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一. 中文摘要 
本計劃中我們提出兩套應用於視訊監控

的技術: (a)多攝影機協同監控與(b)人物的姿

勢估測及分析。在多攝影機協同監控的技術

上，我們提出一套應用於多台主動式攝影機之

分工協調系統，對於空間中大約已知臉部之位

置與朝向的人群，進行攝影機的分工與協調。

每一台攝影機將會負責拍攝一小部分人群的

臉部，並且設法調整攝影機的旋轉角度以及放

大倍率，使人臉可以清晰地在畫面中呈現。在

此，我們對於人臉在畫面中清晰與否的評斷標

準為：人臉是否正面朝向負責拍攝的攝影機，

以及人臉在影像中的解析度。透過本系統，我

們可以安排各個主動式攝影機的旋轉角度與

放大倍率，盡可能地拍攝場景中所有人的臉

部，以獲得理想的人臉拍攝角度與解析度，便

於清楚地辨識每個人。另外，在人物的姿勢估

測及分析的技術上，我們提出一個在多攝影機

環境下，利用人體模型估測目標人物的姿勢與

行為。我們使用流形嵌入技術中的拉普拉斯特

徵映射，將三維人形的幾何形狀忠實地轉移到

另一個容易切割分析的高維度空間，正確地切

割出三維人形的各個部位並且找出三維人形

的骨骼架構，以利後續行為分析的動作。當擷

取出三維人形的骨骼架構後，我們利用粒子群

體最佳化在高維度空間中有效地找出最佳姿

態估測結果。我們的系統由影像的擷取至姿態

的估測完全自動化，並且不需要在人體上貼附

感應物，即可結合肢體的運動限制和時間軸上

的動作流暢限制，估測多種動作。 
 
關鍵詞：攝影機校正、動態攝影機控制、攝影

機協調機制、姿態估測、流形嵌入技術。 
 

ABSTRACT 

 

In this project, we proposed two algorithms for 
the application of video surveillance: (a) a 
camera coordination system for surveillance and 

(b) human body pose estimation method. For the 
camera coordination system, we coordinate 
multiple PTZ cameras to capture the face 
pictures of monitored targets. Given the 
positions and orientations of people’s faces in 
the 3-D space, this system dynamically controls 
the panning, tilting, and zooming of all PTZ 
cameras, trying to acquire better shots of targets’ 
faces. The adopted criteria include people’s 
facing directions with respect to the cameras and 
the resolutions of the facial images. Unlike other 
approaches, we do not limit our PTZ cameras to 
the capture of only one target at one time. 
Instead, the proposed system coordinates all PTZ 
cameras to capture as many high resolution 
frontal faces as possible. With this system, the 
faces in the scene can be better captured and the 
identity of each monitored target can be well 
discerned. For human body pose estimation 
method, we propose a 3D human body pose 
estimation method for a multi-camera motion 
capture system. The reconstructed human body 
is transformed into a high dimensional space 
using our modified Laplacian Eigenmap. In this 
eigenspace, the body parts can be segmented 
more efficiently and easily. Then, the 3D 
skeletons of the human body are extracted to 
obtain the kinematic information. Finally, pose 
estimation is performed by fitting a prior 3D 
model to the extracted skeleton via particle 
swarm optimization (PSO). Furthermore, with 
our proposed human model, the motion 
constraints can be easily combined with the 
optimization process. Temporal consistency of 
the pose estimation results is also achieved by 
adding temporal constraints over PSO. Our 
method can deal with various kinds of motion 
and has robust pose estimation results. 

 
Keywords: Camera calibration, dynamical PTZ 



control, Camera coordinate, pose estimation 
function, modified Laplacian Eigenmap. 

 
1. INTRODUCTION 

 
In this project, we proposed two algorithms for 
the application of video surveillance: (a) a 
camera coordination system for surveillance and 
(b) human body pose estimation method. 

For the camera coordination system, we 
develop a surveillance system that tries to 
simultaneously observe as many high-resolution 
faces as possible. In Fig.1, we illustrate the task 
of the proposed system. In this example, there 
are 9 people in total. The triangles denotes PTZ 
cameras, the circles indicate people’s locations, 
and the arrows represent the orientation of 
people’s face. The proposed system will 
automatically assign these four PTZ cameras to 
take care of different groups of people so that the 
multi-camera system can capture as many 
high-resolution facial images as possible at 
every moment.  

 

Fig. 1  Illustration of camera coordination 

 

For human body pose estimation method, we 
propose a markerless motion capture system 
equipped with multiple cameras. First, a 3D 
human body represented by voxels is 
reconstructed from multiple video streams. A 
modified Laplacian Eigenmap algorithm is used 
to transform the 3D voxel data into a high 
dimensional space. With this manifold 
embedding method, different body parts are 
mapped into discriminative branches and can be 
easily segmented. Unlike other approaches, this 
approach relieves the dependence on human 

model and the training database. After the 
segmentation of body parts, skeletons are 
extracted to describe the kinematic motion of the 
human body. Human shapes are usually 
deformed while skeletons can encode most of the 
motion information. As the skeletons are 
extracted from the 3D human bodies, we use the 
particle swarm optimization (PSO) technique to 
deal with the pose estimation problem. The 
experimental results show that our system can 
handle various kinds of poses and can ensure the 
temporal consistency and motion constraints. 
 

2. BACKGROUNDS 
 
2.1 Multi-camera coordination system 
Although several multi-camera surveillance 
systems have already been proposed, we have 
not found any multi-camera system that offers 
similar functionalities as ours. Hence, we only 
mention a few articles that have discussed some 
issues similar to ours.  

In [1] and [2], Micheloni proposed a system 
that contains a few static cameras and PTZ 
cameras. The resolution of PTZ camera is higher 
than that of static camera. When a target appears, 
they estimate the 3-D location of the target and 
automatically control the pan angle and tilt angle 
of the PTZ cameras to capture the target’s 
high-resolution images. In their approach, each 
PTZ camera focuses on the tracking of a single 
target. 

In [3], the proposed system also contains 
multiple static cameras and PTZ cameras. The 
static cameras are used to estimate the 3-D 
positions of the detected targets.  Face detection 
is also used to determine whether a human face 
exists. Once if a face exists, then they control a 
PTZ camera to capture a close-up of that face. In 
[4], the authors use pairs of static cameras to 
estimate the depth information. The face position 
of the target is estimated by combining the depth 
information with the face detection results. 
Similarly, once if a face is detected, a PTZ 
camera is controlled to capture a clearer facial 
picture of the target. 

In [5] and [6], the authors proposed a 
camera network composed of multiple static and 
PTZ cameras. Similarly, they use PTZ cameras 



to capture people’s high-resolution images, with 
each PTZ camera monitoring a single person at 
one time. A scheduling algorithm is proposed to 
control the movement of all PTZ cameras so that 
each pedestrian will be captured at least one time 
before the pedestrian leaves the scene. The 
performance of their system is evaluated over a 
virtual train station scene which is synthesized 
by computer animation.  
 
2.2 Human body pose estimation method 
As for the human body pose estimation method, 
we mainly discuss markerless motion capture 
systems, which have drawn much attention in 
recent years. A markerless approach can be 
decomposed into several submodules: 
initialization module, tracking module, pose 
estimation module, and recognition module. 

In the proposed motion capture system, we 
mainly focus on the initialization module and the 
pose estimation module. The module of 
initialization aims to obtain reliable prior 
knowledge for pose estimation and recognition. 
Due to error propagation, incorrect prior 
knowledge may lead to incorrect pose estimation. 
In the following paragraphs, we’ll first introduce 
a few algorithms that are related to initialization 
and pose estimation. In this project, we focus on 
model-based pose estimation for multi-camera 
systems.  

In [7], the reconstruction of a “visual hull” 
based on images from multiple cameras is 
introduced. In this approach, a visual hull is 
defined as the 3D shape formed by the 
intersection of visual cones projected from the 
2-D silhouettes. The visual hull of an object can 
be thought to be a close approximation of the 
object based on the observations from different 
viewpoints. 

Regard the 3-D shape human model, Mikic 
[8] adopted a twist framework that has been used 
to model the kinematic chains for robots. Sixteen 
rotation axes and five kinematic chains of the 
body joints are formulated using twists and 
product of exponentials. Relative to the 
torso-centered coordinate system, the rotation 
and shift of the other body parts can be easily 
manipulated. Pose estimation is performed by 
first doing template fitting and then using 

Bayesian network for refinement. However, the 
initialization based on template fitting cannot 
deal with self occlusion and the target person has 
to dress in tight clothes. 

Instead of using shape models, Menier [9] 
adapted skeleton models to fit medial axis points 
extracted from visual hulls. This approach 
reduces the dependency on the dimension of 
human body, and these 3D medial axis points 
represent the observed skeleton data. A generic 
skeleton model is then fitted with the observed 
skeleton data based on maximum a posteriori 
(MAP) estimation. The pose estimation of the 
first frame is based on the fitting process, while 
non-parametric belief propagation is used to 
predict the pose of the following frames. 

Due to the high dimensionality of the search 
space and the complexity of the fitness 
evaluation function, some researchers have 
adopted the particle swarm optimization (PSO) 
[10] method to perform pose estimation. 
Robertson [11] applied PSO to perform skeleton 
model fitting in a conference room environment, 
where the pose estimation is required only for 
the upper body. PSO is chosen for its ability to 
deal with nonlinear and non-convex optimization 
problems. Hierarchical and parallel PSO fitting 
is proved to be robust and computationally 
inexpensive. 

As mentioned earlier, model based motion 
capture systems have the advantages of 
complexities reduction and robustness. However, 
a good initialization is required to ensure that the 
system commences with a good body parts 
labeling and initial guess. More reliable 
initialization approaches based on manifold 
learning have been proposed recently.  

In manifold learning, manifold embedding 
is a topic about how to find a transformed space 
for the manifold that preserves the connectivity 
and algebraic properties. Several approaches, 
such as Laplacian Eigenmap [12], have been 
proposed in this field. In [13] Sundaresan 
proposed a segmentation approach for pose 
estimation based on Laplacian Eigenmap. In this 
approach, different branches in the normal space, 
such as separated body parts, are transformed 
into distinguishable 1-D smooth curves in the 



embedding space. This property makes the 
segmentation of 3-D human body a lot easier. 
 

3. TECHNICAL ILLUSTRATION – 
CAMERA COORDINATION SYSTEM 

 
3.1. Problem Formulation 
Unlike the articles mentioned in Section 2.1, we 
aim to capture as many frontal high-resolution 
facial images as possible during the presence of 
the monitored targets. In the proposed algorithm, 
PTZ cameras are allowed to cover more than one 
target at each time, as long as the captured facial 
images are sufficiently clear. In the proposed 
algorithm, we design our camera coordination 
system based on two major criteria: frontal shoot 
and high-resolution shoot. 

To formulate these two criteria, we define 
the shoot angle θij, and the face width Wij. In θij 
and Wij, the subscript i denotes the i-th PTZ 
camera, while the subscript j denotes the j-th 
person. As shown in Fig. 2(a), the shoot angle θij 

represents the angle between the blue dotted line 

ijcam  and the green arrow 
jface

uuuuur
. ijcam  

indicates the line connecting the i-th PTZ camera 
and the i-th target, while 

jface
uuuuur

 indicates the 
facing orientation of the j-th target. As the j-th 
target is looking toward the i-th camera, we have 
a smaller shoot angle. On the other hand, as 
shown in Fig 2(b), the shot face width Wij 
represents the width of the j-th target’s face in 
the image captured by the i-th camera. A larger 
value of Wij indicates a better observation of the 
j-th target in the the i-th camera image.  

j-th Target

θij 

i-th Camera 

Wij 

j-th Target  

(a)                (b) 

Fig. 2  Definitions of (a) θij and (b) Wij 

 

To simplify the computation of θij and Wij, 
all 3-D vectors are projected onto the ground 
plan to form 2-D vectors. In the simplified forms, 

the shoot angle and the face width are defined as 
follows. 

 
( )

cam faceij jacosij
cam faceij j

θ
⋅

=

uuuuuur uuuuuur

uuuuuur uuuuuur              (1) 

   3  Face width in D spaceW fij xi Dij
=         (2) 

where 
 

2
2

Image widthfxi FOVitan
=

⎛ ⎞
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⎝ ⎠

. In the definition of  

Wij, fxi denotes the focal length of the i-th PTZ 
camera in the horizontal direction, Dij is the 
distance between the i-th camera and the j-th 
target, and FOVi is the field of view of the i-th 
PTZ camera.  

Basically, we prefer to capture a facial 
image with a smaller shoot angle but a larger 
face width. We further apply two mapping 
functions Nθ( ) and Nw( ) over θij and Wij to 
convert them into two normalized measures. 
These two mapping functions are defined as 
follows. 

(1 ) ,  0
2( )
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thN x
θ θ
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( )
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, 
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⎪ <
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⎪

+⎪
≥⎪

⎩

(4) 

In (3) and (4), k is a positive constant that 
controls the dynamic range of Nθ( ) and Nw( ). rθ 
and rW are real numbers within the range [0, 1] 
and they control the slopes of Nθ( ) and Nw( ). thθ, 
thmin, and thmax are pre-defined thresholds. thθ 
represents the worst situation that can be allowed 
for capturing the frontal face. thmin represents the 
minimum face width for clear observation. On 
the other hand, when the face width is wider 
than thmax, we think the facial image has 
achieved the level of perfect observation. These 
thresholds can be varied by the users for 
different applications. 



With the definitions of Nθ and NW, we then 
define the evaluation function Eval( ) for the 
face capture of the j-th target by the i-th camera.  

( ) ( ) ( )
1 1

m n
Eval AP ap N N Wij ij W ij

i j
θθ= ∑ ∑

= =
.        (5) 

In (5), m is the number of cameras and n is the 
number of targets. AP denotes a set of camera 
assignments  

{ },  1,2, , ,  1,2, ,AP ap i m j nij= = =K K ,        (6) 

with apij’s representing the binary assignment 
parameters. apij is equal to 1 if the i-th camera is 
assigned to monitor the j-th target, and apij is 
equal to 0 otherwise. Hence, for a camera 
assignment AP, Eval(AP) represents the overall 
observation levels of the n targets by all m 
cameras. When more targets can be better 
observed by their corresponding cameras, with 
smaller shoot angles and larger face widths, we 
have a larger Eval(AP). Hence, the goal of the 
proposed camera coordination system is simply 
to find the optimal camera assignment that 
reaches the largest Eval(AP). Moreover, as these 
n targets keep moving within the monitored 
scene, we need to adaptively adjust the 
assignment of cameras to achieve the most 
preferable observation.  

Besides, to simplify the problem, we also 
add one extra constraint over (5). The constraint 
is 

1,  1,2, ,
1

m
ap k nik

i
= =∑

=
K .                 (7) 

This constraint implies that we only take into 
account the camera view that is assigned to the 
target even though that target may also appear in 
some other views.  
 
3.2. Significance Weight 
In theory, we can always find an optimal AP for 
the evaluation function at any time instant. 
However, people’s behavior is highly versatile. 
It is very likely that even with the optimal 
camera assignment we still cannot clearly 
capture all people’s faces at some time instants. 
The proposed system cannot guarantee that all 
people’s faces are always clearly observed.  

To deal with this problem, we assign each 
target a significance weight to represent the 

priority of that target. This weight will increase 
if the target hasn’t been clearly observed in the 
past few moments. On the contrary, if that target 
has already been clearly observed for a while, 
we decrease its significance weight.  

The adjustment of significance weight 
includes three different states: raise, hold, and 
decline. When the face of a target cannot be 
unclearly captured, we linearly increase its 
significance weight. When the weight is raised, 
the system will pay more attention to that target 
and it’s more likely that the target can be better 
observed. Once if the system has adjusted its 
camera coordination to take clear facial picture 
of that target, the significance weight will be 
held at a high value for a while. This “hold” state 
is make sure the target’s face can be clearly 
observed for a long enough period, but not just a 
short glimpse. After the hold state, the 
significance weight of the target is then 
decreased gradually to zero as long as the 
target’s face can be clearly captured. An 
example of the switching of these three states is 
illustrated in Fig. 3.  

 

Fig. 3   Variation of significance weight 

To realize the concept of importance weight, 
we add penalty term into the definition of Eval( ), 
as expressed below. 

( ) ( ) ( )( )
1 1

m n
Eval AP ap N N W pvij ij W ij ij

i j
θθ= −∑ ∑

= =
,   (8) 

where the penalty term pvij is defined as 

kswcfpv jijij ⋅⋅= .                   (9) 

In (9), swj stands for the significance weight of 
the j-th target, cfij represents the clear factor of 
the j-th target with respect to the i-th camera, 
and k is a controlling scalar. The clear factor cfij 

time

Initial State 

Raise State 

Hold State 

Decline State 

T T

Significance 
weight 



is equal to 0 if the j-th target can be clearly 
observed by the i-th camera. Otherwise, cfij is 
equal to 1. With the inclusion of the penalty term, 
the camera coordination system can pay more 
attention to these targets with larger significance 
weights automatically. 
 
3.3. Modified Discrete Binary PSO 
Unfortunately, Equation (8) has a nonlinear and 
non-differentiable form. To find the optimal AP, 
classical optimization algorithms, like the 
gradient decent algorithm, cannot be used. 
Instead, we adopt the particle swarm 
optimization algorithm [14]. In the PSO method, 
a set of particles is generated and each particle 
represents a trial solution of the problem. All 
particles have their own memory, and these 
particles communicate with each other to get the 
best global position. Due to the binary natural of 
the assignment parameters, we actually adopt the 
discrete binary particle swarm optimization 
algorithm proposed in [15]. However, since we 
have added one constraint in the evaluation 
function, we further make some modifications 
over the discrete binary particle swarm 
optimization algorithm to tackle the problem. 

In the modified DBPSO, each particle 
represents a possible AP. In the original form of 
PSO, particles are randomly generated in the 
initial stage. However, this causes a large 
number of iterations. To speed up the 
computations, we generate a reasonable initial 
guess about AP. This is achieved by performing 
clustering over targets’ positions and orientations. 
In the clustering process, targets with adjacent 
positions and similar face orientations are 
assigned to the same camera. Here, we define 
the feature vector of each target to be  

),...,,','( 1 mIPIPYX λλ ,               (10) 

system based on two major criteria: frontal shoot 
and high-resolution shoot. 

( ) ( )1
1 1 2 2

t t t t
i i i i g iv v c P x c P xω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ −
uuur ur uur uurur uur

. (11) 

In (11), t
iv  is the velocity at the previous 

moment, ω  is the inertia factor, c1 and c2 are 
scalars, and 1ϕ  and 2ϕ  are random numbers 
generated from the uniform distribution over 

[0,1]. Equation (11) is repeatedly computed until 
the stop criterion is reached.  

In the DBPSO algorithm, the definition of 
velocity is different from that of the original 
PSO. Assume x  denotes an n-bit string and xk 
represents its k-th bit, which can only be 0 or 1. 
Assume the position of the i-th particle is 
denoted as ix and its d-th bit as xid. Each bit 
has its own velocity vid. In the original PSO 
algorithm, the velocity of a particle indicates the 
movement of that particle. However, in the 
DBPSO algorithm, the definition of velocity 
represents the tendency of being 1. The larger 
the velocity is, the more likely that bit will 
become 1. Besides the modification over 
velocities, the previous best position and the best 
global position are to be considered in the 
bitwise manner. Assume we denote pid as the 
previous best d-th bit of the i-th particle, and 
denote pgd as the best global d-th bit. Then the 
equation is modified to be 

( ) ( )1
1 2

t t t t
id id id id gd idv v p x p xω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ −

.(12) 

and the d-th bit of the i-th particle is updated 
based on the following rule: 

( ) ( )( )1 1

1

0,1   1

 0

t t
id id

t
id

if rand S v then x

else x

+ +

+

< =

=      (13) 

In (13), rand(0,1) is a random number selected 
from a uniform distribution over [0, 1], and S is 
the sigmoid function defined by 

( ) 1
1 vS v

e−=
+ .                      (14) 

In our algorithm, we basically follow 
Equations (12)~(14), with each particle 
representing a possible camera assignment. 
Equations (12) and (13) are now rewritten as  

( ) ( )1
, 1 , , 2 , ,

t t t t
k ij ij k ij k ij g ij k ijv v p ap p apω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ − (15) 

and 

( ) ( )( )1 1
, ,

1
,

0,1   1

 0

t t
k ij k ij

t
k ij

if rand S v then ap

else ap

+ +

+

< =

=
  (16) 



The inertia factor is chosen to be some value 
within [0.8, 1].  

However, due to the inclusion of the 
constraint (7) in the evaluation function (8), the 
DBPSO algorithm needs further modification. In 
DBPSO, the d-th bit of the i-th particle is 
updated based on (13). However, after the 
update, the new particle may violate the 
constraint (7). To fix this problem, we slightly 
modify the DBPSO algorithm based on the 
following concept. 

Assume for the k-th target, its corresponding 
assignment bits are denoted as 

},...,,{ 21 mkkk apapap . If more than one ikap  
is set to 1. Then we retain the assignment bit that 
has the highest possibility to be 1, while set the 
other assignment bits to zero. In our approach, if 
the previous best value or the best global value 
of an assignment bit is 1, that assignment bit has 
the highest probability to be 1. If more than one 
assignment bits have the highest probability to 
be 1, then we randomly pick up one of them to 
be 1 and set the others to 0. 

On the other hand, if none of the assignment 
bits are set to 1, we still apply the same strategy 
to correct the assignment. That is, if the previous 
best value or the best global value of an 
assignment bit is 1, that assignment bit will have 
the highest probability to be 1.  
 

4. TECHNICAL ILLUSTRATION –HUMAN 

BODY POSE ESTIMATION 

 

In the other way, we proposed an efficient 
initialization process and a robust markerless 
pose estimation system. The goal of pose 
estimation is to capture the motion of a specific 
person. The motion of the articulated body parts 
is described using some parameters of a generic 
human model. Using images from a set of 
synchronized and calibrated cameras, we can 
reconstruct the visual hull based on volume 
intersection. Then the 3D voxel data are 
transformed into an embedding space using our 
modified Laplacian Eigenmap technique. Body 
parts segmentation is done in the eigenspace and 
the skeletons of the body parts are extracted 
individually. Finally, we fit the human model 

into the skeleton data using the PSO algorithm. 
Pose estimation is then iteratively performed for 
optimization. In Fig. 1, we show the flowchart of 
the proposed system. 
 

4.1. System initialization 

The performance of a model-based system 
heavily relies on the accuracy of the 
initialization results. The embedding-based 
initialization exploits the manifold embedding 
methods and has the advantage of lower model 
dependency. Inspired by Sundaresan’s method 
[13], we develop a modified Laplacian 
Eigenmap to efficiently extract the kinematic 
information from the visual hull. In the 
following sections, we’ll explain more details 
about Sundaresan’s method and our initialization 
method. 
4.1.1 Proposed initialization method 

Inspired by Sundaresan’s algorithm, we develop 
our initialization method based on a 
modification of the Laplacian Eigenmap.   

Given n points v1, v2,…, vn in the p 
dimension, Laplacian Eigenmap aims to find its 
transformation u1, u2, …, un in the r dimension 
to minimize the object function: 

2

,
Ei j ij

i j
−∑ u u ,                    (17) 

where E is the adjacency matrix of the graph 
constructed from v1, …,vn. That is, if vj is in the 
neighborhood of vi, then Eij is equal to 1. 
Otherwise, Eij is set to zero.  

Besides (17), an extra constraint is added for 
the minimization of the object function. The 
constraint says 

[ ]1

U DU

where U

T

T
n

I=

= Lu u
             (18) 

D is a diagonal matrix, whose element Dii 
represents the degree of Node i. This constraint 
is to normalize the scaling factor when manifold 
embedding is performed. We can unroll 
Equation (18) to obtain the following 
constraints:  
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In (19), we observe that nodes with more 
neighbors tend to converge to positions around 
the origin after the transformation.  

As mentioned above, the segmentation of 
trunk is a major difficulty in Sundaresan’s 
method. Since the nodes in the trunk tend to 
have bigger values of Dii, this fact makes the 
transformed values of the trunk voxels spread 
around the origin of the eigenspace. Having 
exploited this property of Laplacian Eigenmap, 
we manage to assign trunk voxels with bigger 
values of Dii so that their transformed data will 
shrink even closer to the origin. Once these 
nodes are shrunk to the origin of the 6-D 
eigenspace, the segmentation of the limb parts 
will become much easier.  

Furthermore, to prevent mistakenly 
shrinking the other thick parts of the human 
body, like the head, color is used as the auxiliary 
information. For each 3-D voxel and its 
neighbors, we project them back into the image 
plane of each camera and record the colors at the 
projected positions. If the colors of two voxels, 
say vi and vj, are similar for most cameras, we 
increase the value of Eij to enhance the 
connectivity. By this way, we can weaken the 
connection of the nodes between head and torso. 
When nodes belonging to the torso are shrunk to 
the origin, we can still preserve the 
distinguishable branches of the other body parts. 

In summary, our body part segmentation 
method is briefly described as below: 

 

A. Modified Laplacian Eigenmap  

A.1  Graph Construction 

Given n voxels v1, …,vn in the visual hull, we 
construct an adjacency graph G for these 
voxels. Each element Eij of E records the 
relationship between Node i and Node j. For 
position information, if two nodes are 
6-connection neighbors, Eij gets one point. 
For color information, we project each voxel 
into the image planes and calculate the 

similarity between their colors. In our 
simulation, there are eight cameras in total in 
the scene. If for some camera the value of d, 
as defined below, is less than some threshold, 
one vote is recorded. 

222 )()()( jijiji bbggrrd −+−+−≡   (20) 

Therefore, at most 8 votes can be recorded for 
each 6-connection neighbor of a node. The 
extra bonus on Eij is added based on the 
following rule: 
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Since the original value of Eij is at most 1 for 
the position information, the bonus for the Eij 
due to the color information is restricted to be 
no more than 1. Please note that the color 
information is only auxiliary. This is because 
different colors don’t necessarily mean 
different body parts. Here, we simply use 
color information to prevent a mistaken 
shrinkage of the head part.  
 

A.2. Shrinking of Nodes 

After having constructed the adjacency graph, 
we impose more weights on those voxels that 
have more connections to their neighbors. For 
a Node i, its degree is defined as 

,
Eij

j j i≠
∑ . 

Once we increase the weights of these nodes 
that have larger degrees, the transformation of 
these nodes will shrink toward the origin in 
the eigenspace.  
 

B. Body Part Segmentation 

Since the trunk voxels will be roughly 
mapped to the origin of the eigenspace based 
on the modified LE, a simple but efficient 
termination method can thus be developed for 
body part segmentation. In the following, we 
briefly explain the process of body part 
segmentation. 
 

B.1. Spline Initialization 

The process of spline initialization is the 



same as Sundaresan’s method. 
 

B.2. Spline Propagation 

Starting from the end of the (P+1) nodes, the 
nearest N points are selected. Unlike 
Sundaresan’s method, we don’t have to count 
the number of outliers. The site values are 
also fitted using a 6-D spline. 
 

B-3. Spline Termination 

The process of spline propagation continues 
until the distance between the end of the 
spline and the origin is less than a pre-defined 
threshold. 
 
In Fig. 4, we show the comparison between 

the Sundaresan’s method and ours. It can be seen 
that our method map the trunk part to the origin 
of the eigenspace. Hence, after spline fitting, the 
trunk is well detected and the limb parts of the 
human body, especially the left arm, can be 
successfully extracted.   

Once the segmentation of human body parts 
is done, we can extract the skeleton of the visual 
hull. Skeleton extraction has the advantage of 
feature reduction. Furthermore, skeletons encode 
the information of kinematic motion and won’t 
deform in any pose.  

In our approach, each body part is 
individually transformed into a 1-D eigenspace 
based on the LE algorithm. The smallest nonzero 
eigenvalue represents the most important 
dimension that corresponds to the trend of the 
body part. Spline fitting is performed and the site 
values that encode the geometric relation in the 
normal space are calculated along this dimension. 
The skeleton extraction is then performed by 
finding a 3-D spline h which minimizes (22) 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

 
(g) (h) 

Fig. 4: Comparisons between Sundaresan’s 
method and ours (a) input image (b) the color 
representation for the segmentation results 
(c)(e) the segmentation result in the 6-D 
eigenspace using original LE (g) the 
segmentation result in the normal space using 
original LE (d)(f) the segmentation result 
based on our modified method (h) the 
segmentation result in the normal space using 
our modified method. 

 

In Fig. 5, we show an example of the skeleton 
extraction process. 

   
(a)                    (b) 

Fig. 5: The skeleton extraction result using the 
proposed method (a) one of the eight input 
images (b) the extracted skeleton 
 

 

2nd body part
3rd body part
4th body part
5th body part 
6th body part 
unfitted 



4.2 Pose estimation 

After skeleton extraction, the posture of the 
specific person is estimated using a prior human 
model. The joints of the human model have their 
individual degrees of freedom (DOF). In total, 
there are usually 20 or more parameters. Thence, 
the fitting of the human model to the skeleton 
data is an optimization problem in a very high 
dimensional search space. In this case, it is very 
challenging to simultaneously find the optimal 
solution for the current skeleton data and to 
ensure the temporal smoothness over time. In the 
following section, we will discuss the adopted 
3-D human model and the proposed pose 
estimation technique. 
 

4.2.1 3-D human model 

Our human model is a 3-D skeleton model. Here, 
we adopt the popular twists and exponential 
products formulation. This mathematical 
framework helps us in describing the kinematic 
chains in the human body. The concept for 
kinematic chains is introduced by Murray [16] 
and is generalized to the application of 3D 
human models by Mikic [8].  

In our model, a human body is a 3-D 
skeleton composed of 12 segments and 23 
parameters. It is based on the twists formulation. 
The position of each point can be described 
using exponential products. 

In Mikic’s design, the rotation axis of the 
torso is an arbitrary unit vector ω0 in the world 
coordinate [8]. However, it is not easy to control 
the orientation of the human model. The 
orientation of the human model determines 
which part is the right-hand side. This 
information is important since the motion 
constraints for the right side and the motion 
constraints for the left side are somewhat 
different. With the motion constraints, we can 
make our pose estimation more natural and 
reasonable. Unfortunately, Mikic’s method does 
have some problem in defining the orientation of 
the model.  

To determine the right side from the left 
side, Mikic switches the right side and left side 
of the human model and compares their fitting 
errors. For the case in Fig. 5, it happens that the 

smaller fitting error actually corresponds to the 
wrong decision. A more natural thinking is that if 
we can make the model self-spin, the orientation 
of the human body can be easily manipulated 
and decided. Hence, we redefine the rotation 
axis of the human body as the torso stick of the 
model. Furthermore, the neck position and the 
torso center control the incline of the human 
model. With self spin, the human model can 
easily spin to the correct orientation to obtain 
less fitting error. 
 
4.2.2 PSO based pose estimation 
PSO (Particle Swarm Optimization) has the 
advantages of being capable of dealing with 
non-concave and nonlinear cost functions. 
Moreover, its computational cost is usually very 
light. This PSO method provides a powerful tool 
for dealing with an optimization problem in a 
high-dimensional search space. Inspired by [11], 
we apply PSO to the fitting of the 3D skeleton 
model to the extracted skeleton data. 

In the process of pose estimation, we fit the 
3-D skeleton model defined to the extracted and 
labeled skeleton. The skeleton model is 
composed of 12 line segments while the 
extracted skeleton data consist of many nodes in 
the 3-D space. Our goal is to find the minima of 
the evaluation function. The evaluation function 
is defined as the Euclidean distance between the 
human model and the extracted skeleton. 

In the proposed pose estimation algorithm, 
a swarm of particles and an evaluation function f 
are defined in the search space with the 
dimensionality of D. Each particle is represented 
as a vector pi = [pi1 pi2 … piD]T with D elements. 
Furthermore, every particle has its associative 
velocity vi=[vi1 vi2 … viD]T to guide its motion. 
In every iteration, the value of the evaluation 
function is computed and recorded for each 
particle. Two kinds of information are evaluated. 
The first kind of information is the best position 
so far for each particle, recorded as bi. This bi is 
to keep the information of self experience. The 
second kind of information is the globally best 
position, denoted as gb. gb is evaluated by 
finding the minimal value of f so far. The new 
location of each particle is then updated using 
the information of self experience and the 



globally best position. Gradually, most particles 
will converge to the optimal position which has 
the minimal value of f(p). 

Besides the use of the PSO method, we also 
need to ensure the temporal consistency between 
frames. The motion changes between the current 
frame and its previous frame should be smoothly 
changing. To ensure the temporal consistency, 
we propagate the values of the estimated 
parameters from the current frame to the next 
frame. In other words, we restrict the values of 
the parameters for the next frame to be within 
some range around the estimated parameters at 
the current frame. However, since an incorrect 
estimation may also propagate over time, we add 
a re-initialization mechanism for each frame. 
When the fitting error is larger than some 
pre-defined threshold, we will re-initialize the 
whole pose estimation process based on the 
current frame only. This can prevent the 
propagation of errors. 
 

5. SIMULATION RESULTS 

 

5.1 Multi-camera coordination system 

Fig. 6 shows a few sets of images captured at 
different time instants. In our experiments, the 
test videos are synthesized by ObjectVideo 
Virtual Video (OVVV) [17], which is a publicly 
available visual surveillance simulation test bed. 
By using OVVV, we can easily design various 
kinds of scenario and camera setups. In Fig. 4, 
there are nine people walking around in the 
scene. Each person is assigned a color and we 
use this color to plot a bounding box for that 
person. The synthesized scene is captured by 
four static cameras and four PTZ cameras, 
locating at different positions. In each figure, the 
left four frames denotes the pictures captured by 
the static cameras, while the right four frames 
are the pictures captured by the PTZ cameras. 
The use of static cameras can help the reader to 
easily realize the relations among these nine 
people; while the images captured by the PTZ 
cameras demonstrate the results of camera 
coordination. 
 

Table 1 The statistical results of all test 
sequences 

 
Average 

Score 

Unclear 

Rate 

SEQ-1 (9) 7.5355 0.0200 

SEQ-2 (9) 5.0644 0.0393 

SEQ-3 (6) 7.6656 0.0056 

SEQ-4 (6) 8.0526 0.0017 

SEQ-5 (7) 8.3151 0.0138 

Average 7.3266 0.0161 

 

 
Time 15 

 
Time 110 

 
Time 135 

Fig. 6 Experimental results of the test sequence 
SEQ-1 

Table 1 shows the statistical results of all 
experimental sequences. The “average score” is 
the average score for all people in a sequence. 
“Unclear Rate” is the average ratio of the 
zero-score time over the total time. The highest 
average score is 10 and the lowest is 0. Here, the 
frame size of each camera is 320×240 for all 
experiments. We let the value of thmax, thmin, and 
thθ be 50, 15, and π/2, respectively for all 
experiments. The upper bound of the unclear 
period is set to 20.  
 

 



5.2 Human body pose estimation 

In our simulation, we use ObjectVideo Virtual 
Video (OVVV) [17] to simulate a synthesized 
environment, which contains eight virtual 
cameras. We test 9 sequences in total, as listed in 
Table 1. Some simulation results are shown in 
Fig. 7. In Fig. 7, we can clearly see that the 
proposed method can faithfully generate the 
corresponding skeleton models based on a set of 
images collected from multiple cameras.   
 

 

 

Fig. 7: The pose estimation results for 4 different 

sequences. 

 

6. CONCLUSIONS 

 

In this project, we proposed two algorithms for 
the application of video surveillance: (a) a 
camera coordination system for surveillance and 
(b) human body pose estimation method. For the 
camera coordination system, we construct a 
camera coordination system to control multiple 
PTZ cameras to capture as many frontal 
high-resolution facial images as possible. We 
formulate the camera coordination problem in 
terms shoot angle and the face width. By taking 
into account the overall scores in capturing facial 
images, we convert the coordination of cameras 
into an optimization problem. We then develop a 
modified algorithm over the discrete binary 
particle swarm optimization method to get the 
optimal camera assignment. For human body 
pose estimation method, we proposed a 
model-based pose estimation technique for 

multiple camera motion capture system. The 
whole process, which includes initialization and 
pose estimation, is automatic and markerless. 
For system initialization, we reconstruct the 3D 
visual hull from multiple foreground silhouettes. 
We segment the human body in the eigenspace, 
and then extract the skeletons to reduce the 
dimensions of the feature space. In the 
initialization stage, no prior model is needed. 
Furthermore, we modify the Laplacian 
Eigenmap to make the body parts segmentation 
easier than Sundaresan’s method. After system 
initialization, a prior 3D human model is fitted to 
the extracted skeleton based on the PSO 
algorithm. Our human model allows self-spin 
and combines motion constraints with the pose 
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