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Abstract

We present a novel algorithm for computing the ground-state and excited-state solutions of M-coupled nonlinear
Schrödinger equations (MCNLS). First we transform the MCNLS to the stationary state ones by using separation of vari-
ables. The energy level of a quantum particle governed by the Schrödinger eigenvalue problem (SEP) is used as an initial
guess to computing their counterpart of a nonlinear Schrödinger equation (NLS). We discretize the system via centered
difference approximations. A predictor–corrector continuation method is exploited as an iterative method to trace solution
curves and surfaces of the MCNLS, where the chemical potentials are treated as continuation parameters. The wave func-
tions can be easily obtained whenever the solution manifolds are numerically traced. The proposed algorithm has the
advantage that it is unnecessary to discretize or integrate the partial derivatives of wave functions. Moreover, the wave
functions can be computed for any time scale. Numerical results on the ground-state and excited-state solutions are
reported, where the physical properties of the system such as isotropic and nonisotropic trapping potentials, mass conser-
vation constraints, and strong and weak repulsive interactions are considered in our numerical experiments.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we are concerned with wave functions of M-coupled nonlinear Schrödinger equations
(MCNLS), also known as the Gross–Pitaevskii equations (GPE) [35]
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i
o

ot
Uj ¼ �DUj þ V jðxÞUj þ ljjUjj2Uj þ

X
i6¼j

bijjUij2Uj for x 2 R2; t > 0;

Uj ¼ Ujðx; tÞ 2 C; j ¼ 1; . . . ;M ;

Ujðx; tÞ ! 0 as jxj ! þ1; t > 0:

ð1Þ
Here the solutions Uj represent the jth component of the beam in Kerr-like photorefractive media [6],

V jðxÞ ¼ 1
2
ðcj;1x2

1 þ cj;2x2
2Þ is the trapping potential with 0 6 cj,1 6 cj,2, which is isotropic if cj,1 = cj,2, otherwise

it is called nonisotropic. The coefficients lj > 0 are for self-defocusing in the jth component of the beam,
the coupling constant bij is the interaction between the ith and the jth components of the beam. The interaction
of any two components is attractive if bij < 0, and repulsive if bij > 0. Eq. (1) also describes a physical model in
which M-species Bose–Einstein condensates (BEC) come from ultra-cold dilute bosonic atoms in a magneti-
cally trapped gas. Experimental reports concerning the BEC can be found, e.g., in [8,9,17,26]. Specifically, Hall
et al. [26] reported the first experimental results concerning the dynamics of a two-component system of BEC
in the different spin states of 87Rb. For simplicity we denote a single nonlinear Schrödinger equation (NLS) by
choosing M = 1 in Eq. (1).

Eq. (1) has been studied extensively for many years because of their importance in many physical and math-
ematical problems; see e.g. [5]. Research articles concerning numerical solutions of Eq. (1) can be found, e.g.,
in [3,11,12,15,32–34,36]. For instance, Muruganandam and Adhikari [34] presented pseudospectral and finite
difference methods for the numerical solution of the BEC in three dimensions. Bao and Tang [15] studied the
ground-state solution of the BEC by directly minimizing the energy functional. To find the time-dependent
solutions of Eq. (1), in general one has to discretize the partial derivatives o

otUj, e.g., using the Crank–Nicolson
finite difference (CNFD) scheme [2]. Bao et al. [13,14] developed time-splitting spectral approximations for the
numerical solutions of Eq. (1), where the Fourier spectral method is used to discretize the Laplacian, and o

otUj

are integrated exactly. Recent studies for the numerical solution of the GPE can be found in [23,38,40]. Spe-
cifically, Chin and Krotscheck [23] described a fourth-order algorithm for solving the imaginary time GPE in a
rotation anisotropic trap. Wang [40] studied the split-step finite difference method for the numerical solution
of the NLS.

The purpose of this paper is twofold. First, we wish to indicate that the numerical continuation methods
described in [18,20] can be exploited to compute wave functions of Eq. (1). More precisely, let
Ujðx; tÞ ¼ e�ikjtujðxÞ; j ¼ 1; . . . ;M ; ð2Þ

where kj is the chemical potential, and uj(x) is a real function independent of time. Then Eq. (1) is transformed
into M steady-state coupled NLS of the following form:
� Duj � kjuj þ V jðxÞuj þ lju
3
j þ

X
i 6¼j

biju
2
i uj ¼ 0 in R2;

uj > 0 in R2; j ¼ 1; . . . ;M ;

ujðxÞ ! 0 as jxj ! þ1:

ð3Þ
By the Hartree–Fock theory for BEC, we rewrite Eq. (3) as
� Duj � kjuj þ V jðxÞuj þ lju
3
j þ

X
i 6¼j

biju
2
i uj ¼ 0 in X; j ¼ 1; . . . ;M ;

u1 ¼ u2 ¼ � � � ¼ uM ¼ 0 on oX:
ð4Þ
To be consistent with the physical meaning of Eq. (1), we assume that X is the unit disk in R2, see e.g. [27]. Eq.
(4) is a nonlinear system of M equations of the following form:
F jðu1; . . . ; uM ; kj; lj; b1j; . . . ; bj�1;j; bjþ1;j; . . . ; bMjÞ ¼ 0; j ¼ 1; . . . ;M ; ð5Þ
where Fj: B1 · RM+1! B2 and F ð�Þ ¼ ðF 1ð�Þ; . . . ; F Mð�ÞÞ, and B1 and B2 are two Banach spaces. For simplicity
we keep the coefficients of the cubic terms fixed, and denote a point on the solution manifolds of Eq. (5) by
{(uj,kj)}j=1:M. For M = 3 Eq. (4) can be expressed as
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� Du1 � k1u1 þ V 1ðxÞu1 þ l1u3
1 þ b21u1u2

2 þ b31u1u2
3 ¼ 0;

� Du2 � k2u2 þ V 2ðxÞu2 þ l2u3
2 þ b12u2u2

1 þ b32u2u2
3 ¼ 0 in X;

� Du3 � k3u3 þ V 3ðxÞu3 þ l3u3
3 þ b13u3u2

1 þ b23u3u2
2 ¼ 0;

u1 ¼ u2 ¼ u3 ¼ 0 on oX:

ð6Þ
Next, we will show that the energy levels of a quantum particle governed by the Schrödinger eigenvalue prob-
lem (SEP)
� Du� kuþ V ðxÞu ¼ 0 in X;

u ¼ 0 on oX
ð7Þ
correspond to the eigenvalues of the SEP. Since the eigenvalues of the SEP are just bifurcation points of
the NLS without angular momentum term or damping term, it is clear that the energy level of the SEP can
used as an initial guess to computing their counterpart of the NLS, where the continuation method is re-
garded as an iterative scheme. In other words, we may study the ground-state or other excited-state solu-
tions of the MCNLS from the viewpoint of bifurcation. We remark here that Bao et al. [12–14] also used
the eigenpairs of the SEP without boundary conditions as initial guesses to computing wave functions of
the NLS.

We discretize Eq. (5) via centered difference approximations. To overcome the polar coordinate singularity
at the origin, we exploit a technique in [31]. One can use a predictor–corrector continuation method [7,10,29]
to trace solution curves and surfaces of Eq. (4), where one of the chemical potentials, say k1, is treated as the
first continuation parameter. The advantage of this choice is that k1 can be easily obtained if the solution curve
is numerically traced [18,20]. The other chemical potentials also can be used as the second continuation
parameter and so on. If a solution curve of Eq. (4) branching from the first bifurcation point, say, ð0; k0;1Þ
is numerically traced, we obtain discrete points fðuj; kjÞgj¼1:M on the solution curve, where k2; . . . ; kM are fixed
positive constants, and the continuation parameter k1 > k0,1 or k1 < k0,1 depending on the bifurcation is super-
critical or subcritical. Actually, one may choose k1 = k2 or k1 = k3 and so on.

Now the wave functions Ujðx; tÞ ¼ e�ikjtujðxÞ can be easily obtained for any t > 0 and for the above-men-
tioned chemical potentials. To obtain Uj(x, t) for any different values of kj; j ¼ 2; . . . ;M , we can treat, say
k2, as the second continuation parameter, and keep the remaining chemical potentials k3, . . . ,kM fixed. We
repeat the process mentioned above until the M � 1 two-dimensional surfaces with continuation parameters
ðk1; k2Þ; ðk1; k3Þ; . . . ; ðk1; kMÞ are numerically traced. The algorithm is parallel because we can trace each solu-
tion surface simultaneously. We remark here that using a numerical continuation method to trace solution
surfaces of parameter-dependent problems was described in [19]. It is inexpensive to implement the algorithm
because in practical computations we only need to know the informations of some specific points on the solu-
tion surfaces. Additionally, the proposed algorithm has the following advantages: (i) It is unnecessary to dis-
cretize or integrate the left hand side of Eq. (1), namely, o

ot Ujðx; tÞ. (ii) We can compute Uj(x, t) for any time
scale and for any points {(uj,kj)}j=1:M on the solution manifolds of F(Æ) = 0.

Two important physical invariants of the MCNLS are the mass conservation constraints of the wave func-
tions and the energy conservation. The former means that we need to impose the normalization conditions
Z

X
jujðxÞj2 dx ¼ 1; j ¼ 1; . . . ;M ð8Þ
on Eq. (4). From the viewpoint of computational cost, the normalization conditions are really a benefit to the
numerical continuation for solving Eq. (4). First of all, the goal of tracing solution curves becomes clear. To be
precise, we are only interested in at most M points {(uj,k1,j)}j=1:M with iuji2 = 1 on the solution curves, where
k1,j denote different values of the continuation parameter k1 with respect to iuj(x)i2 = 1. This is because for any
j 6¼ k 2 {1, . . . ,M}, the components uj and uk might satisfy Eq. (8) for different values of k1 if we treat k1 as the
continuation parameter. This fact may also explain the ‘‘phase separation’’ of the system. Next, since we are
only interested in at most M points on the solution curve, we can choose a stepsize in the continuation algo-
rithm as large as possible. Finally, we obtain the ground-state of the system by tracing solution curves branch-
ing from the first bifurcation point.
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This paper is organized as follows. In Section 2, we analyze the relationship among the energy levels of a
quantum particle, the associated eigenvalues of the SEP and the corresponding bifurcations of the NLS with-
out angular momentum or damping term. Moreover, we apply the Liapunov–Schmidt reduction [24] to show
that the simple bifurcation of a single NLS is pitchfork. The pitchfork bifurcation can be supercritical or sub-
critical, depending on the coefficient of the cubic term we choose. In Section 3, we discuss the centered differ-
ence approximations for two-coupled NLS. A parallel two-grid centered difference discretization scheme with
two-loop continuation algorithm is described to computing steady states and wave functions of the MCNLS.
Our numerical results are reported in Section 5. The test problems include a single, two- and three-coupled
NLS, where the physical properties of the system such as mass conservation constraints, strong and weak
repulsive interactions, and isotropic and nonisotropic trapping potentials are imposed. Finally, some conclud-
ing remarks are given in Section 6.
2. Energy level, eigenvalue and bifurcation

We will show that the energy levels of a quantum particle governed by the SEP correspond to its eigen-
values. On the other hand, the eigenvalues of the SEP are bifurcation points of the NLS on the trivial solution
curve fð0; kÞjk 2 Rg if the chemical potential k is treated as a continuation parameter. Therefore, it is clear
that one can use the energy level of the quantum particle as an initial guess to approximate their counterpart
governed by the NLS, where the continuation method is used as the iterative scheme.

2.1. Linear stability and energies

Let X ¼ fðx1; x2Þ 2 R2 : x2
1 þ x2

2 < a2g be a circle of radius a in R2. We consider a quantum particle of mass
M moving nonrelativistically in X. The wave function u(x1,x2) of the particle is a solution of the 2D Schrö-
dinger equation
Du ¼ 2M

�h2
½V ðxÞ � E�u in X;

u ¼ 0 on oX;
ð9Þ
where V(x) is the particle’s potential energy, �h is the Planck’s constant, and E the total energy. The potential
energy obeys Hooke’s law and has the following form:
V ðxÞ ¼ 1

2
ðc1x2

1 þ c2x2
2Þ
for some constants c1,c2 > 0. Eq. (9) is also known as the Schrödinger eigenvalue problem (SEP). If we set
V(x) = 0 in Eq. (9), then the Schrödinger equations reduces to
Du ¼ �k2u � �ku in X;

u ¼ 0 on oX;
ð10Þ
where k ¼
ffiffiffiffiffiffiffi
2ME
p

�h . Now we consider the particle moving under the influence of a central force. A well known
example is the hydrogen atom, in which the electron is held to the proton by the central Coulomb force. Then
the wave function uðx1; x2Þ can be expressed as a function of polar coordinates (r,h). Using the technique of
separation of variables u(r,h) = v(r)z(h), the wave functions or eigenfunctions of Eq. (10) are
um;n ¼ J m
jm;nr

a

� �
½a cos mhþ b sin mh� ð11Þ
with eigenvalues
km;n ¼
jm;n

a

� �2

; m ¼ 0;�1;�2; . . . : ð12Þ
Here jm,n is the nth zero of the mth Bessel function,
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J mðjm;nÞ ¼ 0;
where
J mðzÞ ¼
zm

2m

X1
k¼0

ð�1Þk z2k

22kk!Cðmþ k þ 1Þ
; j arg zj < p
are solutions of the differential equation
d2Zm

dz2
þ 1

z
dZm

dz
þ 1� m2

z2

� �
Zm ¼ 0;
and a,b arbitrary constants. We have asymptotically [30]
jm;n � nþ m
2
� 1

4

� �
p as n!1:
Eqs. (9) and (10) represent the particle have momentum
ptang ¼ �h
k
r

in the direction tangential to the circle X, and the corresponding angular momentum is
L ¼ ptangr ¼ k�h: ð13Þ
From Eqs. (10) and (12) we have
Em;n ¼
�h2k2

2M
¼ �h2km;n

2M
: ð14Þ
Eq. (14) shows that the energy levels of the system depend on the quantum numbers m and n. Since
Em,n = E�m,n, there are two states with the same energy level except m = 0. Thus the energy level Em,n is two-
fold degenerate, while the ground-state energy E0,1 corresponding to the minimum eigenvalue k0,1 is nonde-
generate. We may interpret this phenomenon using the concept of symmetric groups.

Without loss of generality, we choose a = 1 in our discussions given below. The first six eigenvalues of Eq.
(10) are k0,1 � 5.78318596, k1,1 � 14.68200152, k2,1 � 26.37459278, k0,2 � 30.47126234, k3,1 � 40.70644163,
k1,2 � 49.2185030481; see [1, p. 465]. As we can see from Eq. (11), the eigenvalues of Eq. (10) have geometric
multiplicity two except k0,1. For instance, the set
J 1ðj1;1rÞ � spanfcos h; sin hg ð15Þ
constitutes a two-dimensional basis for the eigenspace corresponding to k1,1. Alternatively, if we choose
a,b > 0, then the set
J 1ðj1;1rÞ � spanfa cos h� b sin h; a cos hþ b sin hg ð16Þ
is another two-dimensional basis for the same eigenspace. Let O(n) denote the n-dimensional orthogonal
group, i.e.,
OðnÞ ¼ fA 2 Rn	njAAT ¼ Ing

is the set of all n · n orthogonal matrices. In particular,
Oð2Þ ¼
cos h � sin h

sin h cos h

� �
;

cos h sin h

sin h � cos h

� �����h 2 ½0; 2pÞ
� 	

;

which consists of rotations and reflections of R2 that keeps the origin fixed. Thus, the circle group
S1 ¼
cos h � sin h

sin h cos h

� �����h 2 ½0; 2pÞ
� 	
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is a subgroup of O(2). The special orthogonal group SO(n) consists of all A 2 O(n) such that detA = 1. In par-
ticular, SO(2) consists of the planar rotations, either clockwise or counterclockwise. Thus, SO(2) = S1. We
refer to [25, Chapter 11] for details. It is obvious that the basis (16) is invariant under the action of S1. There-
fore, the eigenspace corresponding to the eigenvalues of Eq. (10) are two-dimensional except the first one.

To determine the energy levels of Eq. (9), we have to find the eigenpairs, which can be obtained using
numerical methods. We will give a detailed discussion in Section 2.2.

2.2. Local bifurcation analysis at simple eigenvalues

Recently, Chang and Chien [20] applied the Liapunov–Schmidt reduction to show that the simple bifurca-
tions of a single NLS defined on a unit interval (square) are pitchfork. The pitchfork bifurcation can be super-
critical or subcritical depending on the coefficient of the cubic term we choose. We will show that similar
results hold if the domain X is a disk.

Let Ex;k be the space of all functions g: R2! R that are defined and C1 on some neighborhood of the ori-
gin. We identify any two functions in Ex;k which are equal as germs. Let g; h 2 Ex;k. We say that g and h are
strongly equivalent if there exist functions X(x,k) and S(x,k) such that the relation g(x,k) = S(x,k)h(X(x,k),k)
holds near the origin. The following result can be found in [24, p. 95].

Proposition 2.1. A germ g 2 Ex;k is strongly equivalent to axk + bkx if and only if at (x,k) = (0,0),
g ¼ o

ox
g ¼ � � � ¼ o

ox

� �k�1

g ¼ o

ok
g ¼ 0 and a ¼ sign

o

ox

� �k

g; b ¼ sign
o

ok
o

ox
g:
For simplicity we rewrite Eq. (5) as F(u,k) = 0, where u = (u1, . . . ,uM) and k = k1. That is, the parameters in
Eq. (4) are fixed except k1. Let L be the differential of F with respect to (u,k) = (0, 0), i.e., L = (dF)0,0 = Fu(0, 0).
Note that L is a differential operator of index 0. Let B1 and B2 be the Banach spaces defined in Eq. (5). The
Liapunov–Schmidt reduction is briefly described as follows:

Step 1. Decompose
ðaÞ B1 ¼ kerL
M and ðbÞ B2 ¼ N 
 RðLÞ; ð17Þ
where kerL and R(L) denote the kernel and the range of L, respectively.

Step 2. Split Eq. (5) into an equivalent pair of equations:

ðaÞ EF ðu; kÞ ¼ 0; ðbÞ ðI � EÞF ðu; kÞ ¼ 0; ð18Þ

where E: B2! R(L) is the projection associated to the splitting.
Step 3. Use Eq. (17)a to write u = v + w, where v 2 kerL and w 2M. Define a map G: kerL · M ·
R! R(L) from Eq. (18)a by

Gðv;w; kÞ ¼ EF ðvþ w; kÞ: ð19Þ
The differential of G with respect to w at the origin is

EL ¼ L:

Since the operator L is Fredholm, R(L) is closed. Therefore,

L : M ! RðLÞ
is invertible. Apply the implicit function theorem to solve Eq. (18)a for w as a function of v and k. This
leads to a function W, W: kerL · R!M such that

EF ðvþ W ðv; kÞ; kÞ ¼ 0: ð20Þ
Step 4. Define /: kerL · R! N by

/ðv0; kÞ ¼ ðI � EÞF ðxv0 þ W ðxv0; kÞ; kÞ: ð21Þ
Note that the vector in Eq. (20) is replaced by xv0, x 2 R in Eq. (21).
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Step 5. Choose a basis v�0 for ðRðLÞÞ?. Define g: R · R! R by

gðx; kÞ ¼ hv�0; F ðxv0 þ W ðxv0; kÞ; kÞi;
where hr; si ¼

R
X rðnÞsðnÞ dn. Since L is self adjoint, we have L = L* and so v�0 ¼ v0. Since F is an odd function

with respect to u, we have (d2F)0,k = O and Fk = O, where O denotes the zero operator. Thus at the bifurcation
point (0,km,n), the reduced function g satisfies g = gx = gxx = gk = 0. We refer to [24, Chapters 1 and 7] for
details.

Theorem 2.2. The first bifurcation of
� Du� kuþ lu3 ¼ 0 in X;

u ¼ 0 on oX
ð22Þ
is pitchfork. Moreover, the pitchfork bifurcation is supercritical if l > 0, and subcritical if l < 0, where X is the

unit disk.

Proof. Let F: X · R! C0(X) be the mapping defined by
F ðu; kÞ ¼ �Du� kuþ lu3;
where X = {u 2 C2(X): u = 0 on oX}. Note that the linear operator L = (dF)0,k = �D � k is singular at
k = k0,1. It has a one-dimensional kernel spanned by u0,1, where u0,1 and k0,1 are defined in Eqs. (11) and
(12), respectively. To prove that the first bifurcation of Eq. (22) is pitchfork, we only need to compute
gxxx ¼ hu0;1; ðd3F Þ0;k0;1
ðu0;1; u0;1; u0;1Þi; ð23Þ
and

gkx ¼ hu0;1; ðdF kÞ0;k0;1

� u0;1i: ð24Þ
By definition, �

ðd3F Þ0;k0;1

ðu0;1; u0;1; u0;1Þ ¼
o

ot1

o

ot2

o

ot3

F ð0þ t1u0;1 þ t2u0;1 þ t3u0;1; k0;1Þ
���
t1¼t2¼t3¼0

¼ 6lu3
0;1: ð25Þ
Substituting Eq. (25) into Eq. (23) yields
gxxx ¼ hu0;1; 6lu3
0;1i ¼ 6l

Z
X

u4
0;1 6¼ 0 when l 6¼ 0:
Similarly, Fk(u,k) = �u, and we have
ðdF kÞ0;k0;1
� u0;1 ¼

d

dt
F kð0þ tu0;1; k0;1Þjt¼0 ¼ �u0;1: ð26Þ
Thus,
gkx ¼ hu0;1;�u0;1i ¼ �
Z

X
u2

0;1 < 0:
From which it follows that the reduced function g is equivalent to the normal form ax3 � kx = 0 where
a = sign(l). Thus the first bifurcation of Eq. (22) is pitchfork. Moreover, the pitchfork bifurcation is supercrit-
ical if l > 0, and subcritical if l < 0. h

Remark 2.3. Actually, Theorem 2.2 holds for the other bifurcations of Eq. (22).

Now we consider a single NLS
ieUt ¼ �
e2

2
DUþ V ðxÞUþ ljUj2U; t > 0; x 2 X � R2;

Uðx; tÞ ¼ 0; x 2 oX; t P 0:

ð27Þ



S.-L. Chang et al. / Journal of Computational Physics 226 (2007) 104–130 111
We say that the system has strong repulsive interaction if e = o(1), and weak repulsive interaction if e = O(1).
Two important invariants of (27) are the mass conservation constraint of the wave function
NðUÞ ¼
Z

X
jUðx; tÞj2 dx ¼ 1; t P 0; ð28Þ
and the energy conservation
ElðUÞ ¼
Z

X

e2

2
jrUðx; tÞj2 þ V ðxÞjUðx; tÞj2 þ l

2
jUðx; tÞj4

� �
dx; t P 0: ð29Þ
Setting U(x, t) = e�ikt/eu(x) in Eq. (27), we obtain the following semilinear elliptic eigenvalue problem:
kuðxÞ ¼ � e2

2
DuðxÞ þ V ðxÞuðxÞ þ luðxÞ3 in X;

uðxÞ ¼ 0 on oX;
ð30Þ
for u(x) under the normalization condition
Z
X
juðxÞj2 dx ¼ 1: ð31Þ
It is obvious that any eigenvalue k can be computed from its corresponding eigenfunction u(x) by
k ¼ klðuÞ ¼
Z

X

e2

2
jruðxÞj2 þ V ðxÞjuðxÞj2 þ ljuðxÞj4

� �
dx ¼ ElðuÞ þ

Z
X

l
2
j/ðxÞj4 dx: ð32Þ
Let {m1,m2, . . .,} denote the eigenvalues of the Schrödinger eigenvalue problem
� e2

2
DuðxÞ þ V ðxÞuðxÞ ¼ kuðxÞ in X;

uðxÞ ¼ 0 on oX:
ð33Þ
It is clear that the bifurcations of Eq. (30) are located at {(0,m1), (0,m2), . . . , }. Here and in the sequel, unless
otherwise specified we omit the symbol e2 in our discussions. We will show that the first bifurcation scenario
of a single NLS is the same as that of Eq. (22).

Theorem 2.4. The first bifurcation of Eq. (30) is pitchfork. Moreover, the pitchfork bifurcation is supercritical if

l > 0, and subcritical if l < 0.

Proof. Let F: X · R! C0(X) be the mapping defined by
F ðu; kÞ ¼ � 1

2
Duþ Vu� kuþ lu3;
where X = {u 2 C2(X):u = 0 on oX}. Note that the linear operator L ¼ ðdF Þ0;k ¼ �1
2
Dþ V � k is singular at

k = m1, and it has a one-dimensional kernel spanned by u1, where u1 and m1 is the first eigenpair of Eq.
(33). To prove that the first bifurcation of Eq. (30) is pitchfork, we only need to compute
gxxx ¼ hu1; ðd3F Þ0;m1
ðu1; u1; u1Þi and gkx ¼ hu1; ðdF kÞ0;m1

� u1i:
By definition,
ðd3F Þ0;m1
ðu1; u1; u1Þ ¼

o

ot1

o

ot2

o

ot3

F ð0þ t1u1 þ t2u1 þ t3u1; m1Þ
����
t1¼t2¼t3¼0

¼ 6lu3
1;

ðdF kÞ0;m1
� u1 ¼

d

dt
F kð0þ tu1; m1Þ

����
t¼0

¼ �u1:

ð34Þ
Note that Eq. (34) has the same form as that of Eqs. (25) and (26). The remainder of the proof is the same as
that of Theorem 2.2, and is omitted here. h
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Note that the eigenvalues of Eq. (33) can only be obtained using numerical methods. We observe that if the
trapping potential V(x) is nonisotropic, then the double eigenvalues of Eq. (33) will be split into two simple
ones, and this property is independent of the geometries of the domain. To be precise, let V ðxÞ ¼ 1

2
ðc2

1x2
1 þ c2

2x2
2Þ,

and lj, lj+1 denote two clustered eigenvalues, then |lj � lj+1| increases as jc2
1 � c2

2j increases. Therefore, we can
apply the Liapunov–Schmidt reduction to analyze the local bifurcation behavior of the NLS. We used the
function ‘‘eig’’ in MATLAB to compute the first six eigenvalues of Eq. (33) with various choices of trapping
potentials, where the equation is discretized by the centered difference approximations described in Section 3
with radial meshsize Dr ¼ 2

201
and azimuthal size Dh ¼ 2p

72
. From Table 1 we obtain the following result.

Proposition 2.5. If the trapping potential V(x) in Eq. (30) is nonisotropic, then all bifurcations are simple.

Moreover, all bifurcations of Eq. (30) are pitchfork. The pitchfork bifurcation can be supercritical or subcritical

depending on l > 0 or l < 0.

Proposition 2.5 shows an interesting fact that the degenerate energy levels of a quantum particle will not be
preserved if the trapping potential is nonisotropic.

2.3. Mode interactions

Now we consider the two-coupled NLS in one dimension
Table
The fir

1
2
3
4
5
6

1
2
3
4
5
6

� Du� k1uþ l1u3 þ buv2 ¼ 0;

� Dv� k2vþ l2v3 þ bu2v ¼ 0 in X1 ¼ ð0; ‘Þ;
u ¼ v ¼ 0 on oX1:

ð35Þ
A change of variable x ¼ ‘~x transforms the domain X1 in (35) back to X = (0, 1) again. By using the same nota-
tions as before, Eq. (35) can be expressed as
� 1

‘2
Du� k1uþ l1u3 þ buv2 ¼ 0;

� 1

‘2
Dv� k2vþ l2v3 þ bu2v ¼ 0 in X ¼ ð0; 1Þ;

u ¼ v ¼ 0 on oX:

ð36Þ
Now we consider the case k1 = k2 = k. Let C2
0ðXÞ :¼ fu 2 C2ðXÞjujoX ¼ 0g, X ¼ ðC2

0ðXÞÞ
2, and w = (u,v). We

use the same nonlinear mapping F for Eq. (36) as in Section 1. The differential of F evaluated at w = (0, 0) is
1
st six eigenvalues of Eq. (33) with various choices of trapping potentials and e2

2
¼ 1

V(x) = 0 V ðxÞ ¼ x2
2=2 V ðxÞ ¼ ðx2

1 þ x2
2Þ=2

5.7828623159990 5.8382345626141 5.8936910922701
14.6776718955286 14.7199222170310 14.8468449336785
14.6776718956579 14.8045086340521 14.8468449337180
26.3394222468847 26.4423977042872 26.5468641734112
26.3394222468847 26.4430854926601 26.5468641734314
30.4633511101872 30.5431869224575 30.6215793901315

V ðxÞ ¼ ð2x2
1 þ x2

2Þ=2 V ðxÞ ¼ ð3x2
1 þ x2

2Þ=2 V ðxÞ ¼ ð4x2
1 þ x2

2Þ=2

5.9487476448496 6.0034097436138 6.0576828341890
14.8889736894021 14.9308971016107 14.9726173416088
14.9733158306247 15.0993369017885 15.2249101499556
26.6496488101970 26.7507184328762 26.8500436174623
26.6503487078572 26.7535404623676 26.8564408010334
30.7015176130202 30.7830308174554 30.8661445675133
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L ¼ ðdwUÞ0;0;k ¼
� 1

‘2 D� k 0

0 � 1
‘2 D� k

 !
: ð37Þ
It is obvious that the domain X of the linear operator L can be decomposed as
X ¼
X1
k¼1


X k; X k :¼
c1

c2

� �
sin kpx

� ����c1; c2 2 R

)
; k 2 N; ð38Þ
and the operator L maps Xk into itself. The restriction of L in the subspace Xk is a 2 · 2 matrix
Mkðk; ‘Þ :¼ LjX k
¼
� k2p2

‘2 D� k 0

0 � k2p2

‘2 D� k

 !
; k ¼ 1; 2; . . . : ð39Þ
It is well known that a nonlinear system with multiple bifurcation parameters will have multiple modes.
Since multiple eigenvalues may lead to secondary bifurcation, it is possible that secondary bifurcations may
arise in the system. This process is called mode interactions [25, pp. 412–414]. Note that the 2 · 2 matrix
Mk(k, ‘) in Eq. (39) involves two parameters k and ‘. However, it has been indicated in [20] that mode inter-
actions can not occur in Eq. (36). The same result holds if we consider the two-coupled NLS defined on the
unit square or unit disk. We can exploit the modified Liapunov–Schmidt reduction described in [16] to study
the local bifurcation behavior of the two coupled NLS. The details will be given elsewhere.
3. Centered difference approximations on the unit disk

3.1. Two-coupled nonlinear Schrödinger equations on a unit disk

Without loss of generality, we consider the two-coupled NLS
� Du1 � k1u1 þ V 1ðxÞu1 þ l1u3
1 þ bu2

2u1 ¼ 0 in X;

� Du2 � k2u2 þ V 2ðxÞu2 þ l2u3
2 þ bu2

1u2 ¼ 0 in X;

u1 ¼ u2 ¼ 0 on oX;

ð40Þ
where X ¼ fðx1; x2Þ : x2
1 þ x2

2 < 1g is the unit disk. It is natural to apply the polar coordinate transformations
x1 = rcosh, x2 = r sinh to Eq. (40). For simplicity, we use the same notations to represent the functions both in
Cartesian and polar coordinates. The two-coupled NLS of u1(r,h) and u2(r,h) can be written as
� o2u1

or2
þ 1

r
ou1

or
þ 1

r2

o2u1

oh2

� �
� k1u1 þ V 1ðr; hÞu1 þ l1u3

1 þ bu2
2u1 ¼ 0 in X;

� o
2u2

or2
þ 1

r
ou2

or
þ 1

r2

o
2u2

oh2

� �
� k2u2 þ V 2ðr; hÞu2 þ l2u3

2 þ bu2
1u2 ¼ 0 in X;

u1ð1; hÞ ¼ u2ð1; hÞ ¼ 0; 0 6 h 6 2p:

ð41Þ
The centered difference approximations described in [31] is exploited to discretize Eq. (41) with Dr ¼ 2
2Mþ1

as
the radial meshsize and Dh ¼ 2p

N as the azimuthal meshsize for positive integers M and N. The locations of grid
points are half-integers in radial direction and integers in azimuthal direction. That is,
ri ¼ i� 1

2

� �
Dr; hj ¼ ðj� 1ÞDh ð42Þ
for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N .
Let Ui;j ¼ u1ðri; hjÞ; V i;j ¼ u2ðri; hjÞ. We have the difference equations
� U iþ1;j � 2Ui;j þ U i�1;j

ðDrÞ2
þ 1

ri

Uiþ1;j � U i�1;j

2Dr
þ 1

r2
i

U i;jþ1 � 2Ui;j þ U i;j�1

ðDhÞ2

 !
� k1U i;j þ F i;j ¼ 0; ð43Þ
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and
� V iþ1;j � 2V i;j þ V i�1;j

ðDrÞ2
þ 1

ri

V iþ1;j � V i�1;j

2Dr
þ 1

r2
i

V i;jþ1 � 2V i;j þ V i;j�1

ðDhÞ2

 !
� k1V i;j þ Gi;j ¼ 0;

U Mþ1;j ¼ V Mþ1;j ¼ 0; ð44Þ
where F i;j ¼ V 1ðri; hjÞUi;j þ l1U 3
i;j þ bV 2

i;jU i;j and Gi;j ¼ V 2ðri; hjÞV i;j þ l2V 3
i;j þ bU 2

i;jV i;j. Eqs. (43) and (44) can
be expressed as
1

ðDrÞ2
½�biU i;jþ1 þ ð2þ 2biÞUi;j � biU i;j�1 � ð1� aiÞU i�1;j � ð1þ aiÞUiþ1;j� þ F i;j ¼ k1U i;j;

1

ðDrÞ2
�biV i;jþ1 þ ð2þ 2biÞV i;j � biV i;j�1 � ð1� aiÞV i�1;j � ð1þ aiÞV iþ1;j


 �
þ Gi;j ¼ k2V i;j;

UMþ1;j ¼ V Mþ1;j ¼ 0;

ð45Þ
where bi ¼ 1

ði�1
2
Þ2ðDhÞ2

, ai ¼ 1
2i�1

, for i = 1,2, . . . ,M and j = 1,2, . . . ,N.

Let A 2 RMN·MN be the discretization matrix associated with the Laplacian �D. Suppose that the unknown
vectors U and V are represented by U ¼ ½U 11; . . . ;U 1N ; . . . ;UM1; . . . ;U MN �T, V ¼ ½V 11; . . . ; V 1N ; . . . ;

V M1; . . . ; V MN �T, and F ¼ ½F 11; F 12; . . . ; F MN �T, G ¼ ½G11;G12; . . . ;GMN �T: From Eq. (45), we obtain
AU þ F ¼ k1U ;

AV þ G ¼ k2V ;
ð46Þ
where
A ¼ 1

ðDrÞ2

2I þ b1U �ð1þ a1ÞI
�ð1� a2ÞI 2I þ b2U �ð1þ a2ÞI

. .
. . .

. . .
.

�ð1� aM�1ÞI 2I þ bM�1U �ð1þ aM�1ÞI
�ð1� aMÞI 2I þ bMU

266666664

377777775 ð47Þ
with I the N · N identity matrix, and
U ¼

2 �1 �1

�1 2 �1

. .
. . .

. . .
.

�1 2 �1

�1 �1 2

26666664

37777775 2 RN	N :
If we choose the radial direction first, and then the azimuthal direction. In this case the unknown vectors U

and V are represented by
U ¼ ½U 11; . . . ;U M1; . . . ;U 1N ; . . . ;U MN �T; V ¼ ½V 11; . . . ; V M1; . . . ; V 1N ; . . . ; V MN �T:
Then the coefficient matrix associated with the Laplacian �D is
eA ¼ 1

ðDrÞ2

W �B �B

�B W �B

. .
. . .

. . .
.

�B W �B

�B �B W

26666664

37777775; ð48Þ
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where
W ¼

2þ 2b1 �ð1þ a1Þ
�ð1� a2Þ 2þ 2b2 �ð1þ a2Þ

. .
. . .

. . .
.

�ð1� aM�1Þ 2þ 2bM�1 �ð1þ aM�1Þ
�ð1� aMÞ 2þ 2bM

266666664

377777775 2 RM	M ;
and
B ¼ diagðb1; b2; . . . ; bMÞ:

Note that both the matrices A and eA are nonsymmetric but nearly symmetric. Since A is a tridiagonal block
matrix, one may use Gaussian elimination to solve the associated linear systems if the dimension of A is not
too large. Alternatively, one also can use iterative methods such as Bi-CGSTAB [39] to solve linear systems
with A and eA as the coefficient matrices. We have the following result.

Lemma 3.1. The matrices A and eA in Eqs. (47) and (48), respectively, are similar.

Proof. Let
P ¼

P 1

P 2

..

.

P N

266664
377775
with
P j ¼

eT
j

eT
Nþj

..

.

eT
ðM�1ÞNþj;

2666664

3777775; j ¼ 1; 2; . . . ;N ;
where ej is the j th column of the identity matrix. We can easily verify that P eAP T ¼ A. Since P is a permutation
matrix which is orthogonal, the result follows immediately. h

To prove that all the eigenvalues of eA are strictly positive, we need the following result. We refer to [28,
p. 363] for details.

Theorem 3.2 (Taussky). Let B 2 Rn·n be irreducibly diagonally dominant. If B has only real eigenvalues, and if

all main diagonal entries of B are strictly positive, then all the eigenvalues of B are strictly positive.

The unsymmetry of the two matrices A and eA are caused by the discretization scheme we use. We will show
that the matrix eA is similar to a symmetric one.

Theorem 3.3. The matrix eA is similar to a symmetric matrix, and all the eigenvalues of eA are strictly positive.

Proof. First we show eA is similar to a symmetric matrix. Let C = diag(c1,c2, . . . ,cM) 2 RM·M with c1 = 1,

ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þa1Þð1þa2Þ���ð1þai�1Þ
ð1�a2Þð1�a3Þ���ð1�aiÞ

q
, i = 2,3, . . . ,M, and let
D ¼ diag C;C; . . . ;C|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N copies

0B@
1CA 2 RMN	MN :
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Then
DeAD�1 ¼ 1

ðDrÞ2

bW �B �B

�B bW �B

. .
. . .

. . .
.

�B bW �B

�B �B bW

266666664

377777775 :¼ bA;
where bA is symmetric with
bW ¼
2þ 2b1 �c1

�c1 2þ 2b2 �c2

. .
. . .

. . .
.

�cM�2 2þ 2bM�1 �cM�1

�cM�1 2þ 2bM

266666664

377777775

and ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aiÞð1� aiþ1Þ

p
for i = 1,2, . . . ,M�1. Since eA and bA are similar, all the eigenvalues of eA are real.

One can verify that eA has the following three properties:
(a) eA is irreducibly diagonally dominant,
(b) all main diagonal entries of eA are strictly positive,
(c) eA has only real eigenvalues.

By Taussky’s theorem, we show that all the eigenvalues of eA are strictly positive. h

Remark 3.4. As is well known, the spectral methods are widely used to discretize the Laplacian of nonlinear
Schrödinger equations. It would be of interest to exploit the spectral methods in numerical continuation for
curve-tracking. For instance, the spectral-Galerkin methods described in [37] can be used to discretize Eq. (40)
defined in a unit disk or a cylindrical domain. The further study on this topic will be given elsewhere.
3.2. A two-grid discretization scheme

It is possible to develop a two-grid discretization method in the context of the centered difference approx-
imations described in Section 3.1. Suppose that Der ¼ 2

2eMþ1
is the radial meshsize on the coarse grid. To avoid

the singularity at the origin, we have to choose Dr ¼ 1
3
Der as the radial meshsize on the fine grid. For instance, ifeM ¼ 16 and Der ¼ 2

33
, then Dr ¼ 2

99
¼ 2

2Mþ1
. That is, M ¼ 3 eM þ 1 ¼ 49. The details of the two-grid centered dif-

ference discretization scheme is similar to the one given in [21] and is omitted here. For Dr ¼ 2
33

and Dh ¼ 2p
16

,

the first eight eigenvalues of the discrete matrix are 5.771191, 14.578039, 14.578039, 25.636476, 25.636476,
30.178900, 37.953979, 37.953979, which shows that at least two simple eigenvalues exist. Moreover, both
the geometric and algebraic multiplicities of the other eigenvalues are twofold.
4. Computing wave functions

4.1. The main algorithm

To compute the wave functions of Eq. (1), in general one has to discretize or integrate the partial derivatives
i
oUj

ot , j = 1, . . . ,M. In this section we describe an algorithm which is different from the traditional methods.
However, it can be used to compute Uj(x, t) efficiently. Actually, the idea behind our algorithm involves an
‘‘reversing process’’.

Remember Eq. (1) can be transformed into Eq. (4) via Eq. (2), namely,
Ujðx; tÞ ¼ e�ikjtujðxÞ:
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Since Eq. (4) is a nonlinear system involving multi-parameters, we can apply a predictor–corrector contin-
uation algorithm to trace the solution manifolds. From Eq. (2) it is clear that if the chemical potentials kj and
the steady state solutions uj(x) are known, then the wave functions Uj(x, t) are readily available for any time t.
Therefore, we treat kj as the continuation parameters and keep the other parameters in Eq. (4) fixed. We will
combine the continuation algorithm described in [19] together with the two-grid discretization scheme in [21]
to trace solution manifolds of Eq. (4). Suppose that we wish to trace the solution manifolds of Eq. (4) branch-
ing from the first bifurcation point.

Algorithm 4.1. Computing wave functions of the MCNLS: a two-grid scheme.

Input:

e :¼ accuracy tolerance of approximating points for the solution curves on both coarse and fine
grids.

Step 0. k1:= the continuation parameter.
k2, . . . ,kM:= constants.

Step 1. Outer continuation.
Use a predictor–corrector continuation algorithm to compute an approximating point on the
coarse grid.

Step 2. Inner continuation.

(i) Predictor: Use the approximating point obtained in Step 1 as the predicted point.

(ii) Corrector. (a) Make a correction on the fine grid; (b). Perform Newton’s method until
iF(Æ)i < e.
Step 3. Go to Step 1 until the solution curve is traced.
Step 4. Pick up new constants k2, . . . ,kM and go to Step 1 until the solution manifolds are numerically

traced.
Step 5. Pick up some specific points on the solution manifold and compute Ujðx; tÞ ¼ e�ikjtujðxÞ for var-

ious values of the time variable t.

Remark 4.2. If Algorithm 4.1 is executed on a sequential computer, then we only can pick up a new constant,
say, k2, and fix the remaining parameters k3, . . . ,kM.

Remark 4.3. It is very flexible to choose some chemical potentials as the first continuation parameter. For
instance, we may choose k1 = k2 or k1 = k3 or k1 = k2 = k3, and so forth.

We briefly address here that starting point used in Algorithm 4.1 is some point on the trivial solution curve
which is close enough to the bifurcation point. Actually, any stationary state solution of Eq. (3) can be used as
a starting point in the context of predictor–corrector continuation methods. All we need to do is to make a
change of variable using the given initial data. This will switch the starting point to some point on the trivial
solution curve again. See e.g. [22] for details. In Algorithm 4.1 probably we cannot use any general function as
the initial data in the state space, it is very flexible to choose parameters as the initial data in the parameter
space.

4.2. Mass conservation constraints

If we impose the mass conservation constraints Eq. (8) on Eq. (4), it would be easier to implement Algo-
rithm 4.1 for computing wave functions of the MCNLS, since we only need to obtain at almost M points on
the solution manifolds that satisfy iuj(x)i2 = 1 for different values of k1,j, j = 1, . . . ,M. On the other hand, we
can choose a relatively large stepsize so that the target points can be reached as soon as possible, because the
other parts of the solution curves can be roughly approximated.

Remark 4.4. (i) In implementing Algorithm 4.1, it is quite impossible that we will hit, e.g., the jth component
uj(x) with kuðkÞj ðxÞk2 ¼ 1 precisely, say at the kth continuation step. This problem can be easily overcome by

using the linear interpolation technique on the values of ðuðkÞj ðxÞ; k
ðkÞ
1;j Þ and ðuðkþ1Þ

j ðxÞ; kðkþ1Þ
1;j Þ with kuðkÞj ðxÞk2 < 1

and kuðkþ1Þ
j ðxÞk2 > 1, where a small stepsize should be used when we approach the target point. (ii) In practice,
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we will touch certain target points (uj(x),k1,j) with iuj(x)i2 = 1 for different values of k1,j. It is easy to modify
Algorithm 4.1 so that (i) is satisfied.
5. Numerical results

We discretized the MCNLS defined on the unit disk by using the centered difference approximations
with uniform mesh sizes Dr ¼ 2

201
� 1

100
and Dh ¼ 2p

72
� 0:087. We treated k1 as the first continuation param-

eter in our continuation algorithm, where Gaussian elimination and the Bi-CGSTAB were used as the
linear solver. We are mainly interested in the ground-state and the first excited-state solutions of the
system.

Example 1. M = 1. Case (i): Nondegenerate and degenerate energies. We consider following equation
� o
2u

or2
þ 1

r
ou
or
þ 1

r2

o
2u

oh2

� �
� kuþ lu3 ¼ 0;

uð1; hÞ ¼ 0:

ð49Þ
Fig. 1 shows that the first bifurcation (0,k0,1) of Eq. (49) is supercritical or subcritical, depending on the coef-
ficient l > 0 or l < 0. Fig. 2 depicts the two solution curves of Eq. (49) branching from the second bifurcation
(0,k1,1), which shows that the two degenerate excited-states have the same energy. We stopped curve-tracking
whenever the target points were obtained. Fig. 3 shows the nodal lines of the solution curves corresponding to
cosh and sinh in Eq. (15) are located at h ¼ p

2
and h = 0, and those corresponding to the basis in Eq. (16) are

located at h ¼ p
4

and h ¼ 3p
4

, respectively.
Case (ii): The ground-state and excited-state solutions with the effect of linear potential and strong repulsive

interaction. We consider a single NLS
� e2

2

o2u
or2
þ 1

r
ou
or
þ 1

r2

o2u

oh2

� �
� kuþ Vuþ lu3 ¼ 0 in X;

uð1; hÞ ¼ 0; 0 6 h < 2p

ð50Þ
with e = 0.1, l = 30, and V ðx1; x2Þ ¼
x2

1
þx2

2

2
. Fig. 4 displays the four solution curves of Eq. (50) branching from

the second bifurcation point (0,k1,1) � (0, 0.200656). The corresponding contours are shown in Fig. 5.
3
4

5
6

7
8

0

0.5

1
0

1

2

3

4

5

6

7

8

λ
μ

||u
|| ∞

Fig. 1. The solution surface of Eq. (49) with l 2 [�1,1].
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Fig. 5. The contours of the solution curves of Eq. (50) bifurcating at the second bifurcation point, where e = 0.1, l = 30, and
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Fig. 6. The solution curves of Eq. (50) branching from the first bifurcation point, where e = 0.1 (left), and e = 1.0 (right).
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Fig. 7. The solution curves of the u1-component branching from the first six bifurcations of Eq. (40) at k2 = 15.0, b = 30.0, l1 = l2 = 0.1.
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Fig. 8. The contours of the solutions of u1-component for Eq. (40) at the nodes n1-1, n1-2, n2-1 and n2-2.

Fig. 9. The contours of the u1-component on the solution branches of Eq. (40) at nodes n3-1, n3-2, n4 and n5.
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Fig. 10. The contours of the u1-component on the six solution branch of Eq. (40) at nodes n6-1, n6-2, n6-3 and n6-4.
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Case (iii): The ground-state solution with the effect of strong and weak repulsive interactions. We consider

Eq. (50) with l = 30 and V ðx1; x2Þ ¼
x2

1
þx2

2

2 . For the strong and weak repulsive interactions, we chose e = 0.1

and e = 1, respectively. Fig. 6 displays the solution curves branching from the first bifurcation point for both
cases, where the bifurcation points are detected at (0,k0,1) � (0,0.100068) and (0, 2.999835), respectively.
Fig. 6a shows that the ground-state energy of a quantum particle with strong repulsive interaction is less than
that with weak repulsive interaction.

From cases (ii) and (iii) we observe that the first two bifurcations of the system are getting closer if the
interaction is strongly repulsive.

Example 2. M = 2. The ground-state and excited-state solutions with the effect of isotropic and nonisotropic
linear potentials. First, we consider Eq. (40) without linear potentials, where we chose k2 = 15.0, l1 = l2 = 0.1,
and treated k1 as the continuation parameter with b 2 [�3000, 3000]. Fig. 7 displays the solution curves of u1

branching from the first six bifurcation points, where k2 = 15.0, b = 30.0, and l1 = l2 = 0.1. We observe that
the second and the third bifurcations are double. Figs. 8–10 show the contours of the u1-component at the
nodes in Fig. 7. The contours of the u1- and u2-components on the sixth solution branch at k1 = 30.4174,
�9.1226, �1100.2352, and �3851.9162 are displayed in Fig. 11, where k2 = 30.0, b = �30.0, and
l1 = l2 = 20.0.

Next, we consider Eq. (40) with V 1ðxÞ ¼
a11x2

1
þa12x2

2

2 , V 2ðxÞ ¼
a21x2

1
þa22x2

2

2 and k2 = 15.0, b = �30.0,
l1 = l2 = 0.1. Fig. 12 shows the solution curves of the u1-component branching from the first bifurcation
point for various choices of linear potentials. Fig. 13 shows the contours of the u1-component at k1 = 6.0848,
4.0930, �5.7564 and �149.6360, where we chose isotropic linear potentials with a11 = a12 = 3 and
a21 = a22 = 5. Fig. 14 displays the wave functions U1 and U2 at k1 = �149.6360, k2 = 15.0 and t = 0.1, 0.2,
0.3, and 0.4. Fig. 15 shows the contours of the u1-component at k1 = 5.8589, �30.2306, �306.3890, and
�805.1825, respectively, where V1(x) is isotropic and V2(x) is nonisotropic with a11 = a12 = 1 and a21 = 7,
a22 = 1, respectively.



Fig. 11. The contours of the u1- and u2-components on the sixth solution branch of Eq. (40) at k1 = 30.4174, �9.1226, �1100.2352,
�3851.9162.
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Example 3. M = 2. The ground-state solution with the effect of isotropic linear potentials. We traced the first

solution branch of Eq. (40) under the normalization conditions Eq. (8) with V 1 ¼
x2

1
þx2

2

2
, V 2 ¼

x2
1
þx2

2

5
, l1 = 10,

l2 = 5, k2 = 10. Fig. 16 shows that both components can reach iuj(x)i2 = 1, j = 1,2, with b = �300 for differ-
ent values of the chemical potentials k1. The contours of the corresponding wave function U1 with iU1i2 = 1 at
t = 0.5 and 1 are displayed in Fig. 17. Fig. 18 shows that only the component u2 satisfies the normalization
conditions equation (8) where b = 300. Fig. 19 shows the contours of the wave function U2 with iU2i2 = 1
at t = 13 and 17.
Fig. 13. The contours of the u1-component on the first solution branch of Eq. (40) at k1 = 6.0848, 4.0930, �5.7564, �149.6360,

respectively, where V 1ðxÞ ¼
3x2

1
þ3x2

2

2
, V 2ðxÞ ¼

5x2
1
þ5x2

2

2
.
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Fig. 12. The solution curves of the u1-component branching from the first bifurcation point of Eq. (40).
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Example 4. M = 3. The ground-state solution with the effect of isotropic and nonisotropic linear potentials.
We traced the solution curves of the three-coupled NLS
Fig. 1

V 1ðxÞ ¼

Fig. 14
and 0.
5. The contours of the solutions of Eq. (40) for u1 at k1 = 5.8589, �30.2306, �306.3890, �805.1825, respectively, where
x2

1
þx2

2

2
, V 2ðxÞ ¼

7x2
1
þx2

2

2
.

. The contours of the real and imaginary parts of the wave solutions Uj, j = 1,2 at k1 = �149.6360, k2 = 15.0 and t = 0.1, 0.2, 0.3,
4.
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Fig. 16. Tracing the solution curves of Eq. (40) branching from the first bifurcation point until iu1i2 = 1 and iu2i2 = 1 are reached, where
b = �300.

Fig. 17. The contours of the real and imaginary parts of the wave solutions U1 with k1 = �95.15455 and iU1i2 = 1 at t = 0.5, 1, and
b = �300.
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Fig. 18. Tracing the solution curves of Eq. (40) branching from the first bifurcation point until iu2i2 = 1 is reached, where b = 300.

Fig. 19. The contours of the real and imaginary parts of the wave solutions U2 with k1 = 76.0517664 and iU2i2 = 1 at t = 13, 17, and
b = 300.
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where k2 = 15.0, k3 = 20.0, l1 = l2 = l3 = 0.1, b12 = 30.0, b13 = 60.0, b23 = 90.0, and V 1ðxÞ ¼
3x2

1
þx2

2

2
,

V 2ðxÞ ¼
5x2

1
þx2

2

2
, V 3ðxÞ ¼

7x2
1
þx2

2

2
. Fig. 20 depicts the solution curves of (u1,u2,u3) branching from the first bifurca-

tion point of Eq. (51). The contours of the real and imaginary parts of the wave solutions Uj, j ¼ 1; 2; 3 at
ðk1; k2; k3Þ ¼ ð17:0271; 15:0; 20:0Þ, and t = 1000 are displayed in Fig. 21. We also chose k2 = 15.0, k3 = 20.0,

l1 = l2 = l3 = 0.1, b12 = �30.0, b13 = �60.0, b23 = �90.0 and V 1ðxÞ ¼ V 2ðxÞ ¼ V 3ðxÞ ¼
x2

1
þx2

2

2
. Fig. 22 shows

that the solution curves of ðu1; u2; u3Þ have a fold at k1 = �7.110808. Figs. 20 and 22 show that all three com-
ponents uj(x) satisfy iuj(x)i2 = 1 for different values of chemical potentials.
6. Conclusions

We have presented a novel algorithm for computing wave functions of the MCNLS. We indicate that the
wave functions can be obtained by solving the stationary state of the MCNLS, which is a nonlinear system of
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Fig. 20. The solution curves (u1,u2,u3) branching from the first bifurcation point of Eq. (51) at k2 = 15.0, k3 = 20.0, l1 = l2 = l3 = 0.1,
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Fig. 21. The contours of the real and imaginary parts of the wave solutions Uj, j = 1,2,3 with k1 = 17.0271, k2 = 15.0, k3 = 20.0,
respectively, at t = 1000.
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equations. We exploited a parallel numerical continuation algorithm proposed in [19] to trace solution man-
ifolds of the nonlinear system. It is inexpensive to implement the algorithm because in practice we only need to
compute some specific points on the solution manifolds whenever a solution curve is numerically traced. The
proposed algorithm has the following advantages: (i). It is unnecessary to discretize or integrate o

ot Ujðx; tÞ,
j = 1, . . . ,M. (ii). The wave functions Uj(x, t) can be evaluated for any time scale t, and for any points
{(uj,kj)}j=1:M on the solution manifolds. (iii). The mass conservation constraints are a benefit to numerical con-
tinuation methods.

Next, we have analyzed the relationship among the energy levels of a quantum particle, the associated
eigenvalues of the SEP, and the corresponding bifurcations of the NLS. We have shown that the energy level
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of the SEP can be used as an initial guess to computing their counterpart of the NLS, where the continuation
method is used as the iterative scheme. Based on the numerical results reported in Section 5, we wish to given
some conclusions concerning the performance of the proposed algorithm and the physical meaning of the
results. (a) When the NLS has strong repulsive interaction, the first bifurcation point is close to origin. See
Figs. 4 and 6. Actually, if e! 0, then the first bifurcation will be very close to the origin, which means that
less chemical potential is required for the occurrence of the first bifurcation. On the other hand, more chemical
potential is necessary if the system has weak repulsive interaction. (b) For the two-coupled NLS, both com-
ponents satisfy the mass conservation constraint if the coupling coefficient b is greater than zero, otherwise
only the second component satisfies the mass conservation constraint. (c) The results of Example 2 show that
the global bifurcation behavior of the two-coupled NLS varies with respect to the locations of the
bifurcations.

Finally, we remark here that the uj(x) in Eq. (2) are real functions. In a rotating BEC where the angular
momentum is imposed on the system, the stationary state functions uj(x) must be complex, see e.g. [4,23].
It would be of interest to study the bifurcation behavior of the MCNLS with angular momentum defined
in a cylindrical domain. The details will be given elsewhere.
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