
rise and fall time (2‘ of Fig. 2) of 200ns, while the total period is 
80011s. The two lower curves refer to reversible operation, with the 
PMOS substrate connected to V,, or to powericlock. In this case, 
the energy consumption per cycle is only slightly dependent on the 
connection of the PMOS substrate. For non-reversible operation, 
instead, the reduction of the recovery diode voltage provided by 
such connection (Fig. 3) gives a substantial improvement over the 
use of a diode connected NMOS (Fig. 3). 
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Fig. 3 Energy dissipation of single bufferlinverter aguinst additional 
~ o d  Clod 
0 reversible, substrate to VDD 
+ reversible, substrate to clock 
0 non-reversible, substrate to VDD 
X non-reversible, substrate to clock 

From the data of Fig. 3, the parameters of eqns. 1 and 3 can be 
fitted, obtaining for ye, 2.3 x 106pJi(fF)2, for Km* 4.2 x 106pJ/ 
(fF)2. Rough theoretical estimations based on eqn. 2 give 1.4 x 
10hpJ/(fF)2 and 2.3 x 106pJ/(fF>2, respectively. 

Krr strongly depends on the recovery method and varies from 
1.7Vz, with a diode connected MOS transistor (Fig. 3) to 0.55V2 
with the substrate diode (Fig. 3). These values are close to the the- 
oretical value of l/zV,Z. EpD is, in every configuration, <2fJ. 
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Adaptive lattice-form IIR blind equaliser 

Fang-Biau Ueng 

Indexing terms: Eqwlisers, IIR filters 

The author describes incorporation of the lattice-form structure in 
the blind infinite impulse response (IIR) algorithm, based on a 
cost function whch is a modified version of that proposed by 
Sbalvi and Weinstein. The proposed IIR blind equaliser has the 
advantage of lower complexity; simulation results also inhcate 
that the proposed IIR blind equaliser has a faster convergence 
rate and a smaller mean square error (MSE). 

Introduction: Conventional equalisation algorithms generally 
require an initial training period during which a known data 
sequence is transmitted, so that the receiver can use this a priori 
information to calibrate the tap weights of the equaliser. However, 
there are circumstances under which transmitting a training 
sequence is impossible or impractical, and thus blind equalisation, 
i.e. equalisation without training sequences, is required. Many 
finite-impulse-response (FIR)-type blind algorithms have been 
used to deal with such a problem. 

The application of IIR adaptive filtering has recently attracted 
the interest of many researchers. This is due to its potential advan- 
tage of achieving better performance with a lower computational 
load, when compared with the FIR filtering technique. Most 
adaptive IIR algorithms have been derived for a direct-form 
implementation of the filter coefficients. Some disadvantages of 
the direct-form, such as the finite-precision effect and the complex- 
ity of stability monitoring, have led to the development of algo- 
rithms for lattice structures. The primary advantage of the lattice 
structure is its simple stability monitoring. Another advantage is 
that it does not have any saddle points. In this Letter, the lattice- 
form structure is incorporated in the blind IIR algorithm, based 
on a cost function which is a modified version of that proposed in 
111. We first discuss a cost function in a blind situation and then 
apply it to the above IIR structure. Some simulations are pro- 
posed to demonstrate the superiority of the IIR structure to the 
FIR structure. 

Luttice-form IIR blind equaliser: Let the input sequence a(n) con- 
sist of zero-mean independently and identically distributed (iid) 
real random variables, with an arbitrary discrete probability distri- 
bution. Let z(n) be the equaliser output and S Er [... sq so s, ...I be 
the combined channel-equaliser impulse response. To achieve zero 
intersymbol interference (ISI), z(n) must be identical to the input 
a@) up to a constant delay. That is, S must be the following form: 

Since 
0 )  (1) s = (0  ...I... 

with equality holds if and only if is,} has at most one nonzero 
component, perfect equalisation implies that Z,,ilsfj4 = 1 if and only 
if C,lstiz = 1. We can minimise the following cost function to 
achieve the above result: 

r 
( 3 )  

L L  1 
subject to C,lsf14 = 1. Define a cost function 

We then have 

(5) 

If we choose a function Ax) such that x + J(x) monotonically 
decreases in 0 < x <: 1 and monotonically increases in x > 1, then 
the minimisation of J, will establish that S has at most one 
nonzero component, whose magnitude equals 1, and has a unique 
minimum point. Letfix) = xz - 3x; we then have the following 
cost function: 

J c =  ( p 2 1 +  ( ~ i . + 3 ( p 4 )  (6) 

By applying the two equations derived by Shalvi and Weinstein [ 1 J 

C4[z(n)] = C4[a(n)] 1siI4 ( 8 )  
1 

where 4.1 denotes the expectation operator, and the fourth-order 
cumulant CJv] defined by 

we obtain the following cost function: 
(9) C ~ [ U ]  = E[w4] - 3E2[v2] 
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prises N+1 sections, each of which is characterised by two identi- 
cal reflection coefficients G,, 0 i p i N. The overall output z(n) is 
weighted sum of the backward residuals as follows: 

N 

4.) = c qi(n)Kt(n) (11) 
Z=O 

where {qi(n)} and { y ( n ) }  are the backward residuals and the feed- 
forward coefficients, respectively. The IIR lattice fdter can also be 
described by the following section inputJoutput equations: 

um(n)  = 4m-l(n - 1) +Gm(n)fm-l(n) 

fm-i(n) = f m ( n )  - G,(n)q,-i(n - 1) 

(12) 

(13) 
These equations require that&@) = qo(n) and the input is given by 
fN(n) = y(n), where y(n) is the fiter input. Define 

O ( n )  = [G(n) K(n)]* 
zz [Gl(n) 1 . .  G N ( ~ )  Ko(n) ' . '  K N ( n ) ] *  (14) 

Q(n) = [qo(n) ' . .  4jv(n)lT (15) 

Q(n) = [ ~ ( n ) K ( n )  Q(n)lT (16 )  
where y(n) is a matrix composed of the derivatives of Q(n) with 
respect to G(n). Applying the cost function Jc, we then obtain the 
lattice-form IIR blind algorithm described as 

O ( n )  = O ( n  - 1) - p[(4?1 + 3 6 7 3 ) E [ z 2 ( n ) ]  

- 2 4 y 2 ~ [ z z ( n ) ~  [ ~ [ ~ 4 ( ~ ) 1 -  3 ~ 2 [ ~ 2 ( ~ ) 1 ] ~ ( ~ )  

+ [872(E[z4(n)] - 3E2[z2(n)l) - 12%]z3(n)] *(n) 
( 1 7 )  

rz.j(n) = Y ~ , ~ - I ( R - - )  +G,(n)B,,,-l(n)+bijf,-l(n) (18) 
where 

y,(n) is the ijth component of $n), 6, is the Kronecker delta func- 
tion and 

@2,3--I (n) = 4, - G, (n)Y,,j-l (n - 1) - b J - 1  (n ~ 1) 
(19) 

These expressions require that O,,(n) = y,&) and 0,&2) = 0. 

- 2  
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Fig. 1 MSE performance of proposed lattice-form IIR blind equaliser 
and its FIR counterpart 

(i) FIR 
(ii) lattice-form IIR 

Simulation results: In this Section we present some Monte-Carlo 
simulations of the proposed blind algorithms. Binary PSK data 
are transmitted. The channel defined below is used in the simula- 
tions: 
channel : y(n) = a(n) + 0.9a(n - 1) 
The step size p is chosen to be 5 x 1W, the length N of the IIR 
equaliser is 6. The number of taps M for the FIR equaliser under 

comparison is 20. Fig. 1 shows the learning curves for the lattice- 
form IIR equaliser and its FIR version equaliser, respectively, for 
binary PSK data in the channel. These curves indicated that the 
proposed IIR blind algorithm not only has a faster convergence 
speed, but also yields a smaller steady state MSE than its FIR 
counterpart. 
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EBTC: An econo 
the threshold of 

Ching-Yung Yang and Ja-Chen Lin 

Indexing terms: Data compression, Image processing, Image coding 

An economical method for obtaining a nearly-optimal threshold 
for the block truncation coding (BTC) image compression 
algorithm is presented. Simulation results show that the PSNR 
performance of the proposed economic BTC (EBTC) method is 
very close to that of the optimised BTC (OBTC) algorithm, but 
EBTC only takes about half the computation time required by the 
OBTC algorithm. 

Introduction: Block truncation coding (BTC) [1, 21 is a simple and 
fast compression technique for digitised images. To reduce the 
mean square error (MSE) further, Kamel et al. [3] presented an 
algorithm which used a (partially) optimal threshold to quantise 
the block. However, as was pointed out in [4], the MSE generated 
by the method of Kamel et al. did not obtain a minimuin value 
because the quantised error was neglected. Chen and Liu [4] sug- 
gested the optimised BTC (OBTC) algorithm to minimise the 
MSE, using a new threshold value searching policy. The PSNR 
performance of the OBTC algorithm is slightly better than that of 
[3],  and the computation speed is also faster than that of [3],  
although the computation cost of [4] is still a heavy burden. In this 
Letter we develop an economical BTC (EBTC) algorithm whose 
PSNR is high (MSE is minimised) but the computation time is 
reduced significantly. Experiments showed that there is an effec- 
tive tradeoff between the PSNR and computation time. We note 
that the nearly-optimal threshold is obtained by only searching a 
small portion of the input data for each block. 

EBTC algovithm: Partition the image into blocks of size n x n. For 
each block, let G = {g& = 1, 2, ..., 1G1) be the IG/ = n2 given grey 
values to be split into two classes H = {gr 2 Q} and L = {gz < Q} 
where (2 is a threshold value to be determined. The MSE of the 
block is defined by 

M S E  = (gz - h)' + (gz - r)2 (1) 
g 8 E H  g% EL 

where iT and Tare the average grey values of N and L, respectively. 
We try to obtain a Q for which the MSE is small. The procedure 
is as follows: The centroid 0 of G is evaluated by 0 = (C,LGjg,)/lGl. 
The radius weighted mean [5] R of G is then evaluated by R = 
(ZtiG)r,gJLZJG)rr, with 7, = Igi-gl for all i. If 0 equals R, then the 
value of R is assigned directly to the final threshold Q (that is, the 
threshold is obtained quickly without any searching operation). 
Otherwise, the data set is divided into two (temporary) subsets, 
say G, and G2, by using the (temporary) threshold R. Let Gk E 
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