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Space-Time Precoder-Equalizer System

Design for Correlated FIR-MIMO Channel
Principal Investigator: Carrson C. Fung

Project Number: NSC-96-2221-E-009-053

Effective Date: August 1, 2007 to October 31, 2008

Abstract

In this project, a SOS-based precoder-assisted blind equalizer for MIMO-OFDM system which can equalize

correlated FIR-MIMO channel at the receiver is proposed. The proposed scheme uses a set of orthogonal precoders

at the transmitter such that the transmitted signal can be colored temporally thereby satisfying the identifiability

condition previously proposed by Hua and Tugnait. The scheme is shown to outperform previously proposed

schemes in terms of BER and computational complexity. Simulation results have shown that the BER performance

is close to that of a least-squares zero-forcing equalizer with perfect channel knowledge.
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I. INTRODUCTION

With the insatiable need to transmit more data at any time and anywhere, next generation wireless com-

munication systems, such as IEEE 802.11n and 802.16m, are required to support higher data rate than their

predecessors, while the mobile terminals are undergoing faster mobility. It is envisioned that MIMO-OFDM

will be used for these systems in order to increase link reliability and capacity. However, large transmission

overhead in the form preamble, signal pilot and guard interval severely hamper the performance of such systems.

This has made blind channel estimation and equalization techniques for MIMO-OFDM systems an attractive

alternative.

Traditionally, blind channel estimation and equalization has been based on higher-order statistics (HOS) [1],

[2]. However, much of the research effort has since shifted toward using second-order statistics (SOS) after

the seminal work by [3] and [4] since SOS based techniques can also estimate and equalize FIR channels at

much lower latency than its HOS counterparts. This has led to the work by [5] which exploited the subspace

method to estimate FIR-SIMO channels. Good performance in terms of mean squared error (MSE) can be

achieved in high SNR condition. However, its performance degrades at a fast rate in low SNR condition, such

as 0 − 10 dB. An FIR-MIMO extension of the subspace method was proposed in [6], [7] which suffers from

the same problem as its SIMO counterpart in low SNR condition. The subspace channel estimation method

requires the channel transfer function matrix, H(z), to be irreducible and column-reduced [13], which limited

the application of SOS based methods to a narrow class of communication channels.

Recently, [8] has shown that a weaker condition for the identifiability of H(z) exists, where H(z) can be

identified up to scaling and permutation ambiguity if H(z) is irreducible and the power spectral density matrix

of the channel input signal is a diagonal matrix with distinct diagonal functions. [9] has proposed an algorithm

for estimating H(z) under this weaker condition, but an direct equalization algorithm was never discussed.

[10] has proposed a SOS based blind equalization algorithm which implicitly uses the identifiability conditions

stated in [8] for flat fading channels, where the number of transmit antennas, Nt, has to be equal to the number

of receive antennas, Nr. [11] also exploited this condition by designing a novel SOS based channel estimation

algorithm to estimate MIMO channels for OFDM based systems. The algorithm uses cyclic power spectral

density of the received signal to decouple the MIMO channels into parallel SISO channels for estimation. The

technique requires the use of a precoder to inject cyclostationarity into the input bitstream. Although not stated

in [11], but the precoder actually colors the signal such that MIMO channel equalization using SOS is possible.

[12] has extended the SOS algorithm in [10] such that any FIR-MIMO channel H(z) can be equalized up to

a scaling, phase, and block delay ambiguity given that the identifiability conditions in [8] are satisfied. This

was accomplished by designing the blind FIR equalizer within the space-time precoder-equalizer system where

redundancy is injected into the transmitted bitstream to make FIR-MIMO channel equalization possible using

an FIR equalizer. In [12], the independently distributed input signal streams were colored using a set of low

complexity filters to satisfy the power spectral density condition stated in [8] such that the algorithm in [10]

can be extended to be applicable to ISI channels. However, the precoder that was proposed was not optimally

designed. As shown in the sequel, this not only impacts the equalization performance, but also increases the
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computational complexity at the receiver.

In this project, we proposed a new set of precoder to perform direct channel equalization for MIMO-OFDM

systems such that improved BER performance and lower receiver complexity can be achieved compared to that

of [12], even when the spatial correlation exists. In Section II, we will give a description of the system model,

followed by a review of the equalization algorithm in Section III-A. We will then propose a novel precoder

design in Section III-B. Simulation results are given in Section IV followed by the conclusion in Section ??.

Notation: Upper (lower) bold face letters indicate matrices (column vectors). Superscript H denotes Hermitian,

T denotes transposition. E[·] stands for expectation. diag(x) denotes a diagonal matrix with x on its main

diagonal; IN denotes an N × N identity matrix; 0M×N denotes an M × N all zero matrix.

II. SYSTEM MODEL

We consider a MIMO-OFDM system with Nt transmit antennas and Nr receive antennas. Let s
(i)
m,� denotes

the complex-valued data symbol transmitted on the mth tone in the �th OFDM symbol from the ith antenna

for i = 1, 2, . . . , Nt. Also, let K = M + v denote the overall OFDM symbol length, where M is the size of

the FFT and v is the length of the cyclic prefix. Then the transmitted signal ui[n] can be written as [11]

ui[n] =
∑

�

g[n − �K]
M−1∑
m=0

s
(i)
m,�e

j 2π
M m(n−�K)

where g[n] is a rectangular function rect[0,K−1][n] with

rect[T1,T2][n] =

⎧⎨
⎩ 1, n = T1, T1 + 1, . . . , T2

0, otherwise.

Then the received signal at the kth receive antenna can be written as

xk[n] =
Nt∑
i=1

[∑
�

hk,i[�]ui[n − �]

]
+ ηk[n] (1)

where ηk[n], for k = 1, 2, . . . , Nr, is the stationary additive white channel noise at the kth receive antenna and

hk,i[�] is the discrete-time impulse response of the channel. Defining

x[n]=[ x1[n] x2[n] · · · xNr [n] ]T ,

u[n]=[ u1[n] u2[n] · · · uNt [n] ]T ,

η[n]=[ η1[n] η2[n] · · · ηNr [n] ]T

as the receive signal vector, transmit signal vector and the channel noise vector, respectively, then (1) can be

written as

x[n] =
∑

�

H�u[n − �] + η[n] (2)

where [H�]k,i = hk,i[�] is the Nr × Nt channel matrix of order q, that is,

H(z) =
q∑

�=0

H�z
−�

is the channel transfer function matrix.

Assuming L OFDM symbols are transmitted. Defining the Sylvester matrix
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H �

⎡
⎢⎢⎢⎢⎢⎢⎣

H0 H1 · · · Hq 0 · · · · · · 0

0 H0 H1 · · · Hq 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 · · · · · · 0 H0 H1 · · · Hq

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and

x̌[n] �
[
xT [n] xT [n − 1] · · · xT [n − L + 1]

]T
,

ǔ[n] �
[
uT [n] uT [n − 1] · · · uT [n − L − q + 1]

]T
.

η̌[n] �
[
ηT [n] ηT [n − 1] · · · ηT [n − L + 1]

]T
.

as the received signal vector, transmitted signal vector and noise vector, respectively, then (2) can be written as

x̌[n] = Hǔ[n] + η̌[n].

III. SOS BASED PRECODER-ASSISTED BLIND EQUALIZER DESIGN

A. Methodology of Equalization

To satisfy the blind identification conditions in [8], the transmitted signal vector ǔ(n) are assumed to be

spatially uncorrelated but temporally correlated with distinct power. Without loss of generality, ǔ(n) can assume

to have unit variance and zero mean. Define the correlation matrix of ǔ[n] as Rǔǔ(τ) � E
[
ǔ[n]ǔH [n + τ ]

]
,

then Rǔǔ(0) = INtL. The autocorrelation matrix of ǔ(n) can be expressed as

Rǔǔ(τ) = E
[
ǔ[n]ǔH [n + τ ]

]
=

=

⎧⎨
⎩ INt(L+q), for τ = 0,

diag
(
ρ1(τ), . . . , ρNt(L+q)(τ)

)
, for τ �= 0,

where ρ1(τ) �= · · · �= ρNt(L+q)(τ) �= 0. We further assume that η̌[n] is white Gaussian distributed and is

mutually uncorrelated with ǔ[n]. Then the autocorrelation matrix of the channel output x̌(n) can be written as

Rx̌x̌(τ) =

⎧⎨
⎩ HRǔǔ(0)HH + σ2

η̌η̌INrL, for τ = 0,

HRǔǔ(τ)HH , for τ �= 0,
(3)

where σ2
η̌η̌ is the variance of the noise signal η̌[n]. Defining v̌[n] = Hǔ[n] as the channel output vector and

Rv̌v̌(τ) � E
[
v̌[n]v̌[n + τ ]H

]
.

Since Rǔǔ(0) = INt(L+q), therefore

Rv̌v̌(0) = HHH .

Let W be a whitening matrix that whitens v̌[n] such that

E
[
Wv̌[n]v̌H [n]WH

]
= INrL,

where

W = Σ− 1
2

v̌ QH
v̌ ,
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Fig. 1. Block diagram of equalization process with 2 receive antennas where JD denotes joint diagonalization.

with Σv̌ being the square root inverse of the eigenvalue matrix of Rv̌v̌(0), and Qv̌ being the eigenvector matrix

of Rv̌v̌(0). Then we can obtain

WRv̌v̌(0)WH=E
[
Wv̌[n]v̌H [n]WH

]
=WHHHWH

=INrL (4)

According to (4), the effective channel U = WH is a unitary matrix. Applying W to the received signal vector

x̌[n], we can obtain

ž[n]=Wx̌[n]

=W [Hǔ[n] + η̌[n]]

=Uǔ[n] + Wη̌[n] (5)

From (5), we see that U can be equalized by

U−1ž[n] = UH ž[n] = ǔ[n] + UHWη̌[n] (6)

From (6), the problem of equalization becomes finding the unitary equalization matrix of U. Defining the

correlation matrices for ž[n] and η̌[n] as E
[
ž[n]žH [n + τ ]

]
and E

[
η̌[n]η̌H [n + τ ]

]
, respectively. From (3),

E
[
η̌[n]η̌H [n + τ ]

]
= 0, for τ �= 0. Thus, the correlation matrix of ž[n] can be written as

Ržž(τ) = URǔǔ(τ)UH , for τ �= 0. (7)

Thus, the equalizer U can be obtained by diagonalizing Ržž(τ). According to [12], we can find U that

equalizes frequency-selective channels if the source signal has different spectral energy. In addition, the chance

of eigenvalue degeneracy can also be reduced by performing a joint diagonalization on a set of Ržž(τ) with

various τ �= 0, i.e.

UHRžž(τp)U = diag
(
ρ1(τp), ρ2(τp), . . . , ρNt(L+q)(τp)

)
,

for p = 0 ≤ t ≤ P (8)
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Fig. 2. MIMO-OFDM precoder-assisted blind equalizer system with Nt/Nr Tx/Rx antennas.

where τ0, τ1, . . . , τP are non-zero time lags. The overall joint diagonalization equalization process is illustrated

in Figure 1.

B. Precoder Design

If all the source data streams are uncorrelated, the required temporal correlation property can be easily

achieved by shaping the power spectral density of each data stream [8]. [12] proposed to use a set of low

complexity filters to color the source signal stream such that FIR blind equalization is possible at the receiver

to equalize FIR-MIMO channels. However, the proposed filters were chosen arbitrarily without regards on its

effects on BER performance. Moreover, no investigation was carried out about how the precoder can be used

to reduce computational complexity at the receiver while sustaining equalization performance. In this paper,

a new set of precoders are proposed that will allow us to select a subset of {Ržž(τp)} such that it not only

reduces the computational complexity at the receiver, but it also does not impact the equalization performance

compare to the case when the full set of autocorrelation matrices are used. As seen in Figure 2, the precoders

are applied in the frequency domain (prior to IFFT) to all Nt transmit antennas of a MIMO-OFDM system.

The set of coloring precoders are denoted as {P0(z),P1(z), . . . ,PNt−1(z)}, where

Pi(z) = diag (αi,0, αi,1, . . . , αi,M−1) for i = 1, 2, . . . , Nt.

αi,m is the multiplier coefficient of the mth path of IFFT for the ith transmit antenna as illustrated in Figure

2. A scaling matrix is then applied in the time domain (after the IFFT), which is given as

Si(z) = diag (βi,0, βi,1, . . . , βi,M−1) , for i = 1, 2, . . . , Nt,

where βi,n is a scaling factor for satisfying the condition of distinct power. At the receiver, the inverse

manipulation of the transmitters is used to decolor the colored signal. The proposed real-valued multiplier αi,m

is formed with two parts. The first part generates the orthogonality among different precoders, and the second

part introduces temporal correlation to the transmitted signal. Since the performance of the joint diagonalization

algorithm is based on spectral overlap of the source signals [10], this led to the use of orthogonal precoders.
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αi,m can be expressed as

αi,m = Oi(m)

[
1 −

P−1∑
p=0

Ci,τp cos
(

2πmτp

M

)]
(9)

where Oi(m) is a function having only two possible values +1 and −1. Oi(m) can be designed to generate

orthogonality among different precoders by being assigned different shape for different precoders. Ci,τp deter-

mines the magnitude of corresponding cosine term. Distinct values of Ci,τp must be used for various values

of n and p in order to satisfy the distinct power conditions in [8]. The number of cosine term can be decided

arbitrarily by choosing P . Furthermore, different τp is used for different cosine terms with τp = 1, 2, . . .. The

reason for using cosine is because we can completely control how many autocorrelation matrices in {Ržž(τp)}
we need in (8) for the joint diagonalization. This can be seen by considering the inverse Fourier transform of

cos
(

2πmτp

M

)
:

F−1

{
cos

(
2πmτp

M

)}
=

M−1∑
m=0

cos
(

2πmτp

M

)
e

j2πmn
M

=
1
2

[
M−1∑
m=0

e
j2πm(n+τp)

M +
M−1∑
m=0

e
j2πm(n−τp)

M

]

=
1
2

(δ[n + τp] + δ[n − τp]) (10)

Using (10), the time domain signal after IFFT can be written as

ǔ(n) ∗ {1 − Ci,τ0
2 (δ[n + τ0] + δ[n − τ0])}

= ǔ(n) − Ci,τ0
2 (ǔ[n + τ0] + ǔ[n − τ0])

(11)

where ∗ denotes convolution and P = 1. From (11), it is easy to see that temporal correlation of delay τ0

can be generated. Therefore, only Ržž(τ0) will have to be used in the joint diagonalization process at the

receiver. In fact, using the rest of the Ržž(τp), ∀p �= 0 will not improve the equalization performance. This

will be shown in the simulation results in the next section when we compare equalization performance of our

proposed algorithm using different τp. Besides varying the parameter τp, the parameter P can also be used

to improve performance of the equalizer. This can be achieved by increasing the value of P such that more

temporal correlation is added to the transmitted bitstream. However, as will be seen in Section IV, P cannot

be increased indefinitely because the precoder will introduce too much amplitude variation into the bitstream

which degrades the BER performance, even though a better estimation of U can be obtained.

IV. SIMULATION RESULTS

A MIMO-OFDM system is simulated to evaluate the performance of the proposed scheme. In all simulations,

Nt = 2, M = 64, and v = 16. The channels are randomly generated. Two channels were chosen to show the

efficacy of the proposed algorithm. The first one is a 3-tap channel with 4 received antennas, i.e. Nr = 4, with
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coefficients

H(z) =

2
666664

0.3487 0.7220

0.5121 0.5970

−0.3651 0.6136

0.6202 0.4880

3
777775

+

2
666664

−0.4650 0.6189

0.7682 −0.3980

−0.9129 0.3835

0.2481 0.7807

3
777775

z−1

+

2
666664

−0.8137 −0.3094

−0.3841 0.6965

0.1826 0.6903

0.7442 −0.3904

3
777775

z−2.

(12)

The second one is a 7-tap channel with 5 received antennas, i.e. Nr = 5, with coefficients

H(z) =

2
66666664

0.5671 −0.1796

−0.2803 0.2466

−0.4485 0.2949

−0.4709 0.2253

0.1899 0.4222

3
77777775

+

2
66666664

0.4962 0.2694

−0.4484 0.3288

0.1495 −0.2949

−0.4036 −0.1931

0.2279 0.3518

3
77777775

z−1

+

2
66666664

−0.1418 0.2694

−0.5045 −0.4110

0.4485 −0.5160

0.3363 0.4507

0.6078 −0.2814

3
77777775

z−2 +

2
66666664

−0.3544 −0.3592

0.3363 −0.5754

0.2242 −0.1474

−0.4709 0.1931

−0.3799 0.5629

3
77777775

z−3

+

2
66666664

0.3544 0.4490

0.3363 0.1644

−0.2242 −0.5160

0.1345 −0.5151

−0.5318 −0.2814

3
77777775

z−4 +

2
66666664

0.2836 −0.4490

−0.1962 −0.4932

−0.5232 0.3686

0.2018 −0.4507

0.3039 −0.4222

3
77777775

z−5

+

2
66666664

−0.2836 0.5388

0.4484 −0.2466

−0.4485 −0.3686

0.4709 0.4507

0.1519 0.2111

3
77777775

z−6.

(13)

The input data stream to the IFFT at the transmitter is uniformly distributed QPSK signal with zero mean

and unit variance. Except for the precoders in Figure 8, the precoder used in the simulations is of the form

αi,m = Oi(m)[1 − Ci,1 cos(2πm/64) − Ci,2 cos(4πm/64)], for i = 1 and 2. In other words, P = 2. Oi(m)

is chosen to make the inner product of the precoder spectrum between two transmit antennas equal to 0. This,

however, can easily be generalized to any number of transmit antennas. Ci,1 and Ci,2 are set to range from

0.025 to 0.25, and varies for different transmit antennas and different time indicies in order to distinctly color

the signal in time. For the simulation results below, for n = 0, C1,1 = 0.025, C1,2 = 0.25, C2,1 = 0.1, and

C2,2 = 0.175. For n = 1, C1,1 = 0.25, C1,2 = 0.1, C2,1 = 0.175, and C2,2 = 0.025. For n = 2, C1,1 = 0.1,

C1,2 = 0.175, C2,1 = 0.025, and C2,2 = 0.25. For n = 3, C1,1 = 0.175, C1,2 = 0.025, C2,1 = 0.25, and

C2,2 = 0.1. The sequence will then repeat for subsequent time index. This is done in order to satisfy the distinct

power condition. Since the distinct power condition has already been satisfied by varying Ci,τp , therefore, βi,n

can be assigned to have a value of 1 for all i and n.
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Fig. 3. Comparison of BER performance between system without coloring and with coloring for 3-tap channel.

Figure 3 compares the BER performance of the proposed precoder with the joint diagonalization based

equalizer with a similar system that uses the joint diagonalization based equalizer but without any precoder. A

least-squares (LS) zero-forcing equalizer with perfect channel state information (CSI) is used as benchmark.

For the precoder-equalizer system, the equalizer uses two correlation matrices, Ržž(τ1) and Ržž(τ2), for joint

diagonalization. The 3-tap channel in (12) was used. Since the input signal s
(i)
m,� is independently distributed,

the result reaffirms the idea that if the diagonal entries of the input signal power spectral density matrix are not

distinct (no precoder is used), then it is not possible to identify and equalize FIR-MIMO channels using SOS

of the received signal.

Figure 4 shows the BER results of the proposed precoder-equalizer system as the number of OFDM symbols

varies for different SNR values. Similar to previous simulations, Ržž(τ1) and Ržž(τ2) are used for joint

diagonalization. As the figure shows, the BER of the proposed precoder-equalizer system approaches that of

the LS equalizer when the number of symbols increases. This is because as more symbols are used, more

accurate estimation of the correlation matrix can be obtained. Furthermore, at SNR = 18 dB, the proposed

algorithm is able to equalize the channel using only 350 symbols with a BER of about 10−3. Compare to

higher-order statistics techniques such as [1], when the number of symbols needed for equalization is in the

order of 103, only a small amount of latency is incurred in the proposed technique in order to equalize FIR-

MIMO channels.

Figures 5 and 6 compare the BER performance of the proposed precoder-equalizer system with the precoder-

equalizer scheme in [12]. Results using a LS equalizer and an identical system that uses no equalization are also

shown as benchmarks. As seen in the figures, the performance gap between the LS equalizer and the proposed

one remains virtually unchanged as the channel spectrum changes. This shows that the performance of the

proposed scheme is insensitive to various channel responses. This can be explained by observing the equation

of the precoder in (9). Since the precoder is composed of cosine functions, the spectrum of the precoder will

fluctuate periodically in the frequency domain. Since the amplitude of the cosine, Ci,τp , is set to a small value,

even if the minimum value of the cosine term coincides with the spectral null of the channel, this will not

greatly impact the BER. Compared with the precoders in [12], the proposed precoders perform better by at least
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Fig. 4. BER vs. different number of received OFDM symbols for 3-tap channel at SNR = 10, 14, 18 dB.
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Fig. 5. Comparison of BER vs. SNR with different algorithms for 3-tap channel.

1 dB in all of the simulated channel conditions. Furthermore, using the proposed precoder, the performance of

the 3-tap channel outperforms that of the 7-tap because there are more coefficients in the 7-tap channel which

need to be identified for equalization.

Figure 7 shows the BER result when different lags are chosen for joint diagonalization at the receiver.

As explained in Section III, if τ1 = 1 and τ2 = 2, then Ržž(1) and Ržž(2) become the most important

correlation matrices for joint diagonalization. This is reaffirmed by the simulation results in Figure 7 when

the best BER performance is attained when only Ržž(1) and Ržž(2) are used for equalization. When other

correlation matrices are used, the BER curves saturate to a noise floor. Since the choice for τp is chosen at the

transmitter and it determines exactly which, as well as how many, correlation matrices should be used at the

receiver for equalization, the transmitter has complete control on the computational complexity of the equalizer.

Table I compares the computational complexity and latency of the proposed algorithm with those of [11]

and [12]. As indicated in the table, the latency for the proposed algorithm can be controlled by the proposed

precoder while the latency for [11] and [12] are fixed. In addition, the computational complexity of the proposed
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Fig. 6. Comparison of BER vs. SNR with different algorithms for 7-tap channel.
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Fig. 7. BER vs. SNR with different lag for 3-tap channel.

algorithm is a lot lower than that of [11] and [12] because N � M .

As discussed earlier, the parameter P cannot be increased indefinitely in order to enhance equalization

performance at the expense of increase computational complexity. Likewise, P also cannot be made too small

since it will adversely affect the equalization performance. Figure 8 shows the result of the proposed algorithm

when P is allowed to vary from 1 to 5. As seen from the figure, the BER is smallest when P = 2. Therefore,

P cannot be made arbitrary small in order to minimize computational complexity at the receiver, but it also

cannot be made arbitrarily big since it will adversely impact the BER performance since this will induce too

much amplitude variation into the transmitted bitstream.

V. CONCLUSION

A SOS-based precoder-assisted blind equalizer system has been proposed to equalize correlated FIR-MIMO

channels for MIMO-OFDM system. Simulation results have shown that using the proposed precoder cannot

only outperform the precoder proposed in [12] in terms of BER, but also allows the transmitter to dictate which,

and how many, correlation matrices are to be used for equalization at the receiver. This decreases the amount
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TABLE I

PERFORMANCE COMPARISON

Performance Indices Proposed Precoder-Blind System Periodic Precoder System [11] Using Precoder in [12]

SNR at BER = 10−4 for 3-tap channel 19.5 dB 19 dB 21 dB

Number of symbols for SOS at SNR=18 dB 350 500 350

Latency from correlation matrix Controlled by precoders 3M + 2v + q − 3 10 ∼ 20

Computational Complexity O(N3)∗ O(M3) O(N5)

*N denotes the size of the correlation matrices
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Fig. 8. BER vs. SNR for different P for 3-tap channel.

of computational complexity at the receiver compared to the scheme in [12] since the number of correlation

matrices needed for joint diagonalization can be predetermined before transmission.

In the future, a semi-blind equalization scheme can be extended from this work. High spectrum efficiency

and channel capacity can be achieved by blind techniques. However, the BER loss compared with non-blind

algorithms is an obstacle to practical application. To mitigate the BER, a short training sequence can be

introduced to constitute a semi-blind system, which has better BER performance than blind systems while its

channel capacity is still higher than that of non-blind systems. Moreover, SBTC or orthogonal STBC can be

taken into account since these coding algorithms are often used to increase transmit diversity for a reliable

link of MIMO systems. It is also possible to combine coloring precoders with precoders of multi-user MIMO

systems.
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