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摘要 

本計畫基於非冗長對角先期編碼和獨立同分佈（i.i.d.）訊源的假設，提出以

單載波頻域等化器為基礎的空時區塊碼系統的盲蔽式通道估測法。此方法開發了

共軛交叉相關介於兩個時間區塊信號的先期編碼所產生的線性信號結構和循環

行列式的通道矩陣特性，並且在通道雜訊為循環高斯而接收機資料統計可以完整

的得到時可以產生精確解。 

此通道估測的公式化建立在重組共軛交叉相關矩陣的線性方程式集合以及

通道脈衝響應，使之成為一個具有區塊循環循環區塊（block-circulant with 

circulant-block (BCCB)）的特殊結構。這樣允許了一個簡單的僅視先期編碼參數

而定的可辨識條件，也提供了一個自然而有效的最佳先期編碼器的設計架構來改

善當不完全資料估測發生時的解答正確性。 

我們從明確和統計的觀點考慮兩種資料不匹配的模型，並且提出相關的設計

準則。最佳化的問題以利用 BCCB 系統矩陣的特性公式化並加以分析求解。所

提出的最佳化先期編碼器目的在於有明確誤差擾動時解的強健度最佳化和當資

料不匹配以白雜訊模型化時的均方誤差最小化。配對的誤差機率分析用來探討等

化器的性能，而數值分析的例子便展示了提出方法的性能。 

 

關鍵詞：盲蔽式通道估測， 具有循環區塊的區塊循環矩陣，循環矩陣，多輸入

單輸出，非冗長先期編碼器，單載波頻域等化器，空時區塊碼，傳送多樣性 
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Abstract 

Relying on non-redundant diagonal precoding and i.i.d. source assumption, this 

paper proposes a blind channel estimation scheme for single-carrier 

frequency-domain equalization based space-time block coded systems. The proposed 

method exploits the precoding-induced linear signal structure in the conjugate 

cross-correlation between the two temporal block received signals as well as the 

circulant channel matrix property, and can yield exact solutions whenever the channel 

noise is circularly Gaussian and the receive data statistic is perfectly obtained. The 

channel estimation formulation builds on rearranging the set of linear equations 

relating the entries of conjugate cross-correlation matrix and products of channel 

impulse responses into one with a distinctive block-circulant with circulant-block 

(BCCB) structure. This allows a simple identifiability condition depending on 

precoder parameters alone, and also provides a natural yet effective optimal precoder 

design framework for improving solution accuracy when imperfect data estimation 

occurs. We consider two models of data mismatch, from both deterministic and 

statistical points of view, and propose the associated design criteria. The optimization 

problems are formulated to take advantage of the BCCB system matrix property and 

are solved analytically. The proposed optimal precoder aims to optimize solution 

robustness against deterministic error perturbation and also minimize the mean square 

error when the data mismatch is modeled as a white noise. Pair-wise error probability 

analysis is conducted for investigating the equalization performance. Numerical 

examples are used to illustrate the performance of the proposed method. 

 

Keywords: Blind channel estimation, block-circulant matrix with circulant blocks 

(BCCB), circulant matrix, multiple input single output (MISO), nonredundant 

precoders, single-carrier frequency-domain equalization, space–time block code 

(STBC), transmit diversity. 
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Chapter 1 

Introduction 
 

A. Overview 
 
  Space-time block code (STBC) is a widely-known transmit diversity technique for 

combating channel fading in modern wireless communications [22]. Most of the 

existing proposals are devised for the flat- fading channel environment, e.g., the 

Alamouti’s scheme [1] and the related generalization by Tarokh et. al [34], among 

others. When the propagation channels are subject to frequency-selective fading, one 

popular STBC technique is via time-reversal block-wise encoding, either combined 

with OFDM mechanism [27], [40], or resorting to time-domain equalizer [26], for 

removing the channel distortion. The multi-carrier related solutions, although 

simplifying receiver implementations, would incur high peak-to-average power ratio 

(PAPR) and is sensitive to carrier frequency offset. The scheme with time-domain 

equalization, on the other hand, can provide additional multipath diversity at the 

expense of decoding complexity. To avoid the drawbacks of the multi-carrier strategy 

and to also maintain low receiver complexity, an alternative single-carrier 

frequency-domain equalization (FDE) based STBC was proposed in [2]. The 

aforementioned STBC’s capable of mitigating dispersive channels can be cast into a 

general code formulation [39]; comparisons pf the achievable performances and 

implementation costs can be found in [3]. 

 
  To realize the diversity benefit of STBC, the channel state information must be 
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known at the receiver to coherently combine the multiple temporal received signals 

for decodinga. Since STBC potentially entails low spectral efficiency and training 

based channel estimation further consumes bandwidth resource, blind approaches 

then become appealing candidate solutions. There has been extensive literature on 

blind multi-input multi-output (MIMO) channel estimation [14], [16]. However, only 

a few studies are tailored for STBC systems, typically through a multi-input 

single-output (MISO) channel link. Under flat-fading assumption, several schemes 

were put forth for orthogonal STBC [4], [7], [32], and for a general linear code family 

[33]. For time-reversal STBC over frequency-selective channels, the work [5] focused 

on codes with time-domain equalization [26]. Through linear symbol precoding, blind 

schemes for OFDM-based STBC were shown in [27] and [40]. The method [27] 

resorts to zero-padding for removing inter-block interference, and is applicable only 

for constant-modulus sources and channel pairs without common zeros; the one in 

[40], instead, uses cyclic prefix (CP) as guard interval and leverages redundant 

precoding to relieve the source and channel-zero constraints imposed in [27]. For 

FDE-STBC, training based channel estimation is recently considered in [11]. It is 

known that single-carrier FDE systems fall within the class of precoded OFDM, with 

FFT matrix as precoder [25]. In view of this fact, the method in [40] for OFDM 

scenario also provides an immediate blind solution for FDE-STBC: one just chooses 

FFT precoding matrix to convert the multi-carrier transmission into a single-carrier 

scheme and then inserts certain redundancy into the symbol streams to facilitate 

channel identification. The price to be paid for this approach, however, would be the 

                                                 

a Differential STBC does not require channel information for decoding but incurs a 3-dB penalty in 

SNR [22, Sec. 9.6]. 
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loss in the effective data rate. 

 
B. Paper Contributions 
 
  This paper proposes a blind channel estimation scheme for FDE-STBC systems in a 

two transmit antennas and single receive antenna environment. The proposed 

approach relies on non-redundant diagonal precoding (hence preserving the baud 

rate), assumes i.i.d. source statistics (irrespective of constellation modulus), and does 

not impose constraints on sub-channel zero locations. It exploits the 

precoding-induced linear signal structure in the time-domain conjugate 

cross-correlation between the two temporal receive branches, as well as the circulant 

channel matrix property after CP is discarded. Specifically, we show that the set of 

linear equations relating the entries of conjugate cross-correlation matrix and products 

of channel impulse responses can be rearranged into one with a block-circulant with 

circulant-block (BCCB) structure. The products of channel taps are first obtained by 

solving this linear equation set; the channel pair is then simultaneously identified, up 

to a ×2 2  complex matrix ambiguity, as the dominant left singular vectors of an 

associated rank-two matrix. A similar “bilinear” estimation strategy has also been 

adopted in [13], [21], [24], [37]. In our formulation, a natural sufficient condition for 

unique channel recovery is the non-singularity of certain BCCB matrix with precoder 

coefficients as its entries. Channel identifiability is thus free from any priori 

assumptions on sub-channel characteristics, and is shown to be fulfilled by almost all 

choices of precoders. As long as the channel noise is circularly Gaussian and the 

received data statistic is perfectly obtained, the resultant channel estimate is exact. In 

the presence of finite-sample estimation error, the proposed channel estimation 

framework allows a natural precoder design formulation for improving solution 
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robustness. We consider two models of data mismatch, one as an unknown 

deterministic perturbation while the other statistically as a white noise, and propose 

the associated optimal precoder design criteria, aiming for minimizing the worst-case 

solution sensitivity to perturbation and mean-square errors, respectively. Both 

optimization problems are further formulated to take advantage of the BCCB system 

matrix property and are then analytically solved; the resultant solutions are shown to 

be the same two-level form precoder. Pair-wise error probability (PEP) analysis is 

conducted to investigate the equalization performance of the proposed optimal 

solution and characterize the associated design trade-off. It is noted that blind channel 

estimation via non-redundant diagonal precoding has been considered in the single 

channel case [31], [10], [24], [37]; the related generalizations to MIMO single- and 

multi-carrier spatial multiplexing systems can be found in [8] and [9]. The rest of this 

paper is organized as follows. Section II briefly describes the system model and the 

underlying assumptions. Section III presents the proposed method; the associated key 

features are investigated in Section IV. Section V addresses the optimal precoder 

design against imperfect data estimation. Section VI examines the equalization 

performance through PEP analysis. Section VII contains the simulation results. 

Finally, Section VIII is the conclusion. 

 
Notation List: Let Rm n×  and Cm n×  be respectively the sets of m n×  real and 

complex matrices. Denote by ()T⋅ , *()⋅ , and ()H⋅ , respectively the transpose, 

complex conjugate, and Hermitian operations. The symbols mI  and m0  denote the 

m m×  identity and zero matrices; m n×0  is the m n×  zero matrix. The notation 

⊗  stands for the Kronecker product [19, p-242]. For Cm n×∈X  with Cmj ∈x  

being the jth column, define 1( ) : [ ]T T T mn
nvec = ∈X x x C . For m∈x C , let 
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{ }diag x  be the m m×  diagonal matrix with the elements of x  on the main 

diagonal. The notation Ey  stands for the expected value of the random variable y , 

and : 1j = − . We denote by CN N×∈F  the FFT matrix with the kl-th entry 

[ ] ( 1)( 1)
, : 1/ k l
k l N ω− − −= ⋅F , where : exp( 2 / )j Nω π= , 1 ,k l N≤ ≤ . We denote 

by || ||⋅  the two-norm of a vector and by ( )κ X  the condition number of matrix X . 
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Chapter 2 

System Model and Basic Assumptions 
 
 

 

We consider the discrete-time baseband model of an FDE-STBC system [2] over 

frequency-selective channels as shown in Figure 1. Let ks  and 1k+s  be two 

N-dimensional symbol blocks to be transmitted. Priori to the STBC encoder, each 

symbol block is precoded by an N N×  diagonal matrix 

 [ ]{ }: (0) ( 1)Tdiag p p N= −P ,  (2.1) 

with R( )p n ∈ , to obtain 

 l l=x Ps , for  , 1l k k= + ,  (2.2) 

which are then spatially and temporally coded according to [2] for transmit diversity 

as well as for mitigating the multipath channel distortion. For 1 2i≤ ≤ , let ( )ih n  

be the impulse response of the channel between the thi transmit antenna and the 

receive antenna. In terms of block signals, the input-output relations in time-domain 

are described as [2] 

 1 2 1k k k k++ +y = G x G x v , (2.3) 

and 
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 1 21 1 1k k k k+ + += − +y G x G x v , (2.4) 

 

where, for  , 1l k k= + , ly  and lv  are the received signal (upon CP removal) and 

noise, lx  is the time-reversed and element-wise conjugated version associated with 

lx , that is,  

 *( ) (( ) )l l Nn n= −x x , 0 1n N≤ ≤ − ,  (2.5) 

and CN N
i

×∈G  is circulant withb 

 C: (0) ( ) 0 0
T N

i i ih h L⎡ ⎤= ∈⎢ ⎥⎣ ⎦g ,  (2.6) 

as the first column, 1 2i≤ ≤ . Since iG  is circulant, we have H
i i=G F D F , where 

iD  is diagonal with ( 1)

0
( )

L
m n

i imm
n
h n ω− −

=

⎡ ⎤ =⎣ ⎦ ∑D , 1 m N≤ ≤ . Let us define 

:l l=Y Fy , :l l=X Fx , and :l l=V Fv , for  , 1l k k= + . Then the 

frequency-domain representation associated with (2.3) and (2.4) can be expressed in a 

compact vector-matrix form as [2] 

  
1 2

* * * *
12 11 1

:

k kk

kk k++ +

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
D

Y D D VX

XY D D V
;  (2.7) 

through space-time matched filtering using the effective channel matrix D  we get 

 * *
11 1

k kkNH H

kk kN ++ +

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

Y VXD 0
D D

XY V0 D
,  (2.8) 

                                                 

b Without loss of generality we may take L as a common channel order, or simply an associated upper 

bound, which can be determined as the maximum among the two. 
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where 1 1 2 2: H H N N×= + ∈D D D D D R  is diagonal with 
2 2

1 2ii iiii
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦D D D , 

1 i N≤ ≤ : this asserts that two-fold transmit diversity is achieved in the frequency 

domain. To recover the source signals, per-tone frequency-domain equalizer [2], [15] 

can be designed based on (2.8), as long as a channel estimate is available at the 

receiver. Based on the time-domain signal model (2.3) and (2.4), this paper proposes a 

blind channel estimation scheme by using the second-order statistics of the received 

signal and discusses an optimal design of the precoder ( )p n  for improving channel 

estimation accuracy. The following assumptions are made in the sequel. 

 

a) The source sequence ( )s n  is independently identically distributed (i.i.d.) with 

zero mean and *( ) ( ) ( )Es k s l k lδ= − , where ()δ ⋅  is the Kronecker delta 

function. 

b) The noise ( )v n  is white circular Gaussian with zero mean, variance 2
vσ , and is 

independent of the source sequence ( )s n . 
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Chapter 3 

Blind Channel Estimation 
 
  To introduce the proposed method, we first assume that all the signal statistics can 

be perfectly obtained; the case with imperfect data estimation will be treated later. To 

obtain the channel matrix D , one may focus on direct estimation of the N tones of 

the channel frequency response. Since the block length N could be large, this strategy 

would involve considerable computational efforts. Hence, we propose to instead 

estimate the time-domain channel impulse response ( )ih n , for 0 n L≤ ≤  and 

1 2i≤ ≤ ; the gains of the associated frequency tones can then be obtained by using 

FFT operations. 

 

A. Identification Equations 

 

  The proposed approach exploits the imbedded linear signal structure in the 

time-domain conjugate cross-correlation matrix of the two received signals ky  and 

1k+y  as well as the circulant property of the channel matrix iG . To proceed, let us 

first define the matrix 

 R

1 0 0

0 1
:

0 1

0 1 0

N N×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Γ .  (3.1) 

Then, from (2.5), it is easy to see 

 *
k k=x xΓ  and *

1 1k k+ +=x xΓ .  (3.2) 
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With (2.2) and (3.2), the signal models (2.3) and (2.4) then become 

  1 2 1k k k k++ +y = G Ps G Ps v ,  (3.3) 

and 

 * *
1 21 1 1k k k k+ + += − +y G Ps G Ps vΓ Γ .  (3.4) 

From (3.3), (3.4), and by assumptions a) and b), it is easy to check 

   

{ }2 2
2 1 1 2 1 21 1 1 1 1(1) : T T T T T T

k k k k k k k kE E E EΓ Γ+ + + + += = − + + +yR y y G P G G P G G P s v G P s v v v

.    (3.5) 

Since the noise ( )v n  is circular, we have 1
T

k k NE + =v v 0 . Also, we assume that both 

the real and imaginary components of the noise process are independent of those of 

the source sequence ( )s n : this thus implies 1 1 1
T T

k k k k NE E+ + += =s v s v 0 . Under 

these conditions, the noise contributions to the conjugate cross-correlation matrix 

(1)yR  in (3.5) become a zero matrix, leading to 

 2 2
2 1 1 2(1) T T= −yR G P G G P GΓ Γ .  (3.6) 

For a given (1)yR , the matrix equation (3.6) defines a set of 2N  scalar equations 

nonlinear in the unknowns , , , (0) ( ) 1 2i ih h L i≤ ≤ , but is linear with respect to 

product channel coefficients ( ) ( )i i
h k h l , ,1 2i i≤ ≤ . As a result, in lieu of directly 

solving for , , (0) ( )i ih h L , we propose to exploit the imbedded linear structure in 

(1)yR  for channel estimation. This will be done by further taking into account the 

circulant property of the channel matrices iG ’s. 

 

  Specifically, define the following permutation matrix 
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 R1 ( 1)

1 ( 1) 1

1
: N N N

N N

× − ×

− − ×

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

0
J I 0 .  (3.7) 

Since iG  is circulant, it can be expressed in terms of its first column (cf. (2.6)) as 

 2 1N N
i i i i i

− −⎡ ⎤= ⎢ ⎥⎣ ⎦G g Jg J g J g , 1 2i≤ ≤ .  (3.8) 

By definitions of P  and Γ  (see (2.1) and (3.1)) and from (3.8), it follows 

( ) ( )

( )

 

2
2 1

2 2
2 1 2 1

1
2 2 2 1 1 2

2 2 2 1 1 1 2 1
0

(0) (1) ( 1) ( ) .
T

T T

NT N nN N n T T

n
p p p N p n

− −− −

=

= ⋅

⎡ ⎤ ⎡ ⎤= − ⋅ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= =

∑

G P G G P G

g Jg J g g J g Jg J g g J

G P G

Γ Γ

Γ
 (3.9) 

Similarly, we have 

 ( )
1

2 2
1 2 1 2

0
( ) .

N N nT n T T

n
p n

− −

=
= ∑G P G J g g JΓ   (3.10) 

Combining (3.9) and (3.10), (1)yR  in (3.6) becomes 

 ( )
1

2

0
(1) ( )

N N nn T

n
p n

− −

=
= ∑yR J G J ,  (3.11) 

wherec 

 1
2 1 1 2 2 1

2

:
T

T T N N
T

×
⎡ ⎤
⎢ ⎥⎡ ⎤= − = ⋅ ∈⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥−⎣ ⎦

g
G g g g g g g

g
C .  (3.12) 

With ig  given in (2.6), the matrix G  is seen to contain the product channel 

impulse responses of the form 2 1 1 2( ) ( ) ( ) ( )h k h l h k h l− , ,0 k l L≤ ≤ , which are to be 

determined from (3.11). Toward a tractable procedure for computing G , we observe 

                                                 

c We assume that the two channel impulse response vectors are linearly independent, for otherwise G  

is identically a zero matrix; this assumption holds whenever the environment is with sufficiently rich 

scattering. 
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that (1)yR  in (3.11) is a weighted sum of N  matrices of the form ( )N nn T −
J G J , 

in which the unknown G  are pre, and post, multiplied by the known matrices nJ  

and ( )N nT −
J . Based on this structural property, we can further rearrange (3.11) into 

a standard linear equation form. This is done via the next lemma. 

Lemma 3.1 [19, p-255]: The matrix equation 
1

K

k k
k=

=∑A XB C  can be equivalently 

expressed as 
1

( ) ( )
K

T
k k

k
vec vec

=

⎡ ⎤
⎢ ⎥⊗ =⎢ ⎥⎣ ⎦
∑B A X C .                               

 

Based on Lemma 3.1, we can immediately rewrite (3.11) as 

  
1

2

0
( ) ( ) ( (1))

N
N n n

n
p n vec vec

−
−

=

⎡ ⎤
⎢ ⎥⊗ =⎢ ⎥⎣ ⎦
∑ yJ J G R .  (3.13) 

By definitions of the Kronecker product and J  in (3.7), equation (3.13) turns out to 

be 

       

2 2 2 2 2 1

2 1 2 2 3 2 2

2 2 2 3 2 2

2 2 2 2 1 2

(0) (1) ( 2) ( 1)

( 1) (0) ( 3) ( 2)

(2) (3) (0) (1)

(1) (2) ( 1) (0)

:

N N
N

N N N
N

N

N
N

p p p N p N

p N p p N p N

p p p p

p p p N p

− −

− − −

−

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎢ ⎥⎣ ⎦
=

I J J J

J I J J

J J I J

J J J I

Q

( ) ( (1))vec vec= yG R

 (3.14) 

The 2 2N N×  real-valued matrix Q  defined in (3.14), which is characterized by 

the N  circulant matrices { }, , , 2 2 2 1(0) (1) ( 1) N
Np p p N −−I J J  on the top row 

block, is block circulant with circulant blocks (BCCB) [12, p-184]. Equation (3.14) 

forms the basis of the proposed approach. 
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B. Identification of Channel Impulse Response 

 

  Assume that ( )vec G , and hence the matrix G , can be uniquely recovered from 

the linear equation (3.14); the uniqueness condition and the computational issue will 

be investigated in the next section. We then collect the product unknowns 

2 1 1 2( ) ( ) ( ) ( )h k h l h k h l− , ,0 k l L≤ ≤ , to form the following ( 1) ( 1)L L+ × +  matrix 

 
,, 0

: k l k l L≤ ≤
⎡ ⎤= ⎢ ⎥⎣ ⎦H H , where 2 1 1 2, ( ) ( ) ( ) ( )k l h k h l h k h l= −H .  (3.15) 

Observe that the matrix H  is of rank two, and can be factorized as 

 1
2 1 1 2 1 2

2

0 1

1 0

T
T T

T

⎡ ⎤⎡ − ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥= − = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

h
H h h h h h h

h
,  (3.16) 

where 

 C 1: (0) (1) ( )
T L

i i i ih h h L +⎡ ⎤= ∈⎢ ⎥⎣ ⎦h , 1 2i≤ ≤ ,  (3.17) 

is the desired channel impulse response vectors. Based on (3.16), the channels can 

thus be identified, up to a 2 2×  complex matrix of the form 

 
a b

c d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

U , with 1ad bc− = ,  (3.18) 

by computing the two dominant left singular vectors associated with H ; the inherent 

matrix ambiguity must satisfy (3.18) since, for any vector pair of the form 

1 2
⎡ ⎤= ⎢ ⎥⎣ ⎦h h h U  with 2 2×∈U C , we have 

 2 1 1 2

0 1

1 0
T T T

⎡ − ⎤
⎢ ⎥ = −⎢ ⎥
⎢ ⎥⎣ ⎦
h h h h h h   (3.19) 

whenever U  verifies (3.18). We note that a similar matrix outer-product based 
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approach for blind channel estimation is also adopted in [13], [21], [24], [37]. 

 

C. On Ambiguity Removal 

 

  The matrix ambiguity (3.18) can be resolved through insertion of additional pilot 

symbols. To see this, let 1 2
⎡ ⎤
⎢ ⎥⎣ ⎦h h  be a dominant left singular vector pair associated 

with the rank-two matrix H  defined in (3.15). Then we have 

1 2 1 2
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦h h h h U , with 2 2×∈U C  fulfilling (3.18); this implies 

                   

1

1
1 2 1 2 1 2 1 2

a b d b
c ac d

−
−

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
h h h h U h h h h .  (3.20) 

Since both 1G  and 2G  are circulant, the first output branch (2.3), at some 0k k= , 

can be alternatively expressed as 

 
0 0 0 01 21k k k k++ +y = C g C g v ,  (3.21) 

where ig  , ( 1 2)i =  is the zero-padded channel impulse response as in (2.6), and 

N N
l

×∈C C  is circulant with the precoded symbol vector lx  as the first column, 

0 0, 1l k k= + . Let us write 

 1 ( 1)

T
T

i i N L× − −
⎡ ⎤= ⎢ ⎥⎣ ⎦

g h 0 , 1 2i≤ ≤ ,  (3.22) 

where ih  is the desired channel impulse response vector defined in (3.17). With 

(3.22), equation (3.21) is then reduced to 

 
0 0 0 01 21k k k k++ +y = C h C h v ,  (3.23) 

where ( 1)N L
l

× +∈C C  contains the first 1L +  columns of lC . With (3.20), we can 
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write (3.23) in terms of the scalar ambiguities as 

                    

( ) ( )
    

0 0 0 0

0 0 0 0 0

1 2 1 21

1 2 1 21 1

:

.

k k k k

T

k k k k k

d c b a

d c b a

+

+ +

=

= − + − + +

⎡ ⎤ ⎡ ⎤= − − +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
T

y C h h C h h v

C h C h C h C h v   (3.24) 

It is noted that, subject to the constraint 1ad bc− = , there are only three 

independent unknowns in (3.24). One can just solve for, say , ,( )b c d , from (3.24) and 

then determine a  via the nonlinear equation (1 )/a bc d= + ; this, however, would 

be more prone to error propagation. Hence we propose to instead compute , , ,( )a b c d  

all at once from (3.24). Toward this end, pilot symbols should be appropriately 

inserted to produce at least four training components in 
0k
y . We observe that each 

column of T  in (3.24) is a linear combination of 1L +  circularly shifted symbol 

vector lx  for some 0 0{ , 1}l k k∈ + . The cyclicity structural constraint implies at 

least 4L +  pilot symbols are needed in both lx . One plausible placement, in 

particular, is to insert four (and L , respectively) consecutive pilots at the head (and 

tail) of lx , 0 0, 1l k k= + ; in this way, the first four components in 
0k
y , denoted by 

ty , then act as training data and the scalar unknowns are estimated via 

 

  1T

t td c b a −⎡ ⎤ =⎢ ⎥⎣ ⎦ T y ,  (3.25) 

where 4 4
t

×∈T C  contains the first four rows of T .Hence, even though the 

proposed blind method reduces the number of unknown channel parameters from 

2 2L +  to three, no less than 2 8L +  pilot symbols are nonetheless required for 

ambiguity removal. This is due to the non-redundant precoding based channel 
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estimation formulation as well as the circulant signal structure (the proposed channel 

estimation procedures are outlined in Table I). 
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Chapter 4 

Identifiability and Product Unknowns 

Computation 
 

  This section first specifies the channel identifiability condition, and then introduces 

two methods for computing the product channel coefficients. The presented results 

also lay the foundation for further investigating the optimal precoder design problem. 

 

A. Channel Identifiability 

 

  From the previous discussions, it is easy to see that the channel can be identified if 

( )vec G  is uniquely determined from (3.14): this is true if the matrix Q  is 

nonsingular. By exploiting the BCCB property of Q , the following theorem 

explicitly shows the associated eigenvalues, and in turn specifies the condition for Q  

to be nonsingular. Roughly speaking, if we define the vector 

 R= − ∈2 2 2: [ (0) (1) ( 1) ]T Np p p Np ,  (4.1) 

then the 2N  eigenvalues of Q  are completely determined by the N  eigenvalues 

associated with the N N×  circulant matrix with Tp  as the first row (the proof of 

theorem is given in Appendix A). 

Theorem 4.1: Let F  be the N N×  FFT matrix; also, associated with the vector p  

in (4.1) we define the polynomial 

 2 2 1 2 ( 1)( ) : (0) (1) ( 1) Nz p p z p N z− − −= + + + −p .  (4.2) 
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Then the 2N  eigenvalues of the matrix Q  defined in (3.14) are given by the N  

replicas of the N -tuple { }, , , 1(1) ( ) ( )Nω ω −p p p .    

                         

  Theorem 4.1 shows that channel identifiability is guaranteed whenever ( ) 0nω ≠p  

for all 0 1n N≤ ≤ − ; this condition is quite mild and can hold for almost all 

choices of ( )p n . We should note that the significance of Theorem 4.1 is far above 

just characterizing a sufficient condition for unique channel recovery. It moreover 

specifies the eigenvalues associated with the matrix Q : this result will be exploited 

for selecting ( )p n  to improve the reliability of channel estimate against the 

finite-sample estimation error (see Section V). 

 

B. Computation of ( )vec G  

  A crucial step for implementing the proposed channel estimation scheme is the 

computation of the product channel coefficient vector ( )vec G  based on (3.14). In 

what follows we propose two methods for fulfilling this task. 

 

  i) Direct Matrix Inversion: An immediate approach to solving (3.14) is through 

direct matrix inversion so that 

 ( ) ( )1 (1)vec vec−= yG Q R .  (4.3) 

Observe from (3.14) that Q  is BCCB and is characterized by the particular set of 

circulant matrices { }, , , 2 2 2 1(0) (1) ( 1) N
Np p p N −−I J J . This appealing structure 

allows for a potentially low-complexity implementation via FFT operations. In 
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Appendix B we derive a simple closed-form expression of 1−Q  based on which this 

figure of merit is justified. 

 

  ii) Solution via Zero Entry Removal in (3.14): It is noted from (2.6) that, for 

1 2i≤ ≤ , the vector ig  contains 1L +  channel impulse response ( )ih n , 

0 n L≤ ≤ , followed by 1N L− −  trailing zeros. As a result, the 22 NN ×  matrix 

2 1 1 2( )T T= −G g g g g , and hence the associated vectorized representation ( )vec G , has 

actually 2( 1)L +  nonzero product unknowns. By removing the zero entries in 

( )vec G , and the corresponding indexed columns of the matrix Q , equation (3.14) 

can be simplified to a set of 2N  scalar equations in 2( 1)L +  unknowns. Indeed, 

with ig  defined in (3.22), we have 

 ( 1) ( 1)

1( 1) ( 1)

H
i L N LiH

i i
N LN L L

+ × − −

− −− − × +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

h h 0
g g

0 0
, 1 , 2i i≤ ≤   (4.4) 

and hence 

 2 1 1 2
T T= − =G g g g g ( 1) ( 1)

1( 1) ( 1)

L N L

N LN L L

+ × − −

− −− − × +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H 0
0 0 ,  (4.5) 

where H  is defined in (3.15). Based on (4.5) and by definition of the ()vec ⋅  

operation, equation (3.14) can be shown (after some direct manipulations) to be 

reduced into 

 ( )  1 21 ( ) ( (1))

:
L vec vec+ ⊗ =

=
yQJ I J H R

Q

  (4.6) 

in which 

R
2( 1) ( 1)

1
( 1) ( 1)

N L N N L

N N L N L

+ × +

− − × +

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

I
J 0  and R1 ( 1)

2
( 1) ( 1)

:
L N L

N L L

+ × +

− − × +

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

I
J 0 .     
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(4.7) 

The matrix R
2 2( 1)N L× +∈Q  in (4.7) is obtained by deleting 2 2( 1)N L− +  columns 

from Q . It is thus of full column rank whenever Q  is nonsingular and, if so, the 

product channel coefficients can be computed via 

 ( ) 
1

( ) ( (1))T Tvec vec
−

= yH Q Q Q R .  (4.8) 

Compared with the direct matrix inversion method (4.3), the solution (4.8) can yield 

better estimation accuracy at the expense of computational complexity (see Appendix 

B for complexity evaluation). Based on (4.3) and (4.8), the selection of precoder 

( )p n  for optimal numerical robustness is discussed next. 
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Chapter 4 

Optimal Precoder Design 

 
  If the conjugate cross-correlation matrix (1)yR  is perfectly obtained, both 

solutions (4.3) and (4.8) are exact. In practice, however, only a finite number of data 

samples can be used for estimating (1)yR ; equations (3.14) and (4.6) should be 

accordingly modified as 

 

 ˆ( (1)) ( )vec vec= +yR Q G w ,  (5.1) 

and 

 ˆ( (1)) ( )vec vec= +yR Q H w ,  (5.2) 

where ˆ (1)yR  is an estimate of (1)yR  and w  accounts for the data mismatch due 

to finite-sample estimation. Given the error-corrupted ˆ (1)yR , it is impossible to 

recover the actual product channel coefficients. Instead, with (5.1) and (5.2), the 

estimated solutions are respectively 

 

 1 1ˆ ˆ( ) : ( (1)) ( )vec vec vec− −= = +yG Q R G Q w   (5.3) 

and 

                    

( )ˆ :vec =H ( ) 1 ˆ( (1))T Tvec
−

yQ Q Q R ( ) ( ) 1T Tvec
−

= +H Q Q Q w .  (5.4) 

In what follows, we consider two different modeling schemes of w , and propose the 

associated optimal criteria for designing ( )p n  against imperfect data estimation. 
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A. Minimal Worst-Case Sensitivity to Error Perturbation 

 

  We will first treat w  as an unknown “deterministic” perturbation since the 

statistical property of the data estimation error is in general difficult to characterize. 

From this standpoint, typical solution robustness measures for (5.3) and (5.4) are the 

condition numbers of the matrices Q  and Q , respectively (see, e.g., [18] and [23]). 

Small ( )κ Q  and ( )κ Q , in particular, are known to ensure small worst-case 

sensitivity of the error-perturbed solution to data mismatch [18, p-338]. Since both Q  

and Q  depend entirely on ( )p n , a natural approach to improving the channel 

estimation accuracy is to choose ( )p n  so that both ( )κ Q  and ( )κ Q  are kept as 

small as possible. This type of optimization problem would seem formidable to tackle 

since the condition number of a matrix is in general a highly nonlinear function in the 

entries. Toward a tractable design formulation, we note the crucial fact: since Q  

contains a subset of columns of Q  (see (4.6)), it follows [23, p-27] 

 ( ) ( )κ κ≤Q Q .  (5.5) 

Inequality (5.5) suggests that, to jointly improve the accuracy of solutions (5.3) and 

(5.4), it is plausible to just minimize ( )κ Q  because a small ( )κ Q  will also 

guarantee ( )κ Q  to be small. Such a design strategy, on the one hand, can bypass 

direct minimization of ( )κ Q  which would appear rather intractable. More 

importantly, it will allow us to exploit the eigenvalue characteristics of the BCCB 

matrix Q  (in Theorem 4.1) to analytically derive a solution, as is shown below. 

Hence, we specifically propose to minimize ( )κ Q , subject to the following two 
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constraints 

  
1

2

0
( )

N

n
p n N

−

=
=∑ ,  (5.6a) 

and 

 min 2 ( )p n δ≥  for some 0 1δ< < .  (5.6b) 

The constraint (5.6a) normalizes the average transmit power within one block to unity, 

and the constraint (5.6b) imposes a minimal threshold on the floor power. In the 

context of single channel blind identification based on 

modulation-induced-cyclostatonarity, the two constraints have been used in [10], [24], 

and [37] for precoder design against the channel noise effect. 

 

  To derive the optimal solution, we shall first specify ( )κ Q  in terms of the 

eigenvales of the matrix Q . Since Q  is BCCB, it can be factorized as 

( ) ( )H H= ⊗ ⊗Q F F F FΛ  for some diagonal Λ  [12, p-181]. This then implies that 

Q  is a normal matrix [18, p-100], as can be seen by 

                  

( ) ( )( ) ( )

( ) ( ) ( ) ( )        ;
=

H H H H H H

H H H H H H H

= ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ = ⊗ ⊗ =

Q Q F F F F F F F F
I

F F F F F F F F QQ

Λ Λ

Λ Λ ΛΛ
  (5.7) 

in deriving (5.7), we have used the identity ( )( )⊗ ⊗ = ⊗A B C D AC BD  [19, 

p-244]. As Q  is normal, it is known that [18, p-340] 

 ( ) ( )1( )κ ρ ρ −=Q Q Q ,  (5.8) 

in which ( ) { }'s are eigenvalues of  the matrix : max | |:  ρ λ λ=M M . Equation (5.8) 

links the condition number of Q  with the extreme magnitudes of the associated 
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eigenvalues which, according to Theorem 4.1, are exactly the maximum and 

minimum among the N  elements { }, | , , | 1| (1) | ( ) | ( ) |Nω ω −p p p , where ( )zp  is 

the polynomial defined in (4.2). More precisely, we have 

 
max ( )

( )
min ( )

k

k

ω
κ

ω
=

p
Q

p
, for 0 1k N≤ ≤ − .  (5.9) 

To find the minimal ( )κ Q  based on (5.9), we shall further characterize ( )kωp ’s 

under the two constraints in (5.6). With (5.6a), it is easy to see from (4.2) that, for 

0k = , 

 
1

0 2

0
( ) (1) ( )

N

n
p n Nω

−

=
= = =∑p p .  (5.10) 

The following lemma provides an upper bound on ( )kωp  for 1 1k N≤ ≤ − ; the 

result is crucial for deriving the minimal ( )κ Q  (the proof of lemma is shown in 

Appendix C). 

 

Lemma 5.1: For any ( )p n  satisfying (5.6a) and (5.6b), we have 

 ( ) (1 )k Nω δ≤ −p  for all 1 1k N≤ ≤ − .  (5.11) 

   

 

With (5.9), (5.10), and (5.11), the minimal achievable ( )κ Q , and the corresponding 

optimal ( )p n , are shown in the following theorem. 

 

Theorem 5.2: Under the constraints (5.6a) and (5.6b), the minimal condition number 

associated with the matrix Q  is given by 
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 min
1( )

1
κ

δ
=

−
Q ,  (5.12) 

which is attained by the following two-level solution: for a fixed but arbitrary 

0 1m N≤ ≤ − , 

 

 2( ) ( 1)p m N N δ= − − , and 2( )p n δ=  for n m≠ .  (5.13) 

 [Proof]: We claim that i) ( ) 1/(1 )κ δ≥ −Q  for any ( )p n  satisfying (5.6a) and 

(5.6b), and ii) equality is attained by the solution (5.13); the theorem thus follows. To 

show claim i), it is noted from (5.9) and (5.10) that 

 
0max ( ) ( )

( )
min ( ) min ( ) min ( )

k

k k k
Nω ω

κ
ω ω ω

= ≥ =
p p

Q
p p p

.  (5.14) 

Also, (5.10) and (5.11) imply 

 min ( ) (1 )k Nω δ≤ −p , i.e., 1 1
(1 )min ( )k N δω

≥
−p

.  (5.15) 

Claim i) then follows immediately from (5.14) and (5.15). To prove claim ii), it is 

noted that solution (5.13) yields, for any 0k ≠ , 

                    

{ }
1

2

0
( ) ( ) ( 1)

N
k kn km kn

n n m
p n N Nω ω δ ω δ ω

−
− − −

= ≠
= = − − +∑ ∑p  

 { } { } ,
1

0
(1 ) (1 )

N
km kn km

n
N Nδ ω δ ω δ ω

−
− − −

=
= − + = −∑   (5.16) 

where the last equality follows since 
1

0
0

N
kn

n
ω

−
−

=
=∑  for any 0k ≠ . Equations (5.10) 

and (5.16) show that, with solution (5.13), we have 0max ( ) ( )k Nω ω= =p p  and 

min ( ) (1 )k Nω δ= −p , and hence 
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max ( ) 1( )

(1 ) 1min ( )

k

k
N

N

ω
κ

δ δω
= = =

− −
p

Q
p

.  (5.17) 

The proof is thus completed.              

 

  Theorem 5.2 shows that min( )κ Q  depends entirely on the minimal power threshold 

δ , irrespective of the dimension of Q  (and hence the symbol block length N ). A 

small δ , in particular, is seen to yield small min( )κ Q  and thus improves the channel 

estimation accuracy. 

 

B. Minimization of Mean Square Error 

 

  In this subsection, we alternatively formulate w  as a zero-mean white noise 

vector with covariance matrix 2
wσ I , and resort to the well-known minimum mean 

square error principle, see, e.g., [6], for constructing a solution. Although a theoretical 

justification of such statistical data error assumption is difficult to establish, our 

simulation study does confirm this tendency. 

 

  Since w  is white, the mean square errors incurred by solutions (5.3) and (5.4) are, 

respectively, 

 ( )
2 12ˆ( ) ( ) H

wE vec vec Trσ
−⎡ ⎤− = ⎢ ⎥⎣ ⎦

G G Q Q   (5.18) 

and 

 ( )2 12ˆ( ) ( ) H
wE vec vec Trσ

−⎡ ⎤− = ⎢ ⎥⎣ ⎦
H H Q Q   (5.19) 

Toward an utmost reduction of the white noise effect, the precoder ( )p n  should thus 
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be chosen to jointly minimize 

  ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  and ( ) 1HTr

−⎡ ⎤
⎢ ⎥⎣ ⎦
Q Q ,  (5.20) 

subject to the constraints (5.6a) and (5.6b). Minimization of this type of cost functions 

has been considered in least-squares based channel estimation, e.g., [6] and [22, chap. 

9], among others. The reported solution approach therein is via the following 

inequality: since both HQ Q  and HQ Q  are positive definite, it follows 

 ( ) 1 1

,
H H

i i
i

Tr
− −⎡ ⎤ ⎡ ⎤≥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ∑Q Q Q Q  and ( ) 1 1

,
H H

i i
i

Tr
− −⎡ ⎤ ⎡ ⎤≥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ∑Q Q Q Q ,  (5.21) 

and equalities in (5.21) hold whenever HQ Q  and HQ Q , respectively, are diagonal 

[28, p-1041]. If the power normalization equation (5.6a) is the only design concern, it 

is easy to check that the impulse sequence 

 2( )p m N= , and 2( ) 0p n =  for n m≠ ,  (5.22) 

where 0 1m N≤ ≤ −  is fixed but arbitrary, simultaneously diagonalizes HQ Q  

and HQ Q , and is thus the jointly minimizer. However, given the additional threshold 

power requirement (5.6b), one cannot rely on this principle for finding a solution 

since, subject to the BCCB structure of Q  and 2( ) 0p n > , it is impossible to choose 

( )p n  to render both HQ Q  and HQ Q  diagonal. In what follows we propose an 

alternative strategy to address the considered optimization problem. Our approach is 

grounded on a key fact shown in the next lemma, which directly establishes an 

inequality relation analogue to (5.5) regarding the two cost functions in (5.20) (the 

proof is given in Appendix D). 

 

Lemma 5.3: Let M  be a square nonsingular matrix, and M  be constructed from 

M  by deleting an arbitrary subset of its columns. Then 
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 ( ) ( )1 1H HTr Tr
− −⎡ ⎤ ⎡ ⎤≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M M M .  (5.23) 

  

  Lemma 5.3 asserts ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  is upper bounded by ( ) 1HTr

−⎡ ⎤
⎢ ⎥⎣ ⎦
Q Q . This thus 

suggests a suboptimal, but would be more simple and efficient, way of precoder 

design: we can simply choose ( )p n  to minimize ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q , since 

( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  would in turn be kept small. The main advantage of the proposed 

design formulation, as expected, is that we can directly take profit of the BCCB 

property of Q  to derive a closed-form solution. Indeed, since ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  is the 

sum of the eigenvalues associated with ( ) 1H −
Q Q  which, according to Theorem 4.1, 

are exactly the N  replicas of the N -tuple { }2
0 1

| ( ) |n
n N

ω −
≤ ≤ −

p , we have 

 ( )
11

2
0 | ( ) |

N
H

k
k

NTr
ω

−−

=

⎡ ⎤ =⎢ ⎥⎣ ⎦ ∑Q Q
p

.  (5.24) 

Equation (5.24) rewrites ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  in terms of ( )nωp ’s; we can then further 

exploit equation (5.10) and Lemma 5.1 to construct an optimal solution, as is shown 

in the next theorem. 

 

Theorem 5.4: The optimal ( )p n  minimizing ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q , subject to constraints 

(5.6a) and (5.6b), is the two-level solution (5.13). The resultant minimal mean square 

error is 

  
2 2

2min
( 1)
(1 )

w w NMSE
N N
σ σ

δ
−= +

−
.  (5.25) 
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  [Proof]: From (5.10), we have 

           

( )
1 1 11

2 2 2 2
0 1 1

1
| ( ) | | (1) | | ( ) | | ( ) |

N N N
H

k k k
k k k

N N N NTr
Nω ω ω

− − −−

= = =

⎡ ⎤ = = + = +⎢ ⎥⎣ ⎦ ∑ ∑ ∑Q Q
p p p p

.     

(5.26) 

From Lemma 5.1, it follows 

 2 2 2
1 1

(1 )( )k N δω
≥

−p
, 1 1k N≤ ≤ − ,  (5.27) 

with equality attained by the two-level sequence (5.13) (this is easily seen from 

(5.16)). From (5.26) and (5.27), the minimal ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  is thus  

                       

( )
11

2 2
min 1

1 1 1 1
(1 ) (1 )

N
H

k

NTr
N N N Nδ δ

−−

=

−⎡ ⎤ = + = +⎢ ⎥⎣ ⎦ − −∑Q Q .  (5.28) 

Equation (5.25) follows directly from (5.28), and this thus proves the theorem.     

  Recall that the impulse sequence (5.22) is optimal with regard to the power 

normalization constraint (5.6a). When an additional power threshold is imposed, it 

turns out that the best choice is the “impulse-like” two-level solution (5.13). With 

(5.25), the resultant minMSE  is seen to decrease whenever δ  is decreased. Hence, a 

small δ  not only limits solution sensitivity to deterministic error perturbation (as we 

have shown in the previous subsection), but also improves the estimation accuracy 

against white data estimation error. From the equalization point of view, it is however 

undesirable to keep δ  unlimitedly small; this will be further discussed in the next 

section.  

Remarks: 

(a) From Theorems 5.2 and 5.4, it is somewhat surprising to see that, although the 
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objective functions ( )κ Q  and ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  are quite different in nature, the 

respective minimizing solutions, under constraints (5.6a) and (5.6b), are the same 

the two-level form choice (5.13); this is due to the BCCB property of the matrix 

Q . 

(b) The two-level solution (5.13) minimizes both ( )κ Q  and ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q , but its 

optimality with respect to ( )κ Q  and ( ) 1HTr
−⎡ ⎤

⎢ ⎥⎣ ⎦
Q Q  appears intractable to verify. 

Our simulation results seem to indicate that it is indeed the minimizing solution. 

(c) Since ( ) ( )κ κ≤Q Q  and ( ) ( )1 1H HTr Tr
− −⎡ ⎤ ⎡ ⎤≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Q Q Q Q , solution (5.4) can yield 

better estimation accuracy than (5.3); numerical simulations (see Simulation 2) 

also evidence this tendency. 

(d) The optimal solution (5.13) does not depend on the index m  at which the peak 

power occurs: any 0 1m N≤ ≤ −  allows for an utmost mitigation for data 

estimation error. However, since the trailing components in each symbol block 

will be duplicated as CP, the peak power in (5.13) should not be located within the 

corresponding index region so as to conserve the power resource. 

(e) In the study of single channel blind identification via modulation-induced- 

cyclostationarity, the two-level sequence (5.13) is shown to be optimal for 

mitigating the channel noise effect for the serial transmission case [10], [24], and 

also for the FDE based block transmission [37].                           

 



 31

Chapter 6 

Equalization Aspect 

 
  Toward symbol recovery in FDE-STBC systems, one commonly used approach is 

via frequency-domain per-tone equalization [2], [15] based on (2.8), commonly in 

conjunction with linear ZF or MMSE criterion. In this section we resort to ZF-PEP 

analysis [35] for investigating the equalization performance regarding the optimal 

solution (5.13). 

 
  To proceed, based on (2.2), we shall first expand the linearly combined 

frequency-domain signal model (2.8) into 

        

* * *
111 1 1

, 1
, 1 ,

:: : :

k k kkN N N kH H H

kNkk k kN N
k k

k k k k
Φ

+++ + +

+
+

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ == = =

Y V VXD 0 D 0 FP 0 s
D D Ds0 FPXY V V0 D 0 D

sZ V 1+

 (6.1) 

or by dropping the block index k  and 1k +  for notational simplicity, 

 
 Φ= +Z s V .  (6.2) 

The PEP measures the probability that a symbol block s  is transmitted but another 

≠s s  is detected. Given the channel realizations 1h  and 2h , the conditional PEP is 

by definition given by 

 
 1 2 1 2Pr | , Pr | ,⎡ ⎤ ⎡ ⎤→ = − < −⎣ ⎦ ⎣ ⎦s s h h s s s s h h ,  (6.3) 

 

where ŝ  is the estimate of s  under the ZF metric and, from (6.2), is given by 

 
 1 1ˆ : Φ Φ− −= = +s Z s V .  (6.4) 

By following the procedures as in [35] and define :d = −s s , the conditional PEP 

in (6.3) can be upper bounded by 
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−− −

− − − −

=

⎛ ⎞⎛ ⎞⎛ ⎞ ⎟⎜ ⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎟⎜ ⎜ ⎟ ⎟⎜⎟⎡ ⎤ ⎟⎜ ⎜⎟⎜ ⎜→ ≤ = ⎟ ⎟⎟ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎜ ⎟⎣ ⎦ ⎟⎜ ⎜ ⎟⎟⎟ ⎜⎜⎝ ⎠ ⎟⎜⎜ ⎟⎜ ⎝ ⎠ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎟⎜⎜ ⎟⎝ ⎠
∑s s h h P D D

,   (6.5) 

where ()Q ⋅  denotes the Gaussian tail, and the equality in (6.5) follows directly from 

(2.1). For a given channel pair, and hence D , the upper bound in (6.5) is minimized 

if the quantity 
1

2

0
( )

N

n
p n

−
−

=
∑  attains the minimum. Since, by the Cauchy’s inequality, 

              

( )( ) ( )22 2 2 2 2(0) ( 1) (0) ( 1) 1 1p p N p p N N− −+ + − + + − ≥ + + = , 

 (6.6) 

and 
1

2

0
( )

N

n
p n N

−

=
=∑  (cf. (5.6a)), we have ( )2 2(0) ( 1)p p N N− −+ + − ≥ , with 

equality holds if and only if ( ) 1p n =  for 0 1n N≤ ≤ − . This shows the equal 

power scheme is optimal from an equalization point of view. Any form of precoding 

induced power variation, therefore, will incur a loss in the decision performance. The 

precoder (5.13), however, turns out to be the worst-case choice, as can be seen from 

the following theorem (see Appendix E for a proof). 

 
Theorem 6.1: For all ( )p n  satisfying (5.6a) and (5.6b), the solution (5.13) 

maximizes the quantity 
1

2

0
( )

N

n
p n

−
−

=
∑ , leading to 

 
1

2

0

1 1max ( )
( 1)

N

n

Np n
N Nδ δ

−
−

=

−= +
− −∑ .  (6.7) 

  

  Based on (6.7), simple manipulation shows the maximum value, when viewed as a 

function of δ , will increase as δ  is decreased. As a result, a small δ , although 

improving channel estimation accuracy, will enlarge the PEP upper bound in (6.5), 

and hence bring potentially poor equalization performance. This thus imposes a 

tradeoff in selecting δ ; our simulation study (see Simulation 5) indicates that 

0.7 0.8δ = ∼  are the compromising choices. 

 



 33

Chapter 7 

Simulation Results 

 
  This section uses several numerical simulations to illustrate the performance of the 

proposed method. The symbol block length and the channel order, respectively, are 

set to be 32N =  and 8L = ; the inserted CP spans 8 symbol periods and the 

source constellation is QPSK. Unless otherwise stated, we will consider a block 

fading environment in which the channel taps, modeled as i.i.d. zero-mean 

unit-variance complex Gaussian random variables, remain constant over a burst of 

K  symbol blocks and can vary independently between different bursts. The 

identification performance is measured by the normalized mean square error (NMSE), 

namely, NMSE
2 2 2( ) ( ) ( )

1 1

1 ˆ:
2

I
i i i
l l l

l iI
−

= =
= − ⋅∑ ∑ h h h , where ( )i

lh  is the realization of 

the l th channel in the i th data packet, ( )ˆ i
lh  is the corresponding estimate, and I  is 

the total number of trials. Throughout the simulations, the peak power index of the 

optimal precoder (5.13) is chosen to be 0m = ; the signal-to-noise ratio (SNR) is 

defined as SNR
2 2 2

1 2: ( )/2 vE E σ= +h h . Simulations I~V investigate the 

intrinsic aspects pertaining to the proposed method, and we simply use the 

least-squares fit technique for matrix ambiguity removal, as is done in [4], [13], [21]; 

in Simulations I~IV, we set 200I = . 

Simulation 1-Effectiveness of the Optimal Precoder (5.13): This simulation illustrates 

the effectiveness of the proposed optimal precoder (5.13). For SNR=10 dB and 
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0.6δ = , we consider the optimal sequence (5.13) and another sub-optimal choice 

given as 2( ) 0.6p n =  for 0 15n≤ ≤  and 2( ) 1.4p n =  for 16 31n≤ ≤ . Figure 

2 shows the computed NMSE with various numbers of symbol blocks K (the product 

channel coefficients are computed via (5.4)). It can be seen that the optimal solution 

(5.13) significantly improves the performance. 

Simulation 2-Performance Comparison of Solutions (5.3) and (5.4): This simulation 

compares the estimation performance of solutions (5.3) and (5.4). Figure 3 shows the 

respective NMSE, versus number of symbol blocks, for three power thresholds δ : 

0.3 , 0.6 , and 0.92  (SNR is fixed at 10 dB). The result shows that the performances  

of the two methods are very close for 0.3δ =  and 0.6; however, solution (5.4) 

seems to yield smaller NMSE when 0.92δ = . This is because, for 0.3δ =  and 

0.6 , the associated condition number pair ( )( ), ( )κ κQ Q  are (1.4286,1.1370)  and  
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(2.5,1.5737) : both the two matrices Q  and Q  remain well conditioned, and can 

largely limit the error effect. However, for 0.92δ = , we have 

( )( ), ( ) (12.5,6.683)κ κ =Q Q : the matrix Q  tends to be ill-conditioned, and solution 

(5.3) becomes more susceptible to data errors (solution (5.4) will be adopted in 

subsequent simulations). 

Simulation 3-Robustness Against Channel Order Overestimation: This simulation 

tests the proposed method when channel order is overestimated. We consider two 

different levels of SNR: 0  dB and 15  dB. For the overestimated channel order 

ˆ8 15L≤ ≤ , Figure 4 shows the respective computed NMSE ( 500K =  and 

0.8δ = ). It can be seen that the proposed method is quite robust with respect to 

channel order overestimation: the NMSE increment is only about 3  dB as L̂  

increases from 8  to 15 . 
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Simulation 4-Estimation Performance Against Blind Subspace Method with Transmit 

Redundancy [40]: This simulation compares channel estimation performances of the 

proposed scheme with the identical-precoder subspace method [40, p-1218], in which 

FFT precoding matrix is adopted to convert the multi-carrier scheme into 

single-carrier FDE-STBC systems considered in this paper. To implement the 

algorithm in [40], the last 8 entries in each symbol block are set to be zero; this 

introduces the minimal amount of transmit redundancy for fulfilling the associated 

channel identifiability condition (cf. [40, p-1218]). For fixed SNR= 10 dB, Figure 5 

shows the computed NMSE versus number of symbol blocks; the proposed method, 

depicted with solid lines, is implemented with various choices of δ . We can first see 

from the figure that the performance of the proposed method is improved as δ  

decreases: this is because small δ  results in small ( )κ Q , and also reduces the mean 

square error incurred by  
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white noise perturbation. Compared with the subspace method [40], the proposed 

approach can better track the channel with a small number of received data blocks. 
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Figure 6 shows the NMSE of the two methods at different SNR levels ( 500K = ). 

The result shows that, in the medium-to-low SNR region, our method performs better 

even with the moderate choice 0.7δ = . When SNR increases, the output NMSE of 

[40] exhibits a fast decay. This is not unexpected since the method [40] is 

“deterministic” in nature: it benefits from the finite-sample-convergence property, and 

can usually yield impressive estimation accuracy when SNR is high [31]. A similar 

tendency is also observed in [31, p-1942] when non-redundant diagonal precoding 

based identification is compared with the (deterministic) multi-channel subspace 

methods [29] and [38]. 

Simulation 5-On Selection of Power Threshold δ : This simulation considers the 

optimal precoder (5.13) and illustrates the impact of δ  on equalization performance. 

Figure 7 shows the bit-error-rate (BER) curves for 0.1 0.9δ≤ ≤ ; we set 500K = , 

1000I = , and use frequency-domain ZF equalizer [15] for symbol recovery. It can 
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be seen that, although a large δ  results in a less accurate channel estimate, the BER 

is however improved as δ  increases from 0.1  to 0.8 . This would reflect the 

ZF-PEP analysis given in Section VI: a large δ  can on the other hand limit the 

power penalty and improve the equalization performance. However, if δ  is too large 

( 0.8)δ > , the channels will be poorly estimated, resulting in large decision error 

floor. Hence 0.7 ~ 0.8δ =  seem to be the compromising choices, as far as 

equalization performance is concerned. 

Simulation 6-Equalization Performance Comparison: In this simulation we compare 

the proposed method (implemented using the optimal precoder (5.13) and 0.8δ = ) 

with the blind identical-precoder subspace algorithm in [40] and the training based 

scheme [11] in terms of BER. To implement the method [11], pilot symbols (64 in 

total) are placed in the initial two blocks in each data burst and are optimally designed 

according to [11, p-730]. To fairly compare the three methods under a fixed spectral 

efficiency, we will similarly use 64 training symbols, placed also in the initial block 

pair per data burst, for ambiguity removal in the two blind approaches; for simplicity 

we just choose the optimal sequence reported in [11]. We note that, in the 

transmit-redundancy based blind scheme [40], 8 entries in each symbol block are 

zero-padded for facilitating channel identification: only 24 entries per symbol block 

can thus be used for carrying source data. To compensate for possible spectral 

efficiency loss, 20 elements out of which are loaded with 8-PSK symbols, whereas the 

remaining four are BPSK modulated: this maintains an overall data rate of 64 

bits/block, as in the training scheme [11] and the proposed method (both with QPSK  
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constellation). Figure 8 shows the BER results of the three methods at different SNR 

levels ( 500K =  and 1000I = ); the known channel case is also included as the 

benchmark performance. The proposed method, as we can see, leads to the lowest 

BER. The performance advantage over the training method [11] would come from the 

reduction of number of unknowns from 2( 1)L +  to three: this would further 

smoothen the noise effect and thus improve performance. In contrast with [40], our 

method yields about a 3~4 dB SNR gain; this benefits from the non-redundant 

transmission of the proposed scheme: for a target data rate one can otherwise use 

lower order constellations to buy more BER floor margin. Finally we observe that, 

compared with the known channel case, our method seems to incur no more than 1 

dB penalty. We repeat the above experiment with the exponential delay power profile 

channel model [30]. Figure 9 shows the resultant BER curves, which are seen to 

exhibit a similar tendency as in the  
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i.i.d. Gaussian channel case. 

Simulation 7-Equalization Performance in Slowly Time-Varying Channels: This 

simulation compares the proposed method (with optimal precoder (5.13) and 

0.8δ = ) against [11] and [40] in a slowly time-varying channel environment. We 

assume each channel tap varies according to the Jake’s model with a maximal 

Doppler frequency of 52 Hz; this corresponds to a moving speed 3 m/sec and a carrier 

frequency of 5.2 GHz (the same simulation environment is considered in [40]). The 

number of symbol blocks in each data burst is set to be 300K = . To track the 

channel variation, in both blind methods the receive data statistics are adaptively 

updated based on the rectangular sliding windowing scheme suggested in [40, p-1218], 

with the window size set to be 150. Channel estimation is performed each time a new 

sub-burst of 50 symbol blocks are available. As in the previous simulation, the  
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optimal pilot sequence designed in [11] is placed in the initial symbol block pair per 

sub-burst, for training based estimation as well as for ambiguity removal in the two 

blind schemes; for the transmit-redundancy based solution [40], symbol constellations 

are likewise loaded for comparison under a fixed data rate. Figure 10 shows the 

respective BER curves (averaged over 2000I =  trials). Compared with the 

quasi-static case (Figures 8 and 9), the performances of the three methods degrade 

due to the time-varying channel characteristic; the proposed method, still, leads to the 

lowest error rate. 

 
Simulation 8-On PAPR Performance: This simulation investigates the PAPR results 

when the optimal precoder (5.13) is used. For the considered system parameters 

( 32N = , 8L = ) and with Nyquist pulse shaping filter, the values of PAPR for 

various choices of δ  with respect to different symbol constellations are tabulated in 

[37, p-1124]. The results show that the two-level precoder (5.13) does increase PAPR  
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over the equal-power case; in particular, the choice 0.3δ =  raises the PAPR to a 

level comparable to that of multi-carrier scenario. It is noted that the PAPR does not 

faithfully reflect the actual signal amplitude variation in all cases; this is because the 

probability that such a peak occurs could depend on the block length as well [36]. A 

more realistic performance metric for describing the actual power amplification 

portrait is the instantaneous PAPR [36, p-383]. For 64-QAM and 256-QAM 

constellations, Figure 11 shows the probability that the instantaneous PAPR exceeds a 

prescribed value γ  with respect to five different choices of power thresholds: 

, , , , and 0.7 0.76 0.84 0.93 0.97δ =  (the precoding induced power spike, i.e., 

( 1)N N δ− − , are respectively 10.3, 8.44, 6, 3, 1.8). As we can see from the figure, it 

is likely that no more than 1 dB power back-off is required as δ  decreases from 0.97 

to 0.7 (or equivalently, the spike value increases from 1.8 to 10.3); a slight impact on 
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the incurred instantaneous PAPR is also observed when different symbol 

constellations are used. As a result, with moderate choices of δ , the proposed 

optimal precoder (5.13) does not seem to induce a large power back-off in practice. It 

is noted that, although the instantaneous PAPR will increase when δ  falls below 0.7, 

small δ  should be precluded for maintaining the BER performance (see Figure 7). 
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Chapter 8 

Conclusions 

 
  Blind channel estimation for STBC transmission in a MISO environment is a 

challenging research problem. This paper presents a solution for FDE-STBC systems. 

The proposed method relies on non-redundant diagonal precoding and i.i.d. source 

assumption, and exploits the resultant linear signal structure in the conjugate 

cross-correlation matrix of the received data. The circulant channel matrix property, 

which is unique to FDE based block transmission, leads to an identification equation 

set with a BCCB nature. Such a distinctive system matrix structure simplifies the 

characterization of channel identifiability condition (in terms of precoder coefficients), 

and can also alleviate the underlying algorithm complexity. The proposed channel 

estimate has an appealing property: it is exact when perfect data statistic is available 

and channel noise is circularly Gaussian. In the presence of finite-sample estimation 

errors, our channel estimation framework easily incorporates the data mismatch effect, 

and allows for natural precoder design formulation and criteria for improving 

estimation accuracy. Through analysis the optimization problems can be formulated 

to exploit the BCCB matrix property and are then analytically solved. The proposed 

solution tends to optimize the channel estimation robustness against deterministic 

error perturbation, and also minimize the mean square error when data mismatch is 

modeled as a white noise. The PEP analysis shows a trade-off regarding the proposed 

optimal error-resistant precoder: it incurs the worst-case power penalty for symbol 

decision. Through numerical simulations compromising choices for precoder 

parameters are determined. Simulation results show that the proposed approach 
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compares favorably with existing training and blind methods fitted for FDE-STBC 

systems. 
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Appendix 
 

A: Proof of Theorem 4.  
 
  We will denote by ,N NBCCB  the set of all ×2 2N N  block circulant matrices 

with circulant blocks [12, p-184], each characterized by N  circulant matrices of 

dimension ×N N . The proof of Theorem 4.1 is based on the following lemma. 

 
Lemma A.1 [12, p-185]: If ∈ ,N NBCCBX , then X  can be diagonalized by ⊗F F . 

More precisely, let { }, ,0 1N−C C  be the set of ×N N  circulant matrices on the 

top row block of X , and let nΛ  be the diagonal matrix containing the eigenvalues 

of nC . Then we have  

 ( ) ( )
−

− −

=

⎛ ⎞⎟⎜= ⊗ ⊗ ⊗⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑
1

1 1

0

N
n

nN
n

X F F F FΩ Λ ,  (A.1) 

where { }      2 1: 1
TN

N diag ω ω ω −⎡ ⎤= ⎢ ⎥⎣ ⎦Ω . Conversely, any matrix of the form 

( ) ( )− −⊗ ⊗1 1F F F FΛ  for some diagonal Λ  belongs to ,N NBCCB . 

                                                

[Sketch Proof of Theorem 4.1]: It can be seen from (3.14) that the matrix Q  is 

characterized by the N  circulant matrices { }, , , −−2 2 2 1(0) (1) ( 1) N
Np p p NI J J  

on its top row block. If we stack the N eigenvalues of the circulant matrix 2( ) np n J  

into a vector, say nu , by definition of J  (cf. (3.7)) it can be verified that  

 

 2
0 0(0)N p= ⋅u f  and 2( )n N nN p n −= ⋅u f , for 1 1n N≤ ≤ − ,  (A.2) 

 

where Cω ω ω ω− −= ⋅ ∈2 ( 2) ( 1): 1/ [1 ]n n N n N n T N
n Nf  is the ( 1)n + th 

column of 1−F , 0 1n N≤ ≤ − . Based on (A.2), Lemma A.1 and by going through 

essentially the same steps as in [37, Appendix A], it can be shown that the 

eigenvalues of Q  are the 2N  entries of the vector 
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( ) ( )( ) ( )( )1
:

TTTT NT TN N N
−⎡ ⎤

⎢ ⎥= ⎢ ⎥⎣ ⎦
Qq Fp J Fp J Fp ,  (A.3) 

and the assertion thus follows.   

 
B: On Computation of Product Unknowns  
 
  In the following theorem we will show that 1−Q  also belongs to the BCCB 

category. Moreover, it possesses an identical structure as that of Q , and is 

completely specified by N  scalar parameters which are very easy to compute. 

 
Theorem B.1: Let ( )zp  be the polynomial defined as in (4.2). Assume ( )p n  is 

chosen so that Q  is nonsingular. Then 1−Q  is also a BCCB matrix with 

, , , 
21

0 1 1
N N N

N Nα α α − ×
−

⎡ ⎤ ∈⎢ ⎥⎣ ⎦I J J R  as the top row block, where 

                  
1 1 1 1 1 1

0 1

:

[ ] ( ) [ (1) ( ) ( ) ]T N T
N Nα α ω ω− − − − − −
−

=
= F p p p

α
.  (B.1) 

              

 

[Proof]:  From Lemma A.1, it is easy to see that ,N NBCCB∈Q  implies 

1
,N NBCCB− ∈Q , and hence we can write ( ) ( )1 1 1Λ− − −= ⊗ ⊗Q F F F F  for some 

diagonal Λ . It suffices to check that, for the BCCB matrix with 

{ }, , , 1
0 1 1

N
N Nα α α −

−I J J  on the top row block, the resultant Λ  satisfies 

2N
ΛΛ =Q I , where { }diag=Q QqΛ  and Qq  is in (A.3). By following the 

procedures as in Appendix A, it can be shown { }diag= qΛ , where 

                  

( ) ( )( ) ( )( )1
TTTT NT TN N N

−⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

q F J F J Fα α α .  (B.2) 

 

By definition of α  in (B.1), it is easy to see that the l th entry of q  is simply the 
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reciprocal of the l th entry of Qq  in (A.3). The proof is thus completed.  

                                         

  Theorem B.1 asserts that, to invert the 2 2N N×  matrix Q , it merely requires to 

compute N  scalars iα ’s via (B.1). This calls for two N -point FFT operations, one 

for computing ( )nωp ’s form ( )p n  and the other for nα ’s based on 1( )nω −p ’s; 

additional N  multiplications are also needed for evaluating 1( )nω −p ’s from 

( )nωp ’s. When the symbol block length N  is chosen to be a power of two, the 

number of flop counts is 24 logN N N− . The main computational cost for (4.8), on 

the other hand, lies in inverting an 2 2( 1) ( 1)L L+ × +  Hermitian Toeplitz matrix 
TQ Q ; the complexity can be limited to 44( 1)L +  by using the Levinson algorithm 

[17, p-196].                                        

 
C: Proof of Lemma 5.1 

 
  The assertion relies on the following key observation: any given ( )p n  satisfying 

(5.6) can be constructed by “squeezing” the peak power of the two-level solution 

(5.13) so that the ground powers at other time instants are “raised” to the prescribed 

levels. More precisely, let ( )p n  be an admissible sequence such that 
2( ) ( 1)p n N Nδ δ< < − −  for n ∈ I , where the index set I  is a subset of 

{ } { }, ,0 1 \N m− . Then ( )p n  can be expressed as 

 2( ) ( 1) n
n

p m N N δ
∈

= − − − Δ∑
I

,  (C.1) 

and 

 2( ) np n δ= +Δ  for n ∈ I , and 2( )p n δ=  for n ∉ I ,  (C.2) 

 

where 0nΔ >  models the excessive power over the ground level δ  for n ∈ I . 

The sequence of the form (C.1) and (C.2) satisfies the constraints (5.6a) and (5.6b); in 

particular, since 2( )p m δ≥  is required, we can infer from (C.1) that 

 (1 )n
n

N δ
∈

Δ ≤ −∑
I

.  (C.3) 

We assume for the moment that 0m = ; as one will see, the result for the 
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1 1m N≤ ≤ −  case easily follows. Associated with ( )p n  in (C.1) and (C.2), we 

have, for 1 1k N≤ ≤ − , 

 

( )
1

2

0
( ) ( ) ( 1)

N
k kn kn kn

n n
n n n n
p n N Nω ω δ δ ω δω

−
− − −

= ∈ ∈ ∉

⎡ ⎤
⎢ ⎥= = − − − Δ + +Δ +⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑p
I I I

, 

      

1

0

(1 ) ( 1) (1 ) ( 1)

0

kn kn kn kn
n n

n n n n

N
kn

n

N Nδ ω δ δω δω δ ω

δ ω

− − − −

∈ ∈ ∉ ∈

−
−

=

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= − + − Δ + + + = − + − Δ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= =

∑ ∑ ∑ ∑

∑

I I I I

.  (C.4) 

Let us define the nonnegative number 

 : (1 ) n
n

d N δ
∈

= − − Δ∑
I

,  (C.5) 

Since cos sinkn
k kn j nω θ θ− = − , where : 2 /k k Nθ π= , and with (C.5), it follows 

from (C.4) that 

              
2 2

2
( ) cos sink

n nk k
n n

d n nω θ θ
∈ ∈

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + Δ + Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑p
I I

 

                    
2 2

2 2 cos cos sinn n nk k k
n n n

d d n n nθ θ θ
∈ ∈ ∈

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟= + Δ + Δ + Δ⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑
I I I

.      ( C . 6 ) 

Observe that 
2 2

2

,
cos sin 2 (cos cos sin sin )

ml
ml

n n n n n m mk k l k k l k k
n n n n n

n n n n n nθ θ θ θ θ θ
∈ ∈ ∈ ∈

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟Δ + Δ = Δ + Δ Δ +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑
I I I I

       

2
2 2

, ,
2 cos( )   2

m ml l
m ml l

n n n m n n n nl k
n n n n n n n

n n θ
∈ ∈ ∈ ∈ ∈

⎛ ⎞⎟⎜ ⎟= Δ + Δ Δ − ≤ Δ + Δ Δ = Δ⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ ∑ ∑ ∑
I I I I I

, 

 (C.7) 

and that 

  2 cos 2n nk
n n

d n dθ
∈ ∈

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟Δ ≤ Δ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑
I I

.  (C.8) 

From (C.7) and (C.8), 
2

( )kωp  in (C.6) can be upper bounded as 
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2 2
2 2 2 2( )  2  (1 )k

n n n
n n n

d d d Nω δ
∈ ∈ ∈

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟≤ + Δ + Δ = + Δ = −⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑p
I I I

,  (C.9) 

in which the last equality follows from the definition of d  in (C.5). This thus proves 

the lemma, under the assumption 0m =  in (C.1). For 1 1m N≤ ≤ − , equation 

(C.4) is then accordingly modified as 

 ( )( ) (1 ) ( 1)k k m n mn
n

n
Nω δ ω ω− − −

∈

⎡ ⎤
⎢ ⎥= − + − Δ⎢ ⎥⎣ ⎦

∑p
I

  (C.10) 

By going through the same procedures as in (C.5)~(C.8) the conclusion (C.9) will 

follow.              

 
D: Proof of Lemma 5.3  

 
Without loss of generality we assume M  is split as d

⎡ ⎤= ⎢ ⎥⎣ ⎦M M M , in which 

dM  contains the columns to be deleted; otherwise we can multiply M  from the 

right by a permutation matrix to put it in this partition. It thus follows 

  
H H H

dH
dH H H

d d d d

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M M M M
M M M M

M M M M M
.  (D.1) 

Since M  is nonsingular, HM M  is positive definite. By the inversion lemma for 

block matrix [20, p-572], we have 

( )
( )( )

( )( )

11

1

11

H H H H
d d d dH

H H H H
d d d d

−−

−

−−

⎡ ⎤
⎢ ⎥− ×⎢ ⎥= ⎢ ⎥
⎢ ⎥× −⎢ ⎥⎢ ⎥⎣ ⎦

M M M M M M M M
M M

M M M M M M M M

,  

(D.2) 

in which the notation “×” stands for the block off-diagonal submatrices irrelevant to 

the proof procedures. From (D.2), we have 

  

( ) ( )( ) ( )( )1 11 1 1H H H H H H H H H
d d d d d d d dTr Tr Tr

− −− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M M M M M M M M M M M M M M M M M M    

(D.3) 

Since ( ) 1H −
M M  is positive definite, so are its principle submatrices and (D.3) 

implies 
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( ) ( )( ) 11 1H H H H H
d d d dTr Tr

−− −⎡ ⎤⎡ ⎤ ⎢ ⎥≥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
M M M M M M M M M M .  (D.4) 

Using the matrix inversion lemma [20, p-571], inequality (D.4) can be further 

expanded into 

( ) ( )( ) 11 1H H H H H
d d d dTr Tr

−− −⎡ ⎤⎡ ⎤ ⎢ ⎥≥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
M M M M M M M M M M  

( ) ( ) ( )( ) ( )
11 1 1 1H H H H H H H H H

d d d d d dTr
−− − − −⎡ ⎤

⎢ ⎥= + −⎢ ⎥⎣ ⎦
M M M M M M M M M M M M M M M M M M

      

( ) ( ) ( )( ) ( )
11 1 1 1H H H H H H H H H

d d d d d dTr Tr
−− − − −⎡ ⎤⎡ ⎤ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M M M M M M M M M M M M M M M M M               

(D.5) 

Since ( )( ) 11H H H H
d d d d

−−
−M M M M M M M M  is a principle submatrix of ( ) 1H −

M M  

(cf. (D.1)), it is positive definite and so is 

( ) ( )( ) ( )
11 1 1H H H H H H H H

d d d d d d

−− − −
−M M M M M M M M M M M M M M M M . The result 

then follows from (D.5).             

 
E: Proof of Theorem 6.1  

 
  We will prove the theorem by induction. We will first show that (6.7) holds for an 

arbitrary admissible three-level sequence which, according to (C.1) and (C.2), can be 

parameterized as 

 
0

2( ) ( 1) np m N N δ= − − −Δ ,  (E.1) 

and 

 
0

2
0( ) np n δ= +Δ , and 2( )p n δ=  for { }0,n m n∉ ,  (E.2) 

 

where 00 1n m N≤ ≠ ≤ − . From (C.3), we must have 
0

(1 )n N δΔ ≤ − . With (E.1) 

and (E.2), it follows that 

0 0 0 0

1
2

2
0

2 1 1 2 (1 )( )
( 1) (1 ) [ ( 1) ]

N

n n n n n

N N Np n
N N N N N

δ
δ δ δ δ δ δ δ

−
−

=

− − −= + + = +
+Δ − − −Δ −Δ + − Δ + − −∑
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(E.3) 

It thus suffices to show 
0 0 0

2( ) : (1 ) [ ( 1) ]n n nJ N N Nδ δ δΔ = −Δ + − Δ + − −  is 

minimized by either 
0

0nΔ =  or 
0

(1 )n N δΔ = − : this confirms that the 

maximizing ( )p n  reduces to the two-level form (5.13). Indeed, simple manipulations 

show that the minimal value of 
0

( )nJ Δ  within the interval 
0

[0, (1 )]n N δΔ ∈ −  is 

[ ( 1) ]N N δ δ− − , which is attained by the two boundary points. Now we assume that 

(6.7) holds for an arbitrary K -level sequence (3 )K N< ≤ , which is described as 

 
2

2

1
( ) ( 1)

k

K

n
k

p m N N δ
−

=
= − − − Δ∑ ,  (E.4) 

and 
2( )

kn
p n δ= +Δ  for {1, , 2}k K∈ − , and 2( )p n δ=  for kn n∉ ’s.  (E.5) 

Hence we have 
11 2 2

2

0 1 1

( 1) 1 1 1( ) ( 1)
( 1)k

k

N K K

n
n k kn

N K Np n N N
N N

δ
δ δ δ δ

−− − −
−

= = =

⎛ ⎞− − −⎟⎜= + + − − − Δ ≤ +⎟⎜ ⎟⎜ ⎟⎜+Δ − −⎝ ⎠∑ ∑ ∑ . 

  (E.6) 

For any ( 1)K + -level sequence given by 

 
1

2

1
( ) ( 1)

k

K

n
k

p m N N δ
−

=
= − − − Δ∑ ,  (E.7) 

2( )
kn

p n δ= +Δ  for {1, , 1}k K∈ − , and 2( )p n δ=  for kn n∉ ’s.  (E.8) 

we have 

   
11 1 1

2

0 1 1

1( ) ( 1)
k

k

N K K

n
n k kn

N Kp n N N δ
δ δ

−− − −
−

= = =

⎛ ⎞− ⎟⎜= + + − − − Δ ⎟⎜ ⎟⎜ ⎟⎜+Δ ⎝ ⎠∑ ∑ ∑  

            
12 2

1 1

1 1
( 1)

( 1) 1 ( 1)
k

k

K K

n
k kn

N
N N

N K N N

δ δ

δ
δ δ

−− −

= =

− +
− −

≤

⎧ ⎫⎪ ⎪⎛ ⎞− −⎪ ⎪⎪ ⎪⎟⎜= + + − − − Δ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎜⎪ ⎪+Δ ⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑  

1

1 11 2

1 1

:

1 1 ( 1) ( 1)
k k

K

K K

n n
k kn

N N N Nδ δ
δ δ

−

− −− −

= =

=Θ

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞⎪ ⎪⎪ ⎪⎟ ⎟⎜ ⎜+ − + − − − Δ − − − − Δ⎟ ⎟⎨ ⎬⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎪ ⎪+Δ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑ . 

(E.9) 

With (E.9), it thus remains to check 0Θ ≤ . It is easy to verify that 
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1 1

1
1 2

1 1

( )
( 1) ( 1)

K K

K
k k

n n

K K
n

n n
k k

N N N N
δ δ δ δ

− −

−
− −

= =

−Δ Δ
Θ = + ⎛ ⎞⎛ ⎞+Δ ⎟ ⎟⎜ ⎜− − − Δ − − − Δ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠∑ ∑

.  (E.10) 

Subject to the power threshold constraint (5.6b), we must have, 

 
1

1
( 1)

k

K

n
k

N N δ δ
−

=
− − − Δ ≥∑ , and hence 

1

2

1
( 1)

k K

K

n n
k

N N δ δ
−

−

=
− − − Δ ≥ +Δ∑ .  

(E.11) 

The two inequalities in (E.11) imply 

                 

1

1 11 2

1 1

1( 1) ( 1)
( )k k

K

K K

n n
k k n

N N N Nδ δ
δ δ

−

− −− −

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜− − − Δ − − − Δ ≤⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ +Δ⎝ ⎠ ⎝ ⎠∑ ∑ .  (E.12) 

The assertion follows immediately from (E.10) and (E.12).              

 
 



 55

References 
 

[1]  S. Alamouti, “A simple transmit diversity technique for wireless 

communications,” IEEE J. Selected Areas in Communications, vol. 16, no. 10, 

pp. 1451-1458, Oct. 1998. 

[2]  N. Al-Dhahir, “Single-carrier frequency-domain equalization for space-time 

block coded transmission over frequency-selective fading channels,” IEEE 

Communications Letters, vol. 5, no. 7, pp. 304-306, July 2001. 

[3]  N. Al-Dhahir, “Overview and comparison of equalization schemes for 

space-time coded signals with applications to EDCG,” IEEE Trans. Signal 

Processing, vol. 50, no. 10, pp. 2477-2488, Oct. 2002. 

[4]  N. Ammar and Z. Ding, “Channel estimation under space-time block coded 

transmission,” Proc. Sensor Array and Multi-channel Signal Processing 

Workshop 2002, pp. 422-426. 

[5]  N. Ammar and Z. Ding, “Frequency selective channel estimation in 

time-reversed space-time coding,” Proc. WCNC 2004, pp. 1838-1843. 

[6]  I. Barhumi, G. Leues, and M. Moonen, “Optimal training design for MIMO 

OFDM systems in mobile wireless channels,” IEEE Trans. Signal Processing, 

vol. 51, no. 6, pp. 1615-1624, June 2003. 

[7]  E. Beres and R. Adve, “Blind channel estimation for orthogonal STBC in MISO 

systems,” Proc. Globecom 2004, pp. 2323-2328. 

[8]  H. Bolcskei, R. W. Heath, and A. J. Paulraj, “Blind channel estimation in spatial 

multiplexing systems using nonredundant antenna precoding,” in Proc. 

Asilomar Conf. Singlas, Systems, and Computers, vol. 2, Pacific Grove, CA, Oct. 

1999, pp. 1127-1132. 



 56

[9]  H. Bolcskei, R. W. Heath, and A. J. Paulraj, “Blind channel identification and 

equalization in OFDM-based multiantenna systems,” IEEE Trans. Signal 

Processing, vol. 50, no. 1, pp. 96-109, Jan. 2002. 

[10]  A. Chevreuil, E. Serpedin, P. Loubaton, and G. B. Giannakis, “Blind channel 

identification and equalization using periodic modulation precoders: 

performance analysis,” IEEE Trans. Signal Processing, vol. 48, no. 6, pp. 

1570-1586, June 2000. 

[11]  J. Coon, M. Beach, and J. McGeehan, “Optimal training sequences for channel 

estimation in cyclic-prefix based single-carrier systems with transmit diversity,” 

IEEE Signal Processing Letters, vol. 11, no. 9, pp. 729-732, Sept. 2004. 

[12]  P. J. Davis, Circulant Matrices, John Wieley & Sons, Inc, 1979. 

[13]  Z. Ding, “Matrix outer-product decomposition method for blind multiple 

channel identification,” IEEE Trans. Signal Processing, vol. 45, no. 12, pp. 

3053-3061, Dec. 1997. 

[14]  Z. Ding and Y. Li, Blind Equalization and Identification, Marcel Dekker, Inc., 

2001. 

[15]  D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, 

“Frequency domain equalization for single-carrier broadband wireless systems,” 

IEEE Communications Magazine, pp. 58-66, April 2002. 

[16]  G. B. Giannakis, Y. Hua, P. Stoica, and L. Tong, Signal Processing Advances in 

Wireless and Mobil Communication Volume I: Trends in Channel Identification 

and Equalization, Prentice Hall PTR, 2001. 

[17]  G. H. Golub and C. F. Van Loan, Matrix Computations, 3-rd edition, The Johns 

Hopkins University Press, 1996. 

[18]  R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 



 57

1985. 

[19]  R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University 

Press, 1991. 

[20]  S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, 

Prentice-Hall Inc., 1993. 

[21]  T. P. Krauss and M. D. Zoltowski, “Bilinear approach to multiuser second-order 

statistics-based blind channel estimation,” IEEE Trans. Signal Processing, vol. 

48, no. 9, pp. 2473-2486, Sept. 2000. 

[22]  E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless 

Communications, Cambridge University Press, 2003. 

[23]  C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice Hall, 

1974. 

[24]  C. A. Lin and J. Y. Wu, “Blind identification with periodic modulation: A 

time-domain approach,” IEEE Trans. Signal Processing, vol. 50, no. 11, pp. 

2875-2888, Nov. 2002. 

[25]  Y. P. Lin and S. M. Phoong, “BER minimized OFDM systems with channel 

independent precoders,” IEEE Trans. Signal Processing, vol. 51, no. 9, pp. 

2369-2380, Sept. 2003. 

[26]  E. Lindskog and A. Paulraj, “A transmit diversity scheme for delay spread 

channels,” Proc. ICC’00, pp. 307-311, New Orleans, LA. 

[27]  Z. Liu, G. B. Giannakis, S. Barbarossa, and A. Scaglione, “Transmit-antenna 

space-time block coding for generalized OFDM in the presence of unknown 

multipath,” IEEE J. Selected Areas in Communications, vol. 19, no. 7, pp. 

1352-1364, July, 2001. 

[28]  Z. Q. Luo, T. N. Davidson, G. B. Giannakis, and K. M. Wong, “Transceiver 



 58

optimization for block-based multiple access through ISI channels,” IEEE Trans. 

on Signal Processing, vol. 52, no. 4, pp. 1037-1052, April 2004. 

[29]  E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace methods 

for the blind identification of multichannel FIR filters,” IEEE Trans. Signal 

Processing, vol. 43, no. 2, pp. 516-525, Feb. 1995. 

[30]  B. O’Hara and A. Petrick, The IEEE 802.11 Handbook, A Designer’s 

Companion, IEEE Press, 1999. 

[31]  E. Serpedin and G. B. Giannakis, “Blind channel identification and equalization 

with modulation-induced cyclostationarity,” IEEE Trans. on Signal Processing, 

vol. 46, no. 7, pp. 1930-1944, July 1998. 

[32]  S. Shahbazpanahi, A. B. Gershman, and J. H. Manton, “Closed-form blind 

decoding of orthogonal space-time block codes,” Proc. ICASSP 2004, vol. IV, 

pp. 473-476. 

[33]  A. L. Swindlehurst and G. Leus, “Blind and semi-blind equalization for 

generalized space-time block codes,” IEEE Trans. Signal Processing, vol. 50, 

no. 10, pp. 2489-2498, Oct. 2002. 

[34]  V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from 

orthogonal designs,” IEEE Trans. Information Theory, vol. 45, no. 7, pp. 

1456-1467, July, 1999. 

[35]  C. Tepedelenlioglu, “Maximum multipath diversity with linear equalization in 

precoded OFDM systems,” IEEE Trans. Information Theory, vol. 50, no. 1, pp. 

232-234, Jan. 2004. 

[36]  Z. Wang, X. Ma, and G. B. Giannakis, “OFDM or single-carrier block 

transmission ?” IEEE Trans. Communications, vol. 52, no. 3, pp. 380-394, 

March 2004. 



 59

[37]  J. Y. Wu and T. S. Lee, “Periodic-modulation based blind channel identification 

for single-carrier block transmission with frequency-domain equalization,” 

IEEE Trans. Signal Processing, vol. 54, no. 3, pp. 1114-1130, March 2006. 

[38]  G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares approach to blind 

channel identification,” IEEE Trans. Signal Processing, vol. 43, no. 12, pp. 

2982-2993, Dec. 1995. 

[39]  S. Zhou and G. B. Giannakis, “Single-carrier space-time block-coded 

transmissions over frequency-selective fading channels,” IEEE Trans. 

Information Theory, vol. 49, no. 1, pp. 164-179, Jan. 2003. 

[40]  S. Zhou, B. Muquet, and G. B. Giannakis, “Subspace-based (semi-) blind 

channel estimation for block precoded space-time OFDM,” IEEE Trans. Signal 

Processing, vol. 50, no. 5, pp. 1215-1228, May 2002. 

 

 

 



計畫成果自評 
 

一、研究內容與原計畫相符程度 
大致相符。 

 
二、達成預期目標情況 

 
1. 本研究結果是專門設計給 FDE-STBC 所使用。  
2. 參與學生可獲得未來信號處理及通訊領域必要的訓練和技術。  
3. 所提出的方法可作為實現下世代無線通訊標準高速且高可靠度的參考方案。 

 
三、研究成果之學術或應用價值 

此通道估測的公式化建立在重組共軛交叉相關矩陣的線性方程式集合以及通道

脈衝響應，使之成為一個具有區塊循環循環區塊（ block-circulant with 
circulant-block (BCCB)）的特殊結構。這樣允許了一個簡單的僅視先期編碼參數 
而定的可辨識條件，也提供了一個自然而有效的最佳先期編碼器的設計架構來改 
善當不完全資料估測發生時的解答正確性。 
 

四、是否適合在學術期刊發表或申請專利 
適合在學術期刊發表。 

 
五、主要發現或其他有關價值 

共軛交叉相關介於兩個時間區塊信號的先期編碼可以產生線性信號結構和循環 
行列式的通道矩陣特性，並且在通道雜訊為循環高斯而接收機資料統計可以完整 
的得到時可以產生精確解。 
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Abstract-This paper studies the energy-constrained MMSE 
decentralized estimation problem with the best-linear-unbiased- 
estimator fusion rule, under the assumptions that i) each sensor can 
only send a quantized version of its raw measurement to the fusion 
center (FC), and ii) exact knowledge of the sensor noise variance is 
unknown at the FC but only an associated statistical description is 
available. The problem setup relies on maximizing the reciprocal of 
the MSE averaged with respect to the prescribed noise variance 
distribution. While the considered design metric is shown to be 
highly nonlinear in the local sensor transmit energy (or bit loads), 
we leverage several analytic approximation relations to derive a 
associated tractable lower bound; through maximizing this bound a 
closed-form solution is then obtained. Our analytical results reveal 
that sensors with bad link quality are shut off to conserve energy, 
whereas the energy allocated to those active nodes is proportional to 
the individual channel gain. Simulation results are used to illustrate 
the performance of the proposed scheme. 

Index Terms: Decentralized estimation; Sensor networks; Energy 
efficiency; Quantization; Convex optimization. 

I. INTRODUCTION 

  Low energy/power cost is a critical concern for various 
application-specific designs of sensor networks [15], [16]. In 
the decentralized estimation scenario, wherein each sensor can 
transmit only a compressed version of its raw measurement to 
the fusion center (FC) owing to bandwidth and power 
limitations, several energy-efficient estimation schemes have 
been reported in the literature [1], [7], [10], [11], [13], [14]. 
Since the transmission energy is proportional to the message 
length [2], [13], all these works are formulated within a 
quantization bit assignment setup, with the optimal bit load 
determined via the knowledge of instantaneous local sensor 
noise characteristics, e.g., the noise variance if the fusion rule 
follows the best-linear-unbiased- estimator (BLUE) principle [5,
chap. 6]. To maintain the estimation performance against the 
variation of sensing conditions, repeated update of the noise 
profile is needed: this inevitably incurs more training overhead 
and hence extra energy consumption. The design of distributed 
estimation algorithms independent of the instantaneous noise 
parameters remains an open problem [13, p-419]. Relying on 
partial noise variance knowledge in the form of the statistical 
distribution, the problem of minimizing total transmission 

† This work is sponsored jointly by the National Science Council under 
grants NSC-96-2752-E-002-009, NSC-96-2628-E-009-003-MY3, by 
the Ministry of Education of Taiwan under the MoE ATU Program, 
and by MediaTek research center at National Chiao Tung University, 
Taiwan.

energy under an allowable average distortion level (measured in 
terms of a mean-square-error (MSE) based criterion averaged 
with respect to some prescribed statistical distribution) is 
recently considered in [11]. 

This paper complements the study of [11] by addressing the 
counterpart problem: how to find the optimal bit load which 
minimizes the average distortion under a fixed total energy 
budget. The main contribution of the current work can be 
summarized as follows: (i) while the design metric, in the form 
of the reciprocal of the MSE averaged with respect to the 
distribution, is shown in [11] to be highly nonlinear in the 
sensor bit load, we leverage several analytic approximation 
relations to derive an associated tractable low bound, (ii) by 
maximizing this lower bound the problem can be further 
formulated in the form of convex optimization which yields a 
closed-form solution. Our analytic results reveal that, toward 
utmost estimation accuracy under a limited energy budget, 
sensors with bad link quality should be shut off, and energy 
allocated to those active nodes should be proportional to the 
individual channel gain; a similar energy conservation policy is 
also found in the previous works [7], [11], [13]. Numerical 
simulation evidences the effectiveness of the proposed scheme: 
it outperforms the uniform allocation strategy in an 
energy-limited environment. 

II. SYSTEM SCENARIO 

Consider a wireless sensor network, in which N spatially 
deployed sensors cooperate with a FC for estimating an 
unknown deterministic parameter . The local observation at 
the ith node is 

i ix n , 1 i N ,           (2.1) 
where in  is a zero-mean measurement noise with variance 
2
i . Due to bandwidth and power limitations each sensor 

quantizes its observation into a ib -bit message, and then 
transmits this locally processed data to the FC to generate a 
final estimate of . In this paper the uniform quantization 
scheme with nearest- rounding [9], is adopted; the quantized 
message at the ith sensor can thus be modeled as 

i i im x q , 1 i N ,          (2.2) 
where iq  is the quantization error uniformly distributed with 

zero mean and variance 2 2 /(12 4 )i
i

b
q R  [9], where 

[ /2, /2]R R  is the available signal amplitude range common 
to all sensors. The adopted quantizer model (2.2) and the 
uniform quantization error assumption, though being valid only 
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when the number of quantization bits is sufficiently large [9], 
are widely used in the literature due to analytical tractability. 
Assuming that the channel link between the ith sensor and the 
FC is corrupted by a zero-mean additive noise iv  with 

variance 2
v  The received data from all sensor outputs can 

thus be expressed in a vector form asa

1 1 1 1
: : :

1 1T T T TT
N N N Ny y n n q q v v

n q v
,

                                               (2.3) 
where ()T  denotes the transpose. This paper focuses on linear 
fusion rules for parameter recovery. More specifically, by 
assuming that the noise components ,{ , }n q v  in (2.3) are 
mutually independent and the respective samples in ’s, iq ’s,
and iv ’s are also independent across sensors, the parameter 
is retrieved via the BLUE [5, p-138] scheme via 

1

2 2 2 2
1 1

1ˆ
4 4i i

N N
i

b b
i ii v i v

y ; (2.4) 

the incurred MSE is thus [5, p-138]  
1

2

2 2
1

1ˆ
4 i

N

b
i i v

E , 2: /12R . (2.5) 

A commonly used statistical description for sensing noise 
variance is [7], [13]: 

2
i iz , 1 i N ,      (2.6) 

where  models the network-wide noise variance threshold, 
 controls the underlying variation from the nominal 

minimum, and 2
1iz  are i.i.d. central Chi-Square 

distributed random variables each with degrees-of-freedom 
equal to one [6, p-24]. The proposed energy-constrained 
MMSE decentralized estimation scheme is based on the noise 
variance model (2.6) and is discussed next. 

III. MAIN RESULTS 
A. Problem Setup 

We assume that the ith sensor sends the ib -bit message im

by using QAM with a constellation size 2 ib . The consumed 
energy is thus [2], [13],  

2 1ib
i iE w  for some iw , 1 i N ;   (3.1) 

the energy density iw  is defined as [2] 

: ln 2/i
i i bw d P ,             (3.2) 

in which  is a constant depending on the noise profile, id

is the distance between the ith node and the FC, i  is the ith
path loss exponent, and bP  is the target bit error rate assumed 
common to all sensor-to-FC links. With (2.5) and (3.1), the 
energy allocated to the ith sensor is thus determined by the 
number of quantization bits ib . For a fixed set of sensing noise 

variances 2
i ’s, the problem of MMSE decentralized 

estimation, under an allowable total energy budget TE , can be 
formulated as 

a. As in [1], [7], and [13] we assume orthogonal channel access among 
all the sensor-to-fusion links, which can be realized via, e.g., TDMA or 
CDMA with orthogonal spreading. 

Minimize 
1

2 2
1

1
4 i

N

b
i i v

, s.t. 
1
2 1i

N
b

i T
i
w E ,

and 0ib , 1 i N ,                        (3.3) 
or equivalently, 

  Maximize 2 2
1

1
4 i

N

b
i i v

, s.t. 
1
2 1i

N
b

i T
i
w E

  and 0ib , 1 i N ,                      (3.4) 

where 0  denotes the set of all nonnegative integers. To 
obtain a universal solution irrespective of instantaneous noise 
conditions, we will consider the following optimization 
problem, in which the equivalent distortion cost function in (3.4) 
is instead averaged with respect to the noise variance statistic 
characterized in (2.6):  

       Maximize 
1

1
4 i

N

b
i i

p d
zz

z z ,

       s.t. 
1
2 1i

N
b

i T
i
w E , 0ib , 1 i N , (3.5) 

where 2: v  and 1: [ ]TNz zz  with ( )p z  denoting 
the associated distribution. To solve (3.5), the first step is to 
find an analytic expression of the equivalent mean MSE metric. 

Since 2
1iz  is i.i.d. and 2

1

1
( ) exp /2 ( )

2
p z z u z

z
[6, p-24], where ( )u z  denotes the unit step function, it can be 
shown that (see [12] for a proof)  

/2

0
1 1

1 1
4 2 4

i

i i

zN N

ib b
i ii i i

e
p d dz

z z zz
z z

( 4 )/22 4 /

4

bi
i

i

b

b

e Q
,              (3.6) 

where 
2 / 2

( ) :
2

t

x

e
Q x dt  is the Gaussian tail function. 

Based on (3.6), problem (3.5) can be equivalently rewritten as 

  Maximize 
( 4 )/2

1

4 /
2

4

bi
i

i

b
N

bi

e Q
,

 under 
1
2 1i

N
b

i T
i
w E , and 0ib , i .       (3.7) 

The optimization problem (3.7) appears rather formidable to 
tackle because the cost function is highly nonlinear in ib . In 
what follows we will propose an alternative formulation which 
is more tractable and can yield an analytic solution. 

B. Alternative Formulation 

  The proposed approach is grounded on the following 
approximation to ()Q  function [8, p-115]: 

2 / 2

1 1 2

1
( )

2 (1 ) 2

xe
Q x

x x
;   (3.8) 

the approximation (3.8) is quite accurate since the peak relative 
error is less than 1.2%  for 0x , and is almost identical to 
zero whenever 5x . Based on (3.8) together with some 
straightforward manipulations, the cost function in (3.7) can be 
well approximated by 
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( 4 )/2

1

21 11

4 /
2

4

1
.

(1 ) 4 4 2 4

bi
i

i

i i i

b
N

bi

N

b b bi

e Q

                                              (3.9) 
The main advantage of the approximation (3.9) is that it can 
lead to an associated lower bound in a more tractable form; 
through otherwise maximizing this lower bound we can 
eventually obtain a closed-form solution. More specifically, it 
can be shown that (see [12]) 

                           (3.10)

21 11

1 1
1

1 1

1

(1 ) 4 4 2 4

1

(1 ) 4 4

1 4
.

( )44

i i i

i i

i

ii

N

b b bi

N

b b
i

bN N

bb
i i

Based on (3.10) we will instead focus on maximizing the lower 
bound, and thus reformulate the optimization problem as 

 Maximize 
1

4
( )4

i

i

bN

b
i

, s.t. 
1
2 1i

N
b

i T
i
w E , and 

0ib , 1 i N .                           (3.11) 

To facilitate analysis we first observe that, since 0ib , it 

follows 
1 1
2 1 4 1i i

N N
b b

i i
i i
w w : this implies we can 

replace the total energy constraint in (3.11) by the following 
one without violating the overall energy budget requirement: 

1
4 1i

N
b

i T
i
w E .          (3.12) 

With the aid of (3.12) and by performing a change of variable 
with : 4 1ib

iB , the optimization problem becomes 

  Maximize 
1

1
( ) ( )

N
i

i i

B
B

,

subject to 
1

N

i i T
i
w B E , and 0iB , 1 i N . (3.13) 

In (3.13), the intermediate variable iB  is relaxed to be a 
nonnegative real number so as to render the problem tractable; 
once the optimal real-valued iB  (and hence ib ) is computed, 
the associated bit loads can be obtained through upper integer 
rounding, as in [7], [11], [13]. The major advantage of the 
alternative problem formulation (3.13) is that it admits the form 
of convex optimization and can moreover lead to a closed-form 
solution, as is shown next. 

C. Optimal Solution 

  Based on the standard Lagrainge techniques, the optimal 
solution to (3.13) can be obtained as follows (see [12] for 
detailed proof). Let us assume 1 2 Nw w w  without 
loss of generality, and define the function  

1

1
( ) :

N

T j
j K

N

K j
j K

E w
f K

w w
, 1 K N .  (3.14) 

Let 11 K N  be the unique integer such that 

1( 1) 1f K  and 1( ) 1f K ; if ( ) 1f K  for all 
1 K N , then simply set 1 1K  (the existence and 
uniqueness of such 1K  when otherwise is shown in [12]). 

Then the optimal solution pair ,opt opt
iB  is given by 

1 1

1

1
N N

opt
j T j

j K j K
w E w ,(3.15) 

and
                                     1

1

0, 1 1,

1
1 , .

opt
i

opt
i

i K

B
K i N

w

  (3.16) 

With 4 1ib
iB  and 2

v , the optimal bit load 
opt
ib  can be directly obtained from (3.16); the resultant average 

distortion level is thus (cf. (3.7)) 
2

1

1
( 4 )/ 2 2

2

4 /
2

4

optb opti
v i

opt
i

b
vN

bi K
v

e Q
MSE

                                             (3.17) 

IV. DISCUSSIONS AND SIMULATION

1. We note that the minimal achievable average MSE is 
attained whenever all the raw sensor measurements with 
infinite-precision are available to the FC (i.e., the case 
when ib , 1 i N ). Hence, by setting ib

in the mean MSE formula specified in (3.7), we have the 
following performance bound 

2

1

( )/ 2 2
min 2

2
( )/

( )
v

v
v

MSE Ne Q .

                                           (4.1) 
Formula (4.1) reveals the impacts of the noise model 
parameters  and  on the estimation performance. 
Specifically, it is easy to see from (4.1) that the minimal 
MSE increases with : this implies the estimation 
accuracy degrades as the sensing environment becomes 
more and more inhomogeneous. Furthermore, it can be 
checked that minMSE  also increases with the minimal 
noise power threshold . This is reasonable since a large 

 implies poor measurement quality of all sensor data, 
and hence a less accurate parameter estimate. We note that, 
although these facts are inferred based on the idealized 
distortion measure (4.1), a similar tendency is also 
observed for MSE  in (3.17) attained with sensor data 
quantization (see the numerical results below). 

2. Recall from (3.2) that the energy density factor iw  is 
proportional to the path loss gain id  (assuming i

throughout all links). Large values of iw , therefore, 
correspond to sensors deployed far away from the FC 
(with large id ), usually with poor background channel 
gains. In light of this point, the proposed optimal solution 
(3.16) is intuitively attractive: sensors associated with the 
1( 1)K th largest iw ’s are turned off to conserve energy. 

We note that a similar energy conservation strategy via 
shutting off sensors alone poor channel links is also found 
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in [7], [11], [13]. Also, we further note from (3.16) that, 
for those active nodes, the assigned message length is 
inversely proportional to iw : this is intuitively 
reasonable since sensors with better link conditions should 
be allocated with more bits (energy) to improve the 
estimation accuracy. 

3. We compare the simulated performance of the proposed 
solution (3.16) against the uniform energy allocation 
scheme with bit load determined through 

2 1 /ib
i Tw E N , 1 i N .       (4.2) 

In each run we simply choose i iw d  with 2 , and 

id ’s are uniformly drawn from the interval [1,10]  as in 
[13]. In the following experiments we set the number of 
sensors to be 200N , link noise 2 0.05v , and 
consider three different levels of total energy: 

1

N

T i
i

E w  with 0.25, 1, 3 , which respectively 

correspond to the low, medium, and high energy regimes. 
With fixed 2 , Figure 1-(a) shows the computed mean 
MSE as  varies from 0 to 8, whereas Figure 1-(b) 
depicts the MSE for fixed 2  and 0.5 8 . The 
results show that, as expected, the estimation accuracy 
improves as TE  increases. Also, the proposed solution 
(3.16) outperforms (4.2), especially when TE  is small; it 
is thus more effective in an energy-limited environment. 
We finally note that the simulated MSE increases with 
both  and : this coincides with the asserted facts in 
the previous discussions. Figure 2 further depicts the 
histogram of the computed bit loads; it appears that a large 
fraction of the active nodes are assigned with one or two 
quantization bits (hence with BPSK or 4-QAM 
modulations adopted). 
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Figure 1. Performance comparison of the proposed solution (3.16) with 

the uniform allocation scheme (4.2). 
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Figure 2. Histogram of the quantization bits. 
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