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The main focus of the study of graph-design is to decompose a graph
H into isomorphic copies of subgraphs G, denoted by G|H. It is
well-known that K, | AK, is equivalent to the existence of a 2-(v,k, 1)

designand K, |AK_ ., IS equivalent to the existence of a group divisible

m(n)
design GDI[n,m;k, A]. Therefore, the study of combinatorial designs plays
an important role in our study.

The use of combinatorial designs in experiment designs has been
known for many occasions. Thus, we intend to add more which are

related to modern technologies. Also, we expect to find more other types



of designs such as grid-block design. Note that this design has its
application on DNA Library Screening (related to DNA sequencing).
Besides, we also utilize the packing of graph to obtain well-constructed
SONET and better disjunct matrices which are the main objectives in

nonadaptive algorithms of group testing.

Keywords : Graph design, Grid-block design, DNA-sequencing, SONET,

Non-adaptive algorithms.
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Minimizing SONET ADMs in Unidirectional WDM
Rings with Grooming Ratio 7
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Abstract

In order to reduce the number of add-drop multiplexers (ADMs) in SONET/WDM net-
works using wavelength add-drop multiplexing, certain graph decompositions can be used to
form a ‘grooming’ that specifies the assignment of traffic to wavelengths. When traffic among
nodes is all-to-all and uniform, the drop cost of such a decomposition is the sum, over all
graphs in the decomposition, of the number of vertices of nonzero degree in the graph. The
number of ADMs required is this drop cost. The existence of such decompositions with min-
imum cost, when every pair of sites employs no more than % of the wavelength capacity, is
determined within an additive constant. Indeed when the number n of sites satisfies n = 1
(mod 3) and n # 19, the determination is exact; when n = 0 (mod 3), n #Z 18 (mod 24),
and n is large enough, the determination is also exact; and whenn = 2 (mod 3) and n is large
enough, the gap between the cost of the best construction and the cost of the lower bound is
independent of n and does not exceed 4.

1 Introduction

Traffic grooming in optical (SONET) rings arises from amalgamating C' low rate signals onto a
higher capacity wavelength [15, 25, 26]; C' is the grooming ratio. Nodes initiate or terminate
traffic on a wavelength using an add-drop multiplexer (ADM). Finding the minimum number of
add-drop multiplexers (ADMs), A(C,n), required in an n-node SONET ring with grooming ratio
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C, is equivalent to the following problem in graphs [4]: Given a number of nodes n and a grooming
ratio C' find a partition of the edges of K, into subgraphs By, / = 1, ..., s with |F(By)| < C such
that ), _,.. |V(By)| is minimum.

Optimal constructions for given grooming ratio C' have been obtained using tools of graph
and design theory [9]. Results are known for grooming ratio C' = 3 [1], C' = 4[5,23],C =5
[3], C =6 1[2], C < %n(n — 1) [5], and for large values of C' [5]. Related problems have
been studied for variable traffic requirements [8, 14, 22, 27, 29], for fixed traffic requirements
[1,3,4,5, 15,21, 23, 24, 25, 28, 30], and in the case of bidirectional rings [10, 13]. The explicit
correspondence between grooming and graph decomposition is developed in detail in [1, 11].

In this paper we consider grooming with grooming ratio 7. In Section 2 we employ linear
programming duality to establish a general lower bound on A(7,7n). In Section 4 we determine
A(7,n) with the possible exception of n = 19 when n = 1 (mod 3). When n = 0 (mod 3)
(Section 5) we determine A(7,n) with finitely many possible exceptions except when n = 18
(mod 24); in the latter case we establish a construction whose cost exceeds the lower bound by 1.
When n = 2 (mod 3) (Section 6) we develop a set of constructions to establish that, with finitely
many possible exceptions, the cost does not exceed the lower bound by more than 4, independent
of n.

It is natural to ask why the case when C' = 7 is of independent interest. Unlike all cases
when C' < 6, the graph with the lowest ratio of number of vertices to number of edges does not
have C edges; rather it is K4, a 6-edge graph. This necessitates consideration of decompositions
that do not use the minimum number of graphs, and hence determining the minimum number of
wavelengths required is quite different than determining the minimum drop cost.

2 The Lower Bounds

We adapt a strategy using linear programming from [12] that was used in [11] to determine both the
cost and the structure of certain optimal groomings. A grooming with ratio 7 is a decomposition of
K, into subgraphs each having at most 7 edges. Its drop cost, or just cost, is the sum of the numbers
of vertices of nonzero degree over all graphs in the decomposition. A(7,n) is the minimum drop
cost of a grooming of K,, with grooming ratio 7. Figure 1 displays all connected graphs having at
most 7 edges. The naming convention is as follows. For each number ¢ of edges and p of vertices,
suppose that there are -, , nonisomorphic graphs. These are named G/, for 1 < ¢ <y, .

In a decomposition, let ay,, , be the number of occurrences of Gy, and let a, = > /%% g -
Then because every edge appears in exactly one of the chosen subgraphs,

7 8 q.p
DD D1 gy = (Z) M)

g=1 p=1 ¢=1

In order to minimize drop cost, we must compute

min Z Z D Qpgp (2)



deg. seq. |, deg.seq. [P, (Vi
Gyss 44222 |4 1 .[33321 |15 |15
G,ys 43322 |25 > 522111 45 |45
Gsis 43331 |1 > 42211 |45 |as
Gars 33332 |1 > ezt 30 |45
Gy 442211 |4 o 1 o2 6 3
Gsre 522221 |5.5 Geoo < 22221 45 |3
Gy 422222 |55 Gooo 2 332211 3 3
G 532211 |4 Gros b 333111 15 3
Gs76 432221 4 Gor =< 5211111 45 |6
Gz 4332111255 Groy |4221111 45 |6
Grag 332222 |4 Gyr 2311111 3 6
Gyya 4421111 |4 Gior 2= 6111111 [3 |6
Gssy 5222111 5.5 Gign e 2222211 |6 |45
G- 4222211 |5.5 Goor <= 3222111 45 |45
G, 5321111 |4 G.., <5 32111 30 |45
G 4322111 |4 G., K1 322 2 1
4331111 |2.5 Gs —< 42211 |35 |4
2222222 |7 Gy, L2» 22222 5 2.5
3222221 |5.5 G T<32221 35 25
3322211 |4 G.. — 3211 P2 s
3332111 |2.5 G, =421111 35|55
71111111 |4 Gyso < 511111 35 |55
44111111 |4 Gyse —2 322111 [35 4
52211111 |5.5 G <[331111 ]2 4
42221111 |5.5 Goso Lo po2nt |5 3
62111111 |4 G, 1 2220 |4 ]
53111111 |4 G,.. —< 3221 25 2
43211111 |4 Gu.s < i 25 s
22222211 |7 Gras 2 22211 |4 35
32222111 (5.5 |5 Gys T [32111 25 |35
33220111 4 5 G., < |2 3 1.5
33311111 2.5 |5 G, 11 |21 L
333310 0 |Gy, < Ppin 15 3
42222 |45 3 Gray e 211 2 |25
43221 3 3 G, o 11 1 2
33222 |3 1.

Figure 1: The Graphs
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Figure 1 does not list disconnected graphs, but the cost of a disconnected graph is the sum
of the costs of its components, so all feasible decompositions are accounted for. For every graph
Giqp» We find that = > 2. Subtract 2 x (1) from (2) to restate the minimum drop cost A(7,n) as

—1 ) 2
% + min Z Z_: (p— gq) C Qg p 3)

qg=1 p=1 (=1
In (3) the triple summation is always nonnegative; it can be zero only when all graphs are
isomorphic to K. However, structural restrictions can prohibit such a selection. In particular,
considering the number (Z) of edges modulo 6,

0 (mod6)ifn=0,1,4,9 (mod 12)

( )
_J 1 (mod6)ifn=2,11 (mod 12)
22> (qmod6)-ay =9 4 (mod 6) if n = 3,6,7,10 (mod 12) “)

4 (mod 6)ifn=>5,8 (mod 12)

We can relax this congruence to linear inequalities. For example, if n = 3,6,7,10 (mod 12),

8 Y3,p Yaq,p Ya.p
M IITTIESTE) DID SLIMEEID D) LI =Y ®)
p=1 [ =1 qe{1,4,7} =1 qe{2,5} ¢=1

because if there is no graph on three edges, there must be at least three graphs having 1 (mod 3)
edges, or one having 1 (mod 3) edges and one having 2 (mod 3) edges.

Every vertex of K, has degree congruent to n — 1 mod 3; placing a K in the decomposition
does not change this congruence class at any vertex, and hence subgraphs other than K, may be
needed to accommodate these vertex degrees. Let wy 4, be the number of vertices whose degree is
congruent to 1 modulo 3 in Gy, ,,, and let 7, , ,, be the number of vertices whose degree is congruent
to 2 modulo 3. Now if n = 0 (mod 3), every vertex has degree 2 modulo 3, and hence at every
vertex there must either be a graph itself having degree 2 modulo 3, or two graphs each having
degree 1 modulo 3 (there may be more). And if n = 2 (mod 3), every vertex has degree 1 modulo
3, and hence at every vertex there must either be a graph itself having degree 1 modulo 3, or two
graphs each having degree 2 modulo 3. For convenience we write ¢y, = sWwiqp + Teq,p and
Vigp = Wegp + 570,4p- These are tabulated for each graph in Figure 1. We conclude that

ZZ:l 2187:1 ZZLT Grgp - Qgp =n if =0 (mod 3)
(6)
22:1 218;:1 S b gp ugp >n  if m=2 (mod 3)

Theorem 2.1 The cost of an optimal grooming of K,, with grooming ratio 7, A(7,n), is at least

%(g) if n=14 (mod 12)

g(z) +1n if n=7,10 (mod 12)
fG)H[E] F n=036151821 (mod24)
sG)+El+1 if n=9,12 (mod 24)
HYESA if n=5,817 (mod 21)

orn =2,23,32,53,56,77,62,83 (mod 84)
2+ 2] 41 if n=14,35,20,41,44,65,74,11 (mod 84)
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Proof: We follow the strategy in [12]. Form a linear program whose variables are the {ay,, ,}s.

min Zq 1Zp_ S0 (p — ) O qp (7)

subject to (4) suitably relaxed, (6), and nonnegativity of each variable

If 2* is the minimum, the cost of any grooming must be at least (% (g) + z*], since the cost is
integral. By forming the dual of (7), any feasible solution to the dual gives a lower bound on all
primal feasible solutions, and hence a lower bound on z*.

Case 1: n = 1 (mod 3): When n = 1,4 (mod 12), the linear program is constrained only by
nonnegativity, and the dual optimum is 0. When n = 7,10 (mod 12), (5) holds. Call its dual
variable y;. An assignment y7 is dual feasible if y7 < p — 2 for every graph G 3,; y7 < 5 3(p— %q)
for every graph G4, with ¢ € {2,5}; and y < 3(p— 3¢) for every graph Gy, with g € {1,4,7}.
By considering the graphs in Figure 1 the dual optimum of 1 occurs when y; = 1. This raises the
lower bound by 1.

Case 2: n = 0 (mod 3): Consider the inequality from (6) and let y be its dual variable. Each
graph Gg .q,p leads to the dual inequality ¢y ,y2 < p — q The dual optimum of {5 arises when
Yy = 12 ; the only graph whose dual inequality is bmdmg isGi 75 with ¢y 75 =4 and 5 — —7 =
We can compute the slackness of each variable; for ay, g, the slackness is p — 2¢ — 1 ¢g7q7p A
unit increase in the variable oy, , increases the dual objective function value by the slackness. The
only variables with slackness at most % are a7 5 with slackness %, az.75 and a7 5 with slackness
%, and o 5 4 with slackness % Hence any decomposition of cost less than 5 + % consists solely
of graphs in {G75}. To satisfy (6), ars > [§]. If az5 > § + 9, adjoining this inequality with
dual variable y; yields a dual solution {y, = 0,y3 = %} of cost 1% + g, increasing the bound
when § > 3. So [§] < a75 < § + 3. Because all graphs in the decomposition have six or seven
edges, az 5 = 0 (mod 3). Thus whenn = 9,12 (mod 24), az5 = 3 (mod 6), violating (4). This
increases the bound by 1 whenn = 9,12 (mod 24).

Case 3: n = 2 (mod 3): Again consider the inequality from (6), and let y» be its dual variable.
Each graph Gg q,p leads to the dual inequality 1y 4,52 < p — q The dual optimum of 2—? arises
when y5 = 21, the only graph whose dual inequality is blndlng is Gi75 With ¢y 75 = % and
5 - %7 = 3. We can compute the slackness of each variable; for ay,q,, the slackness is p —
3q 212/}g ¢p- The only variables with slackness at most ‘—; are o 75 and a7 5 with slackness 1
oy 75 With slackness 2 2, and a5 4 with slackness ‘—;. An increase of % would result in an increase
in the integer ceiling when n = 2,11,14,20 (mod 21), so in these cases we are restricted to
K,s and graphs in {G/75} to meet the bound. To satisfy (6), ay; > [27”1 If az5 > 2” + 9,
adjommg this inequality with dual variable y; yields a dual solution {y, = 0,y3 = 3} of cost
3—? —|— , increasing the bound when 6 > 3. So [27"1 < ars < 2” -+ 3. Because all graphs in
the decomposition have six or seven edges, az5 = 1 (mod 3). Thus when n = 21s + z for
x € {2,11,14,20}, ar5 = 65 + 1,65 + 4,65 + 4,65 + 7, respectively. This violates (4) precisely
when n = 44,65; 11, 74; 14, 35; 20,41 (mod 84), increasing the bound by 1 in these cases. 0

We denote by £(7,n) the lower bound prescribed by Theorem 2.1.



3 Group Divisible Designs with Block Size Four

A group divisible design (GDD) is a triple (X, G, B) where X is a set of points, G is a partition
of X into groups, and B is a collection of subsets of X called blocks such that any pair of distinct
points from X occur together either in some group or in exactly one block, but not both. A K-GDD
of type g;"g5* . .. g% is a GDD in which every block has size from the set X and in which there
are u; groups of size g;,1 =1,2,...,s.

A group divisible design (X, G, B) is resolvable if its block set B admits a partition into parallel
classes, each parallel class being a partition of the point set X.

A pairwise balanced design (PBD) with parameters (K;v) is a K-GDD of type 1°.

The interested reader may refer to [6, 9] for the undefined terms as well as a general overview of
design theory. The main recursive construction that we use is Wilson’s Fundamental Construction

(WFC) for GDDs (see, e.g. [9]).

Construction 3.1 Ler (X, G, B) be a GDD, and let w : X — Z* U {0} be a weight function on
X. Suppose that for each block B € B, there exists a K-GDD of type {w(x) : x € B}. Then there
isa K-GDD of type {}_ . w(z) : G € G}.

A double group divisible design (DGDD) is a quadruple (X, H,G,B) where X is a set of
points, H and G are partitions of X (into holes and groups, respectively) and B is a collection of
subsets of X (blocks) such that

(i) for each block B € B and each hole H € H,|B N H| < 1, and

(ii) any pair of distinct points from X which are not in the same hole occur either in some group
or in exactly one block, but not both.

A K-DGDD of type (g1, h})" (g2, h3)"> ... (gs, h¥)"s is a double group-divisible design in which
every block has size from the set K and in which there are u; groups of size g;, each of which
intersects each of the v holes in h; points. (Thus, g; = h;v fori = 1,2,...,s. Not every DGDD
can be expressed this way, of course, but this is the most general type that we require.) Thus, for
example, a modified group divisible design K-MGDD of type ¢g* is a K-DGDD of type (g, 19)*.
A k-DGDD of type (g, h*)* is an incomplete transversal design ITD (k, g; h*) and is equivalent to
a set of k£ — 2 holey MOLS of type h" (see, e.g. [9]). A DGDD is resolvable if its block set admits
a partition into parallel classes. We use the following existence result.

Theorem 3.2 [20] There exists a 4-DGDD of type (mt, m")"™ if and only if t,n > 4 and (t —
1)(n — 1)m = 0 (mod 3) except for (m,n,t) = (1,4,6) and except possibly for m = 3 and
(nv t) € {(67 14)7 (67 15)7 (67 18)7 (67 23)}

We also make use of the following simple construction for 4-GDDs:

Construction 3.3 [19] Suppose that there is a 4-DGDD of type (g1, hY)" (g, h3)"2 ... (gs,
hY)“s and that for eachi = 1,2, ..., s there is a 4-GDD of type h?a' where a is a fixed non-negative

integer. Then there is a 4-GDD of type h’a' where h = Z uihi.

=1



The following results on TDs are known.

Theorem 3.4 A TD(k, m) exists if:
1. k=5andm >4 and m ¢ {6, 10};
2. k=6andm > 5and m ¢ {6, 10, 14, 18, 22};
3. k=Tandm > T7andm ¢ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60, 62}.
Finally, we employ the following results on 4-GDDs.

Theorem 3.5 ([9, I11.1.3 Theorem 1.28]) A 4-GDD of type 3“m! exists if and only if either u = 0
mod 4andm =0 mod 3,0 <m < (Bu—6)/2;oru=1 mod 4andm =0 mod 6,0 <m <
(Bu—3)/2;oru=3 mod 4andm =3 mod 6,0 <m < (3u — 3)/2.

Theorem 3.6 ([17, Theorem 1.7]) There exists a 4-GDD of type g*m* with m > 0 if and only if
g=m=0 mod3and0<m§379.

Theorem 3.7 ([18, Theorem 1.6]) There exists a 4-GDD of type 6“m? for every u > 4 and m = 0
mod 3 with 0 < m < 3u — 3 except for (u, m) = (4,0) and except possibly for (u,m) € {(7,15),
(11,21), (11,24), (11,27), (13,27), (13,33), (17,39), (17,42), (19,45), (19,48), (19,51), (23, 60),
(23,63)}.

Theorem 3.8 ([16, Theorem 3.16]) There exists a 4-GDD of type 12“m! for each v > 4 and
m=0 mod 3with) <m < 6(u—1).

Theorem 3.9 ([16, Theorem 5.21]) There exists a 4-GDD of type 2“m! for each u > 6, u = 0
mod 3 and m =2 mod 3 with2 < m < u— 1 except for (u,m) = (6,5) and possibly excepting
(u,m) € {(21,17), (33,23), (33,29), (39, 35), (57, 44) }.

31 ge{24,84}

Lemma 3.10 Foreachu > 4,u & {7,11,13,17,19, 23}, there exists a 4-GDD of type 24“m" with
m=0 mod 3and 0 <m < 12(u — 1).

Proof: For u = 4, see Theorem 3.6. For each v > 5, u ¢ {7,11,13,17,19, 23}, take a 4-GDD
of type 6“v! withv =0 mod 3and 0 < v < 3(u — 1), and remove the points on the last group
of size v; apply weight 4, using 4-MGDDs of type 4 and resolvable {3}-MGDDs of type 43,
to obtain a {3,4}-DGDD of type (24,6*)* whose triples fall into 3v parallel classes. Adjoin 3v
infinite points to complete the parallel classes and then fill in 4-GDDs of type 6“t' with ¢t = 0
mod 3 and 0 < ¢ < 3(u — 1) to obtain a 4-GDD of type 24“(3v + t)!, as desired. 0

Lemma 3.11 Foreachu € {7,11,13,17,19, 23}, there exists a 4-GDD of type 24*m* with m = 0
mod 3 and 3(u — 1) <m < 12(u — 1).



Proof: For each u, start with a TD(5, u) and adjoin an infinite point co to the groups, then delete
a finite point so as to form a {5, u + 1}-GDD of type 4“u’. Note that each block of size u + 1
intersects the group of size u in the infinite point oo and each block of size 5 intersects the group
of size u, but certainly not in co. Now, in the group of size u, we give oo weight 0 or 3(u — 1) and
give the remaining points weight 3, 6 or 9. Give all other points in the {5, u + 1}-GDD weight 6.
Replace the blocks in the {5, u + 1}-GDD by 4-GDDs of types 6%, 6“(3(u — 1))', 613!, 616, or
619! to obtain the 4-GDDs as desired. O

Lemma 3.12 Foreachu € {7,11,13,17,19, 23}, there exists a 4-GDD of type 24“m! withm = 0
mod 3 and 0 < m < 3(u — 2).

Proof: Starting from a 4-DGDD of type (24, 6%)* coming from Theorem 3.2 and applying Con-
struction 3.3 with 4-GDDs of type 6“m! to fill in holes, we obtain most of the designs except
for (u,m) € {(7,15), (11,21), (11,24), (11,27), (13,27), (13,33), (17,39), (17,42), (19, 45),
(19,48), (19,51), (23, 60), (23,63)}.

For the remaining choices for (u, m), take a 4-GDD of type 6“3' and remove the points of the
last group of size 3; apply weight 4, using 4-MGDDs of type 4* and resolvable {3}-MGDDs of
type 42, to obtain a {3, 4}-DGDD of type (24, 6*)* whose triples fall into 9 parallel classes. Adjoin
m — 9 infinite points to complete the parallel classes and then fill in 4-GDDs of type 6“(m — 9)*.

O

Combining Lemmas 3.10-3.12, we have the following theorem.

Theorem 3.13 There exists a 4-GDD of type 24*m! for each v > 4 and m = 0 mod 3 with
0<m<12(u—1).

Theorem 3.14 There exists a 4-GDD of type 84“m* for each w > 4 and m = 0 mod 3 with
0<m <42(u—1).

Proof: The proof is similar to that of Lemma 3.10. For each u, take a 4-GDD of type 12“v*
with v = 0 mod 3 and 0 < v < 6(u — 1), and remove the points on the last group of size
v; apply weight 7, using 4-MGDDs of type 7* and resolvable {3}-MGDDs of type 72, to obtain
a {3,4}-DGDD of type (84,127)* whose triples fall into 6v parallel classes. Adjoin 6v infinite
points to complete the parallel classes and then fill in 4-GDDs of type 12%t! with t = 0 mod 3
and 0 <t < 6(u — 1) to obtain a 4-GDD of type 84" (6v + t)*, as desired. 0

4 Constructions: n =1 (mod 3)

We settle small cases first.
Lemma 4.1 A(7,n) = L(7,n) forn € {4,7}.

Proof: The lower bound is met for n = 4 by a single k4. The lower bound is realized when
n =T LetV = {oc0}U{0,...,5}, and form the three G 755 {{7,i+ 3}, {i,i+ 1}, {i,i+4}, {i +
1,043} {i+3,i+ 4}, {o0,i},{00,i + 3}} fori € {0, 1,2}, arithmetic modulo 6. 0O
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Lemma4.2 A(7,10) = £(7,10) + 1 = 32.

Proof: The lower bound of 31 is not met. To see this, the only primal variables with slackness
at most % are for {Gy75}. But 62 + 7y = 45 and 4z + 5y = 31 admits only the solution x = 4
and y = 3, i.e. four Ks and three graphs from {G,75}. There is a unique way to place four
Kysin a Ky, and its complement does not partition into three graphs from {G/ 7 5}. To produce a
decomposition of cost 32, on the 10 points {0, ..., 9} form Kyson {0, 1,2,3} and {0,4, 5,6}, and
the graphs

G2,7,5 {{27 4}7 {2: 5}7 {27 7}7 {27 9}7 {47 7}7 {57 7}’ {47 9}}
G3,7,5 {{37 9}7 {57 9}7 {67 9}7 {77 9}7 {37 6}7 {37 7}7 {67 7}}
G4,7,5 {{37 4}7 {37 5}7 {37 8}7 {47 8}7 {57 8}7 {17 4}7 {17 5}}
G4,7,5 {{Oa 7}7 {07 8}7 {07 9}v {77 8}’ {87 9}7 {17 7}7 {17 9}}
Ch,SA {{1’8}7{176}7{278}7{2’6}’{678}}

Lemma 4.3 £(7,19) + 1 < A(7,19) < £(7,19) + 2 = 117.

Proof: The lower bound of 115 cannot be met. A maximum packing on 19 points has 25 Kys [7].
Consider the linear program using (5). Using slackness, the only way to achieve a dual objective

value of 1 in such a way that at least 21 = (129) — 25 - 6 edges do not appear in Ks is to use three

graphs in {Gy75}. There are 249 nonisomorphic graphs that can be left by a maximum packing
of 25 Kys in K9 [2]. G375 cannot be used because it contains a K, and the 25 K,s form a
maximum packing. Of the 249 graphs, 79 have degree sequence 3'4; 122 have degree sequence
6'3'? and 48 have degree sequence 623'°. In order to use a G 7 5 there must be at least five vertices
of degree 6 or larger; and for (G5 7 5 there must be at least three. Hence both are ruled out and the
only possibiiity is three G4 75s. This case can be eliminated by a simple computer search. Thus
the drop cost cannot be 115. A solution with drop cost 117 follows:

24 K,'s: {0,1,2,4},{0,3,5,6},{0,7,8,9},{0,10,11,12},{0,13,14,15}
{0,16,17,18},{1,3,7,10},{1,5,8,11},{1,6,13,16},{1,9,14,17}
{1,12,15,18},{2,3,8,15},{2,5,9,18},{2,6,10,17},{2,7,12,13}
{2,11,14,16},{3,4,14,18},{3,9,12,16},{4,5,12,17},{4,6,9,15}
{5,10,15,16},{6,7,11,18},{6,8,12,14},{8,10,13,18}

one G, :{{3,11},{3,13},{3,17},{11,15},{11,17} ,{13,17},{15,17} }

two G4,7,5 {{477}7{4:8}9{4716}:{7916}5{7:17}7{8516}7{8:17}} and

{{4,10},{4,11},{4,13},{9,10},{9,11},{9,13},{11,13}}
one G, ¢ :{{5,7},{5,13},{5,14},{7,14},{7,15},{10,14} }

O

Theorem 4.4 Whenn =1 (mod 3) and n ¢ {10,19}, A(7,n) = L(7,n). Moreover, A(7,10) =
L(7,10) + 1 and L£(7,19) + 1 < A(7,19) < £(7,19) + 2.
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Proof: When n = 1,4 (mod 12), there is a 4-GDD of type 1™ with drop cost £(7,n). When
n = 7,10 (mod 12) and n & {10, 19}, there is a 4-GDD of type 1"~ 77! [7]; fill the hole with a
solution from Lemma 4.1. 0O

5 Constructions: n =0 (mod 3)
The lower bound is met for n = 3 by a single K.
Lemma 5.1 A(7,6) = £(7,6) +1 = 12.

Proof: The lower bound of 11 is not met. A decomposition of cost 12 can be produced as follows:

G2,7,5 {{07 1}7 {07 2}7 {07 4}7 {07 5}7 {17 4}7 {17 5}7 {27 4}}
G2,7,5 {{L 2}7 {17 3}7 {27 S}v {2’ 5}’ {37 4}7 {37 5}7 {47 5}}
Gz {{0,3}}

Lemma 5.2 A(7,9) = £(7,9) + 1 = 2T.

Proof: The lower bound of 26 is not met for n = 9 as follows. There can be at most three K s
on nine points. If there are zero, at least six graphs are needed each having slackness at least %;
because the total increase in the dual objective function is 2, all graphs must be from {G, 75} and
cannot account for 36 edges. In the same manner, with one K4, 30 edges must be accounted for by
graphs in {Gy 75}, each with slackness % and G 5 4 with slackness %; again this is not possible as
25 is not a multiple of 7. There remain cases with two or three Ks; each can be eliminated by an
exhaustive search.

A decomposition of cost 27 using graphs on at most six edges is given in [2]. We give a
different solution here:

G1,7,5 {{Oa 7}7 {07 8}7 {17 7}v {1’ 8}’ {27 7}7 {27 8}7 {77 8}}
G4,7,5 {{Oa 4}7 {07 5}7 {07 6}7 {1’ 4}’ {17 5}7 {17 6}7 {47 5}}
G4,7,5 {{27 4}7 {27 5}7 {27 6}7 {37 4}7 {37 5}7 {37 6}7 {47 6}}
G4,7,5 {{47 7}7 {47 8}7 {57 6}7 {57 7}7 {57 8}7 {67 7}7 {67 8}}
Gl,6,4 {{07 1}7 {07 2}7 {07 3}7 {17 2}7 {17 3}7 {27 3}}

G1,2,3 {{3a 7}7 {37 8}}

Lemma 5.3 A(7,15) = £(7,15) = 72.

Proof: Start with a Kirkman triple system of order 9 on {0, ...,8}, in which the first parallel
class is { By, By, Bo}. Then adjoin points {xg, 21, T2, Yo, Y1, y2 }. Form nine K,s by adding y; to
each block of the (i +2)nd parallel class. For i € {0, 1,2} forma K, on {z;.»}UB;anda G, 75 in
which the degree 4 vertices are x; and x;,, and the degree 2 vertices are the elements of ;. Form
a K4 on {2, Y0, y1,y2}. What remains is a G4 5. 0
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Lemma 5.4 A(7,18) < £(7,18) +1 = 105.

Proof: Form a 4-GDD of type 3° with groups {B; : j = 0,1,2,3,4}. Then adjoin points
{z0, 21, 22}. Fori € {0,1,2}, form a G, 75 by using the edge {z;, Z;11 mod 3} and joining these
vertices to each vertex in B; and form a K, by adding 2,2 moq 3 to B;. For i € {3,4}, form a
G365 by joining the vertices xy and x; to vertices in B; and form a K, by adding x5 to B;. This
decomposition is of cost 105. 0

Lemma 5.5 A(7,24) = £(7,24) = 186.

Proof: We give the solution on {0, 1,2,3,4,5,6, 7} x Zj3, writing element (¢, j) as ;.

(09,01, 19, 42) (00, 11, 59, 61) (00, 20, 31, 32) (00, 21, 51, 52)
(00, 22, 7o, 72) (09, 60, 62, 71) (1o, 14,24, 70) (19,29, 51,61)
(19,31, 50, 71) (19, 32,41,62) (20,21,42,61) (30, 50, 62, 72)
(49,41, 52,72) (30,40 : 00, 10,20) (30,41 : 51,61, 71)

The latter two orbits are graphs isomorphic to Gy 7 5. 0
Theorem 5.6 A(7,n) = L(7,n) whenn =0 (mod 3), n # 18 (mod 24) and

1. n>96 whenn =0,3,6,9,15 (mod 24);

2. n > 276 whenn = 12 (mod 24);

3. n> 309 whenn =21 (mod 24).
L(7,n) < A(7T,n) < L(7,n) + 1 whenn =18 (mod 24) and n > 114.

Proof: If m =n mod 24 € {0,3,6,9,15,18} and n > 96, form a 4-GDD of type 24("~™)/24!
from Theorem 3.13; place optimal groomings from Lemma 5.5 on each group of size 24, and
an optimal grooming of size m on the exceptional group (from Lemmas 5.1, 5.2, or 5.3 when
m = 6,9, 15, respectively). When m = 18, use the grooming from Lemma 5.4, missing the lower
bound by 1. When m = 6, reduce the drop cost by 1 by amalgamating the single edge from this
grooming with a K4 of the 4-GDD to form a G375. When m = 9, reduce the drop cost by 1 by
amalgamating both edges of the (G 3 5 of this grooming with Ks of the 4-GDD to form G 7 5s.

When m = n mod 24 = 12, form a 4-GDD of type 20*, and add four infinite points. On each
group, together with the four infinite points, place an optimal grooming from Lemma 5.5 aligning
a K, on the four infinite points. Suppress the duplicate K4s so produced. This establishes that
L(7,84) = A(7,84). Then filling groups in a 4-GDD of type 24'84! establishes that A(7, 24t +
84) = L(7,24t + 84) when t > 8, i.e. for all n > 276.

When m = nmod 24 = 21, form a 4-GDD of type 23%, and add one infinite point. On
each group, together with the infinite point, place an optimal grooming from Lemma 5.5. This
establishes that £(7,93) = A(7,93). Then filling groups in a 4-GDD of type 24'93! establishes
that A(7,24t + 93) = L£(7,24t + 93) when t > 9, i.e. for all n > 309. 0O
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6 Constructions: n =2 (mod 3)
Lemma 6.1 A(7,n) = L(7,n) forn € {5,8}.

Proof: For K, note that G, 75 = K5 \ Kj. Partition Ky as follows:

Gl,7,5 {{Oa 1}7 {0: 2}7 {07 3}7 {07 4}7 {17 2}7 {17 3}’ {17 4}}
G1,7,5 {{67 7}7 {67 2}7 {67 3}7 {67 4}7 {77 2}7 {77 3}7 {77 4}}
G3,7,5 {{17 5}7 {27 3}7 {27 4}7 {27 5}7 {37 4}7 {37 5}7 {47 5}}
G4,7,5 {{L 6}7 {1’ 7}7 {07 5}v {07 6}’ {07 7}7 {57 6}7 {57 7}}

Lemma 6.2 A(7,11) = £(7,11) = 39.

Proof: Partition K7; on {001,009} U (Z3 X Z3) as follows. Include the K, {002, 02, 12,25}.
Form three G2’775S as {{io, (Z + 1)1}, {ig, (Z + 2)1}, {io, (Z + 1)2}, {io, (Z + 2)2}, {(l + 1)1, (Z +
21 b {0+ D)1, (0 4+ 2)2},{(¢ + 2)1, (¢ + 1)2}} for i € {0,1,2}. Then include three G5 75s as
{{o01,i0}, {001,141}, {001, 02}, {i0, i1}, {0, 92}, {i1, 12}, {002,41}} for i € {0,1,2}. Include one
last G3,7’5: {{001, OOQ}, {OOQ, 00}, {OOQ, 10}, {OOQ, 20}, {00, 10}, {00, 20}, {10, 20}} 0

Lemma 6.3 A(7,17) < L(7,17) + 1 = 94.

Proof: Start with an S(2,4,16) on Z;5 U {oo} with blocks {i,i+ 1,7+ 3,i+ 7} for i € Z;5 and
{o0,1,i 4+ 5,1+ 10} for i € {0,1,2,3,4}. We adjoin a new point o and modify six of the blocks
in the first orbit as follows:

Block Remove Add
{5,6,8,12} {8,12}  {a,5},{a,8}
{7,8,10,14}  {8,14} {a,7},{a, 10}
{0,8,9,11} {0,8} {a,0},{c,9}

{3,11,12,14} {12,14} {«,3} {a, 12}
{0,4,12,13}  {0,12} {a,4},{a, 13}
{0,2,6,14} {0,14}  {«,2}, {c, 14}

Now add the K, on {0,8,12,14}. Then delete the K, on {oc0,1,6,11}; on {«, 00,1,6,11}, place
a K3 and a Gy 7 5. The result has 14 Ks, one K3, and seven graphs in {Gy75}. 0O

Lemma 6.4 Whenn =2 (mod 6) andn > 14, A(T,n) < 2(3) + 2 =2()) + & + 2.

Proof: Write h = 2. When 2 = 1 (mod 3) and h > 7, a 4-GDD of type 2" exists by Theorem

3.9. It has h groups and @ blocks. For each group, choose a distinct block containing one
point of the group (this is an easy exercise using systems of distinct representatives). Then adjoin

the pair of each group to its corresponding block to obtain a G's 7 5. 0

Lemma 6.5 Whenn =5 (mod 6) and n > 23, A(7,n) < 2(}) + 22 + L.
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Proof: Write h = 2. When h = 0 (mod 3) and h > 9, a 4-GDD of type 2"5" exists by
Theorem 3.9. For each group of size 2, choose a distinct block containing one point of the group
and adjoin the pair of each group to its corresponding block to obtain a (i3 7 5. Then fill the group

of size 5 using a solution from Lemma 6.1. 0O
In order to treat larger cases, we now develop a recursion.

Lemma 6.6 There exists a decomposition of Ko into nine partial parallel classes of Kss, and six
Gl 7.58.

Proof: We present a solution on {0, 1, ...,20} with rows as partial parallel classes:

0213 11215 91417 31020 4519 71116 6818
01820 1216 111719 31213 478 6910 51415
0111 131718 3916 41214 71019 256
035 1817 41316 7920 61115 21014
0814 1520 2317 41015 61319 111218
0915 11314 31819 4620 2712 5816
01016 1919 121720 3815 2411 5718
01219 11018 151617 6714 289 111320
51017 31114 4918 71315 61216 81920

The remaining edges partition into six Gy 758 {{7¢ + j, 7i +j + 2},{7i + 7,70 + 4}, {7i +
BT+ 53T+ 5,714+ 6{Ti+j+2,7i+4}{Ti+75+2,7+5}{Ti+j+2,7i+6}} for
j€{0,1} and i € {0,1,2}. 0O

We denote by X (n) the excess over the lower bound, i.e. X (n) = A(7,n) — L(7,n).

Theorem 6.7 Let (V, G, B) be a resolvable group-divisible design of type 7", in which the blocks
of B are partitioned into parallel classes P, ..., Ps, and for 1 < i < s every block of P; has size
k;. Suppose that, for 1 < i < s, a 4-GDD of type 3*io} exists, and that Y | 0; > 0. Then

A7, 2In+8+ Y o) SLT2n+8+ Y o) + X8+ Y _0y).

=1 =1 =1

Proof: Suppose without loss of generality that o; > 0. Give weight three to each point of the
GDD (V, G, B). For 2 < i < s, adjoin ¢; new infinite points, and place a 4-GDD of type 3%} on
the inflation of each block of P; together with these infinite points. Then proceed similarly for P,
but adding only o; — 1 infinite points; in the 4-GDD, delete one point in the group of size o to
form a {3,4}-GDD of type 3" (o; — 1)! in which the blocks of size three form a (frame) parallel
class on the 3k; points. On each inflation of a group form a copy of the 21-point design from
Lemma 6.6. The nine partial parallel classes of blocks of size 3 formed can be completed to nine
parallel classes on the 217 points using the triples from the {3, 4}-GDDs. Finally add nine further
infinite points and extend each of the nine parallel classes to /s using these infinite points. The
resulting design has a hole on the 8 + > _7_, 0; infinite points added in total, which can be filled
with a solution of cost A(7,8 +>"7 | ;). O
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Corollary 6.8 7. X(92) < X(29).
2. Forn € {11,14,17,20,23,26,29}, X(84 +n) < X(n).
3. Forn € {14,20, 26,32, 38, 44,50}, X(105 + n) < X (n).
4. For29 <n <T7landn =2 (mod 3), X(147 +n) < X(n).

Proof: Apply Theorem 6.7 using an RTD(k, 7) with &k = 3,4,5,7 as a resolvable GDD of type
7" withs = 7and ky = - = ky = k. -

Corollary 6.9 1. For29 <n <80andn =2 (mod 3), X(168 + n) < X(n).
2. For32<n <92andn =2 (mod 6), X(189 +n) < X(n).
3. For41 <n <107andn =5 (mod 6), X (231 +n) < X(n).
4. For44 <n <134 andn =2 (mod 6), X (273 4+ n) < X(n).

5. For53 <n <164 andn =2 (mod 3), X (336 +n) < X(n).

Proof: Apply Theorem 6.7 using an RTD(7,n) with n = 8,9, 11,13, 16 as a resolvable GDD of
type 7" withs =nand ky =--- =k, =T7and k, = n. -

Theorem 6.10 Forxz > 4,0 <m < 42(x—1), m =0 (mod 3), andr € {11,14,17,20, 23, 26,29},
AT, 84z +m+r) < L(7,84x+m+7r) + X(m + 7).
Equivalently, X (84x +m +r) < X(m +r).

Proof: Form a 4-GDD of type 84*m! from Theorem 3.14. Adjoin 7 infinite points, and place a
solution on each group of size 84 together with the r points, leaving a hole on the  points (from
Lemma 6.8(2)). On the m + r points, place a solution with excess X (m + r). 0

Theorem 6.11 For m = 2 (mod 3) and 2 < m < 83, L(7,84x + m) < A(7,84x + m) <
L(7,84x + m) + X (84x + m), where X (84x + m) is given in Table 1 (using the final bold
entry for X (84x 4+ m) in the row for m when the table does not provide a value). In particular,
A(7,84z +m) < L(7,84x + m) + 4 when 84x + m > 1094.

Proof: Apply Lemmas 6.1, 6.2, and 6.3 for x = 0 and m € {5,8,11, 17}; then apply Lemmas

6.4 and 6.5 to provide an upper bound on X (84x + m) in general. Now apply Corollary 6.8 and
6.9 to improve these upper bounds. Finally apply Theorem 6.10. 0O

14



11 12 13
6

10
2 6 6 6 6 6 6

4 6 6 6 6 6 4

18 24 2

4

4 5 6 7 8 9

3

18
4

12
12
2

6

2
0 0

12
2

18

2

6

14

2 20 0

8

2 20 0
2

2 0

8

2 22 4 2

4

10

2 22 4 2

4
2
4

10

10

0

4

4 4 4 4 4 4 4
6 6 6 6 6 4
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0
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4
4
5
4
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5

5

555 55

6 6 6 6 6 4

4

12

11

1410 O

2000 O
2312 2
26
29

32

3512 0
3812
41

44 | 2
47

50

5314 2

56 | 4

5914 2

62 |4

654 2
68 | 4
71

74 | 4

77| 6

80 | 5

8316

Table 1: Least Excesses for 84z +m
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7 Conclusions

Grooming with ratio 7 corresponds to the smallest ratio C' for which optimal groomings do not
consist primarily of C-edge graphs. Consequently, optimal grooming focusses on packings with
K,s in this case. Despite this, the structures of the edges not appearing in K4s appear to exhibit
patterns that repeat modulo 12, 24, and 84 when n = 1,0,2 (mod 3), respectively. In the lat-
ter case techniques for constructing optimal groomings in all cases would necessitate the direct
construction of many ‘small’ groomings. Therefore in this paper, we have instead found near-
optimal groomings in which the construction deviates from the lower bound by a fixed constant
independent of n. Whenn = 0,1 (mod 3), much more complete characterizations are given. Our
conjecture is that, with few small exceptions, the lower bound proved here provides the correct
cost of an optimal grooming.
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