: (a) a
camera coordination system for surveillance and
(b) human body pose estimation method. For the
camera coordination system, we construct a
camera coordination system to control multiple
PTZ cameras to capture as many frontal
high-resolution facial images as possible. We
formulate the camera coordination problem in
terms shoot angle and the face width. By taking
into account the overall scores in capturing facial
images, we convert the coordination of cameras
into an optimization problem. We then develop a
modified algorithm over the discrete binary
particle swarm optimization method to get the
optimal camera assignment. For human body
pose estimation method, we proposed a
model-based pose estimation technique for

multiple camera motion capture system. The
whole process, which includes initialization and
pose estimation, is automatic and markerless.
For system initialization, we reconstruct the 3D
visual hull from multiple foreground silhouettes.
We segment the human body in the eigenspace,
and then extract the skeletons to reduce the

dimensions of the feature space. In the
initialization stage, no prior model is needed.
Furthermore, we modify the Laplacian

Eigenmap to make the body parts segmentation
easier than Sundaresan’s method. After system
initialization, a prior 3D human model is fitted to
the extracted skeleton based on the PSO
algorithm. Our human model allows self-spin
and combines motion constraints with the pose
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