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Abstract
The existence and stability analysis of an inflationary solution in a (D + 4)-
dimensional anisotropic-induced gravity is presented in this paper. Nontrivial
conditions in the field equations are shown to be compatible with a cosmological
model in which the 4-dimension external space evolves inflationary while the
D-dimension internal one is static. In particular, only two additional constraints
on the coupling constants are derived from the abundant field equations and
perturbation equations. In addition, a compact formula for the non-redundant
(4 + D)-dimensional Friedmann equation is also derived for convenience.
Possible implications are also discussed in this paper.

PACS numbers: 98.80.Cq, 04.20.−q, 04.50.+h, 04.20.Cv

1. Introduction

Higher-order corrections to the Einstein gravity [1, 2] can be derived from the quantum gravity
and the string theory [3]. Applications to the study of the inflationary universe [4, 5] have been
a focus of research interest. In particular, higher-derivative terms also arise as an effective
theory for the quantum corrections of matter fields in curved space [3].

In addition, the Kaluza–Klein theory [6, 7] is also important in the study of the evolution
of the early universe. Indeed, the dimensional-reduction process could affect the evolution of
the inflationary universe significantly. Recently, the brane universe scenario has also become
a focus of interest [8].

Induced-gravity models have been a focus of study for many reasons. Weyl was the first
to propose that the scale invariant theory is a candidate for the unified theory of gauge field and
gravitational field. In addition, Dirac’s large number theory also asserts that all dimensionful
parameters in the physical theory are in fact the dynamical functions of time. As a result,
various interesting models have attracted researchers’ interest for a long time.

Therefore, we intend to study an N(= 4+D)-dimensional Kaluza–Klein higher-derivative
induced-gravity model with all dimensionful coupling constants replaced by appropriate scale-
dependent fields. We will show that a constant internal-space solution will lead to a nontrivial
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constraint to the field equations. In addition, there is also another constraint derived from the
assumption of the constant internal scale-dependent scalar field ψ .

In fact, we will show in this paper that there are three constraints to be imposed on the
choice of three different coupling constants coupled to the higher-curvature terms. Note that,
in the 4-dimensional space, E = RλµνρR

λµνρ − 4RµνR
µν + R2 is the integrand of the Gauss–

Bonnet term [9]. In addition, the Weyl tensor [9] connects these fourth-order curvature terms
in the 4-dimensional space. Hence, we only need to deal with an R2 term in the 4-dimensional
de Sitter space. These constraints do not hold in higher-dimensional spaces. Therefore, we
must deal with all three different fourth-order terms in an N-dimension. Hence, the equations
of motion for the higher-derivative Kaluza–Klein induced-gravity theory [10–13] are much
more complicated than the 4-dimensional higher-derivative gravity. We will show, however,
that the aforementioned abundant constraints are not only consistent with the already abundant
stability constraints of the system but also lead to an interesting result, i.e. only the R2 coupling
term is consistent with the inflationary solution. Possible implications will also be discussed
in this paper.

In order to reduce the complication of the derivation of field equations, we will also derive
a simple expression for the Friedmann equation [14] in a (4 + D)-dimensional space in this
paper. The redundancy of the associated field equations due to the Bianchi identity will also
be analyzed. We will show that the quadratic terms do not affect the Friedmann equation in a
constant flat internal space scale factor d(t) and a flat de Sitter 4 space.

This paper will be organized as follows. In section 2, we will introduce the Kaluza–
Klein higher-derivative induced-gravity model with all dimensionful parameters replaced
by appropriate dynamical fields. The constraint derived from the constant ψ field will be
obtained in this section. In section 3, we will derive a model-independent expression for the
N-dimensional generalized Friedmann equation in the higher-dimensional higher-derivative
theory. These formulae are derived from a reduced 1-dimensional theory. In section 4, we will
discuss the stability conditions for an inflationary solution in the induced-gravity theory.
Finally, the conclusions are presented in section 5.

2. Kaluza–Klein higher-derivative induced gravity

The (4 + D)-dimensional Kaluza–Klein higher-derivative induced-gravity theory can be
described by the following Lagrangian:

LN = (
L − 1

2∂Aψ∂Aψ
)
ψD, (1)

with the 4-dimensional relevant higher-derivative induced-gravity Lagrangian L given by

L = L1 + L2 + Lφ = −ε

2
φ2R − c1

(
RAB

CE

)2 − c2
(
RA

B

)2 − c3R2 − 1

2
∂Aφ∂Aφ − V (φ). (2)

Here, L1 ≡ −εφ2R/2, L2 ≡ −c1
(
RAB

CE

)2 − c2
(
RA

B

)2 − c3R2 and Lφ ≡ −(∂φ)2/2−V (φ)

denote, respectively, the induced Einstein–Hilbert Lagrangian, the higher-derivative terms and
the scalar field Lagrangian.

Note that, throughout this paper, the curvature tensor RE
ABC(gAB) will be defined by the

following equation:

[DA,DB]VC = RE
CBAVE. (3)

Accordingly, RE
ABC = −∂C�E

AB − �F
AB�E

CF − (B ↔ C). Here, �C
AB denotes the Christoffel

symbol (or spin connection of the covariant derivative, i.e. DAVB ≡ ∂AVB − �C
ABVC). To be
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more specific, �C
AB = 1

2 gCE(∂AgEB + ∂BgEA − ∂EgAB). Moreover, the Ricci tensor RAB is
defined as

RAB = RC
ABC (4)

and the scalar curvature R is defined as the trace of the Ricci tensor R ≡ gABRAB . Also, the
Einstein tensor is defined as GAB ≡ 1

2 gABR − RAB .
Note that we will use bold-faced notation (e.g. R) to denote field variables in N(= 4+D)-

dimensional space. In addition, normal notation will denote field variables evaluated in the
4- or D-dimensional spaces as the dimensional-reduction process MN → M4 × MD takes
place. Here, M4 is the 4-dimensional Friedmann–Robertson–Walker (FRW) space and MD is
the internal space. We will assume that MD is the D-dimensional FRW space for simplicity.
Note that the metric of the (4 + D)-dimensional FRW anisotropic space MN is given by

ds2 ≡ gAB dZA dZB ≡ gµν dxµ dxν + fmn dzm dzn (5)

= −dt2 + a2(t)

(
dr2

1 − k1r2
+ r2 d3	

)
+ d2(t)

(
dz2

1 − k2z2
+ z2 dD	

)
. (6)

Here, dp	 is the solid angle, dp	 = dθ1
2 + sin2 θ1 dθ2

2 + · · · + sin2 θ1 sin2 θ2 · · ·
sin2 θp−3 dθ2

p−2, and k1, k2 = 0,±1 stand for a flat, closed or open universe, respectively.
Note that we will also write gij = a2hij and gmn = d2hmn for convenience. Note that θi is the
phase angle of the D-dimensional spherical coordinate. For example, we have

z1 = z sin θ1 sin θ2 · · · sin θD−2. (7)

Note that we will write the N-dimensional spacetime coordinate as ZA → (xµ, zm) with
A (=0, 1, . . . , N − 1), µ (=0, 1, 2, 3) and m (=1, 2, . . . , D) denoting the N-, 4- and
D-dimensional spacetime indices, respectively. Specifically, capital Roman letters A,B,C, . . .

will denote N-dimensional indices. In addition, Greek letters will denote 4-indices while the
second-half of the Roman letters will denote D-dimensional spacetime indices. Here we
have assumed that the internal space (z) is independent of the external space (x). The only
t-dependence of the internal space is through the scale factor d(t).

Induced gravity proposes that all dimensionful parameters are dynamical variables.
Therefore, all coupling constants in this model, ε and ci , are dimensionless. Indeed, the
action ∫

d4x dDz
√

gLN (8)

is invariant under the global scale transformation: g′
AB = �−2gAB, φ′ = �φ,ψ ′ = �ψ in the

absence of the potential V unless V (φ) ∼ φ4. Here, � = constant denotes the global scale
transformation parameter. For a practical application, one needs to introduce a symmetry-
breaking potential so that a physical scale can be picked up dynamically. As a result, a
physical inflationary solution can be managed. In addition, it is easy to observe from the scale
transformation that ψ is introduced to compensate the transformation properties of the internal
D-space. Indeed, ψD dDz is made dimensionless by construction.

The variational equation of the ψ field gives

DψD−1
(
L − 1

2∂Aψ∂Aψ
)

+ DA(ψD∂Aψ) = 0. (9)

After the dimensional-reduction process takes place, the ψ field is expected to be a function
of the internal space coordinate z only. Consequently, this internal space scalar field will
not affect the 4-dimensional physical universe thereafter. For simplicity, one will assume
that a constant solution ψ = ψ0 = constant is adopted so that the constant ψ field can be
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absorbed into the internal coordinate z by a proper re-scaling. In effect, the ψ = constant
solution introduces a physical scale of the internal space. Note that the ψ = constant is not
only a solution to equation (9), but also a solution consistent with the static internal-space
solution. Indeed, the scalar field ψ is responsible for the internal-space dimension such that
dzDψD remains dimensionless. As a comparison, the scalar field φ is introduced to take care
of the dynamical dimension of all 4-space coupling constants. As a result, the ψ field will
decouple from the 4-space completely after the dimensional-reduction process is completed.
The remaining impact of this solution is an additional constraint L = 0 to be made compatible
with the dimensionally-reduced 4-space of interest.

Therefore, we will focus on the (4 + D)-dimensional model given by the effective
Lagrangian density L described by equation (2). Consequently, we will study model (2)
in the presence of the constraint L = 0 to be imposed later. In fact, we will show that the
constraint L = 0 is consistent with the inflationary de Sitter solution bounded by the abundant
and interesting constraints to be imposed on the coupling constants ci . We will also study the
stability of this inflationary solution and discuss interesting implications of this Kaluza–Klein
induced-gravity model.

The Euler–Lagrange equation of the system can be obtained from the variational equation
of the (4 + D)-dimensional metric gAB . We will write it as

JAB = GAB − TAB = 0. (10)

The derivation is very complicated and delicate. Fortunately, if we are only interested in the
(4 + D)-dimensional FRW space, the dynamical variables reduce to a set of 1-dimensional
variables a(t), d(t) and φ(t).

Effectively, we can write the Lagrangian L(gAB(a(t), d(t)), φ(t)) → Lr(a(t), d(t),

φ(t)). Hopefully, the final expression of the Euler–Lagrange equations can be reproduced
from the variation of Lr with respect to the dynamical variables a(t), d(t) and φ(t).

If this is indeed applicable, the field equations can be derived more easily without involving
the complicated tensor algebra. In particular, this will be easier to access when complicated
interactions are introduced. We will show that there is a little problem with this approach for
the non-redundant Friedmann equation. Fortunately, the non-redundant Friedmann equation
can be reconstructed by restoring the gt t variable. In a moment, we will derive a set of modified
formulae for this reduced Lagrangian Lr . We will drop the subscript ‘r’ in Lr for simplicity
and economics of notation.

Note also that the Bianchi identity DMGMN = 0 and the energy–momentum conservation
law DMT MN = 0 implies that DMJMN = 0. In addition, the t t-component of this Bianchi
identity can be brought to the following form:

(∂t + 3H + DI)Jtt + 3a2HJ3 + D d2IJD = 0, (11)

with Jij = J3hij . Since we only need two field equations for the 1-dimensional system of
a(t) and d(t). Therefore, one of the three field equations Jtt = 0, J3 = 0 and JD = 0
is presumably redundant. They are, however, not equally redundant. Let us first assume
that H �= 0, I ≡ ḋ/d �= 0 for simplicity. Indeed, the Bianchi identity implies that the first
equation Jtt = 0 is truly non-redundant: (i) Jtt = 0 implies that 3a2HJ3 + D d2IJD = 0
for all times. Hence, the constraint J3 = 0 (or JD = 0) implies the vanishing of the other
equation JD = 0 (or J3 = 0). (ii) J3 = JD = 0 implies that (d/dt + 3H + DI)Jtt = 0. Hence,
we have Jtt = constant exp[−a3dD] which does not go to zero unless a3dD → ∞. Cases (i)
and (ii) mean that the Friedmann equation Jtt = 0 is truly non-redundant while J3 = 0 and
JD = 0 are equally redundant. Therefore, we can ignore either one of the equations without
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losing any information. This is, however, not true under the condition where d = constant, or
I ≡ ḋ/d = 0. As indicated in equation (11), we have instead

(d/dt + 3H)J̄ tt = 3a2HJ̄ 3 (12)

under this condition. Here we have written J̄ tt ≡ Jtt |I=0 and similarly J̄ 3 ≡ J3|I=0. Therefore,
the reduced Bianchi identity (12) only tells us that J̄ 3 = 0 is redundant as compared to the
non-redundant Friedmann equation J̄ tt = 0 under the constraint I = 0. In fact, the d-equation
or the a-equation has to be retained for a consistent check in order to make sure the system does
accommodate a constant d solution. This point is often overlooked and should be checked
carefully in the analysis of the Kaluza–Klein theory under a constant internal-space solution.

Bianchi identity implies that the N(N + 1)/2 Einstein equations GAB = TAB are not all
independent, but related by N constraint equations DAGAB = 0. By looking at the conservation
law of the energy–momentum tensor DAT AB = 0, one may interpret that the conservation
of the energy–momentum tensor implies the vanishing of DAGAB . The Bianchi identity has,
however, a more intrinsic geometric meaning. It is in fact a geometric conservation law.
Note that the Bianchi identity DAGAB = 0 has a simple geometric interpretation, namely, the
boundary of a boundary is zero [15]. It implies that the energy–momentum is automatically
conserved for a system coupled consistently to the geometry of spacetime. In practice,
the Bianchi identity is helpful in providing an easier approach for studying the Einstein
equation. For example, we can focus on, with the help of the Bianchi identity, the independent
components of the field equations. Indeed, as shown above, the Bianchi identity in the FRW
spacetime implies that the Friedmann equation, the a-equation and the d-equation are related
by the differential equation (11). This implies that the Friedmann equation Gtt = Ttt has a
less differential order than the other components of the Einstein equation. As a result, the
Friedmann equation may serve as a useful tool in solving the differential equations.

3. Generalized Friedmann equation in 1-dimensional formulation

In order to derive the non-redundant Friedmann equation from the reduced Lagrangian, we
must restore the gt t -dependence of the reduced Lagrangian L. Indeed, Jt t comes from the
variation of L with respect to gt t , δL/δgt t ∼ εφ2J tt /2. Hence, the most convenient way to
restore the gt t -dependence of the reduced Lagrangian L is to introduce the lapse function b(t)

connecting the gt t metric component

ds2 ≡ gAB dZA dZB ≡ gµν dxµ dxν + fmn dzm dzn (13)

= −b(t)2 dt2 + a2(t)

(
dr2

1 − k1r2
+ r2 d3	

)
+ d2(t)

(
dz2

1 − k2z2
+ z2 dD	

)
. (14)

This metric will be named as the generalized FRW (GFRW) metric for the 4 + D anisotropic
space. Once the non-redundant Friedmann equation is derived from the variation of L with
respect to b, one can set b = 1 and reconstruct the b-independent Friedmann equation.

The non-vanishing spin connections can be listed as follows:

�γ
µν = �γ

µν, (15)

�p
mn = �p

mn, (16)

�γ
mn = −∂γ βgmn, (17)

�p
µm = ∂µβδp

m. (18)
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Here, ∂µβ ≡ ∂µd/d comes with a non-vanishing t-component. In addition, we will write
I = ∂tβ for convenience from now on. Consequently, all non-vanishing Riemannian curvature
components can be listed as follows:

Rt i
tj = 1

2
[HḂ + 2B(Ḣ + H 2)]δi

j , (19)

Rij
kl =

(
H 2B +

k1

a2

) (
δi
kδ

j

l − δi
l δ

j

k

)
, (20)

Rtm
tn = 1

2
[I Ḃ + 2B(İ + I 2)]δm

n , (21)

Rim
jn = HIδm

n δi
j , (22)

Rmn
pq =

(
I 2B +

k2

d2

) (
δm
p δn

q − δm
q δn

p

)
. (23)

As a result, deriving all Ricci tensors RA
B and scalar curvature tensors R is straightforward.

Note that there is also a t-dependent factor b(t) in the square-root of the metric determinant√
g ∼ ba3dD . Hence, the variational equation of b can be shown to be [14]

L − H
δL

δH
− I

δL

δI
+

[
H

d

dt
+ H(3H + DI) − Ḣ

]
δL

δḢ

+

[
I

d

dt
+ I (3H + DI) − İ

]
δL

δİ
= φ̇2. (24)

Note that the last term φ̇2 comes from the kinetic term of the scalar Lagrangian. Indeed, there
is a kinetic coupling term for φ via −gtt (φ̇)2/2 = b−2(φ̇)2/2. This will bring us an additional
φ̇2 to the left-hand side of equation (24). In fact, equation (24) can generalize to all fields
coupled to the Einstein–Hilbert action.

In addition, the variational equations of a and d also give

3L − H
δL

δH
+ (H 2 − Ḣ )

δL

δḢ
−

(
2H + DI +

d

dt

)

×
[
−

(
4H + DI +

d

dt

)
δL

δḢ
+

δL

δH

]
− 2k1

δL

δk1
= 0, (25)

DL − I
δL

δI
+ (I 2 − İ )

δL

δİ
−

(
3H + (D − 1)I +

d

dt

)

×
[
−

(
3H + (D + 1)I +

d

dt

)
δL

δİ
+

δL

δI

]
− 2k2

δL

δk2
= 0. (26)

Note that the above equations also hold in the presence of the scalar coupling once we assume
φ(Z) = φ(t).

We will first study a simple model with a constant d solution. This is a physical solution
since the internal space seems to be small from any physical observation up until now. As
shown above, the Bianchi identity indicates that the second a-equation (25) is derived implicitly
by the first Friedmann equation (24) for the constant internal-space model. Therefore, we
will try to solve equations (24) and (26) for a complete analysis. As a result, the Friedmann
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equation (24) and the d(t) equation (26) become

L̄ − H
δL̄

δH
+

[
H

d

dt
+ 3H 2 − Ḣ

]
δL̄

δḢ
= φ̇2, (27)

DL̄ =
(

3H +
d

dt

)[
−

(
3H +

d

dt

)
δL̄

δİ
+

δL̄

δI

]
+ 2k2

δL̄

δk2
(28)

under the d(t) = constant background solution. Here, a bar notation of a variable L denotes a
variable evaluated at I = 0. Explicitly, L̄ ≡ L|I=0. In addition, we must also check whether
the solution is consistent with the constraint L̄ = 0. Our results agree with the equations
shown in [21]. Details will be provided in the appendix.

4. Stability of an inflationary external space

We need to find out whether the inflationary background de Sitter solution H = H0 and
I = 0 is a possible solution to the Kaluza–Klein induced-gravity model. As a result, a
stability analysis is also needed to find out whether this background solution is stable or
not. Furthermore, following the conventional approach, the constant internal-space solution
is assumed and should be served as a reasonable ansatz. This is because the internal-space
information appears to be minor as compared to the 4-space counterpart. Otherwise, we would
be able to measure the impact of the internal-space physics once the internal space scale factor
d(t) grows to some appreciable size. In addition, we will also focus on the k1 = 0 flat 4-space
condition which appears to agree with the latest observations [16].

Therefore, we will study the existence and stability problem of the inflationary universe
for the induced Kaluza–Klein model described above. The effective Lagrangian L̄ for the
model L under the I = 0 condition can be shown to be

L̄ = 3εφ2[Ḣ + 2H 2] − 12(c1 + c2 + 3c3)[(Ḣ + H 2)2 + H 4]

− 12(c2 + 6c3)[(Ḣ + H 2)H 2] + 1
2 φ̇2 − V (φ). (29)

In addition, the variations of the I-equation are

δ

δI
L̄ = 6DH

{
ε

2
φ2

0 − c2[Ḣ + 3H 2] − 12c3[Ḣ + 2H 2]

}
, (30)

δ

δİ
L̄ = 2D

{
ε

2
φ2

0 − c2[3Ḣ + 3H 2] − 12c3[Ḣ + 2H 2]

}
. (31)

To summarize, there are two metric equations and one ψ equation for the system

φ̇2 + H
δL̄

δH
=

[
H

d

dt
+ 3H 2 − Ḣ

]
δL̄

δḢ
, (32)

(
3H +

d

dt

)
δL̄

δI
=

(
3H +

d

dt

)2
δL̄

δİ
, (33)

L̄ = 0 (34)

under the flat space condition and the constant internal-space solution I = 0. The equation
L̄ = 0 denotes the constraint from the constant ψ equation. Here, L̄ ≡ L|I=0. The Friedmann
equation reads
1
2 φ̇2 + V = 3εφ2H 2 + 6εHφφ̇ + 12(c1 + c2 + 3c3)(Ḣ

2 − 2HḦ − 6H 2Ḣ ). (35)
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At the end of this section, we will show that the perturbation equation of the constraint L̄ = 0
is consistent with the inflationary de Sitter solution we are interested in. More specifically, the
linear perturbation equations δL̄ can be shown to vanish automatically without generating any
further constraint on the system. Therefore, there is no need to worry about the perturbation
effect of this constraint. Hence, we can add or remove the effect of this constraint anytime.
This result also indicates that the constant ψ solution, the origin of this constraint, is a very
reasonable ansatz. Furthermore, the φ-equation can be shown to be

6εφ(Ḣ + 2H 2) = φ̈ + 3Hφ̇ + V ′. (36)

Let φ = φ0 + δφ and H = H0 + δH with φ0 and H0 be some constant initial states for
the inflationary de Sitter background solution. Here, δφ and δH denote small perturbations
against the background solutions. We will try to extract the linear solutions to the perturbation
effect. As a result, the leading-order Friedmann equation (35) gives

V0 = 3εφ2
0H

2
0 . (37)

Similarly, the leading-order scalar equation (36) gives

12εφ0H
2
0 = V ′

0. (38)

Here, V ′
0 ≡ V ′(φ0). Therefore, we have the constraints combined together as

φ0V
′

0 = 4V0 = 12εφ2
0H

2
0 . (39)

Note that φV ′ counts the effective scale-dimension of the effective potential V (φ). For
example, φV ′ = nV if V = φn with the effective dimension n. Therefore, this condition
implies that the inflationary phase exists only when the effective dimension of the effective
potential is 4 at the inflationary phase φ = φ0 and H = H0. Since V = λφ4 represents
the scale-invariant potential in the 4-dimensional space, i.e. dim (λ) = 0 in 4-space, this
condition will be denoted as the scaling condition [12]. As an example, the spontaneously
symmetry-breaking potential of the form

V (φ) = λ

4

(
φ2 − φ2

0

)2
+ 6εH 2

0

(
φ2 − φ2

0

)
+ 3εH 2

0 φ2
0 , (40)

with an arbitrary coupling constant λ, can be shown to be a good candidate satisfying the
scaling condition (39).

In addition, the first-order perturbation equation of H-equation (35) and φ-equation (36)
can be shown to be

εφ0(δφ̇ − H0δφ) = 4(c1 + c2 + 3c3)(δḦ + 3H0δḢ ) − εφ2
0δH, (41)

δφ̈ + 3H0δφ̇ +
(
V ′′(φ0) − 12εH 2

0

)
δφ = 6εφ0(δḢ + 4H0δH). (42)

Writing δH = exp[hH0t]δH0 and δφ = exp[pH0t]δφ0, the above perturbation equations can
be written as

εφ0 (p − 1) δφ = 4(c1 + c2 + 3c3)H0

(
h2 + 3h − εφ2

0

4(c1 + c2 + 3c3)H
2
0

)
δH, (43)

H0

(
p2 + 3p +

V ′′(φ0) − 12εH 2
0

H 2
0

)
δφ = 6εφ0 (h + 4) δH. (44)

In addition to the trivial solution δH = 0 and δφ = 0, consistent solutions also exist when
h = −4 and p = 1. If h = −4, we will have the following constraint from the right-hand side
of equation (43):

H 2
0 = εφ2

0

16(c1 + c2 + 3c3)
. (45)
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In addition, the existence of nontrivial solution p = 1 implies that

V ′′(φ0) = 12εH 2
0 − 4H 2

0 (46)

from the left-hand side of equation (44). As a result,

δH = exp[−4H0t]δH0. (47)

Equivalently, the linear perturbation gives

H = H0 + δH0 exp[−4H0t] (48)

as the solution to the Hubble parameter with a small deviation from the de Sitter background.
We will show in addition that the I-equation (33) and the constraint equation L̄ = 0 are

both consistent with the above constraints in the presence of static internal space and de Sitter
external space. Indeed, writing Dt ≡ ∂t + 3H, δL̄/δI ≡ L̄I and δL̄/δİ ≡ L̄İ , the I-equation(

3H +
d

dt

)
δL̄

δI
=

(
3H +

d

dt

)2
δL̄

δİ
,

under the condition of flat and static internal space can be integrated to give

Y (H) ≡ L̄I − DtL̄İ = 6D(c2 + 4c3)[Ḧ + 4HḢ ] +
K1

a3
= 0 (49)

with a constant of integration K1. During the inflationary phase, we can ignore the effect of
the K1 term. Therefore, the I-equation does not have a leading-order contribution. In addition,
the first-order perturbation of this equation gives δY = 6D(c2 + 4c3)[δḦ + 4H0δḢ ] which
vanishes identically compatible with the perturbation δH given in equation (47). In fact, we
can also compute the complete I-equation and find that

DtY = 6D(c2 + 4c3)[ ˙̈H + 4Ḣ 2 + 7HḦ + 12H 2Ḣ ] = 0. (50)

There is no leading contribution either. In addition, the perturbative equation takes the form

δDtY = DtδY = 6D(c2 + 4c3)Dt [δḦ + 4H0δḢ ]

= 6D(c2 + 4c3)[δ ˙̈H + 7HδḦ + 12H 2δḢ ] = 0 (51)

that vanishes identically with δH given in equation (47).
As mentioned above, we still have to compute all possible constraints from the internal

space scalar field ψ-equation L̄ = 0. It is interesting to find that the leading-order perturbation
equation for L̄ = 0 gives

6εφ2
0H

2
0 − V0 = 3εφ2

0H
4
0 = 12(2c1 + 3c2 + 12c3)H

4
0 (52)

incorporating the scaling constraint V0 = 3εφ2
0H

2
0 . Therefore, the leading-order equation of

L̄ = 0 gives another constraint

H 2
0 = εφ2

0

4(2c1 + 3c2 + 12c3)
. (53)

In addition, the first-order perturbation equation of this ψ constraint can be shown to be[
3εφ2

0 − 12(2c1 + 3c2 + 12c3)H
2
0

]
[δḢ + 4H0δH ] +

(
12εφ0H

2
0 − V ′

0

)
δφ = 0. (54)

Therefore, this equation is completely consistent with the whole system by observing that
all coefficients in the above equation vanishes identically. Indeed, 3εφ2

0 − 12(2c1 + 3c2 +
12c3)H

2
0 = 0, following equation (53). In addition, δḢ + 4H0δH = 0 and 12εφ0H

2
0 − V ′

0
are automatically satisfied.
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In summary, the constraints (45) and (53) indicate that the coupling constants should
obey the following constraint in order to admit an inflationary phase in the presence of a static
internal space:

2c1 + c2 = 0. (55)

As a result, the Hubble constant and the field parameters are related by

H 2
0 = εφ2

0

8(c2 + 6c3)
. (56)

Note that the above results indicate that (1) the static internal flat space solution is completely
compatible with the conditions of the inflationary solution, (2) the perturbation equation of
L̄ = 0 is a perfect identity consistent with all other constraints derived elsewhere. This
indicates that the constant ψ solution is a very reasonable choice for the stationary state of the
system. In addition, (3) the static internal space assumption is also a consistent choice for the
existence and stability of the inflationary phase.

In addition, we can also consider the perturbation of ψ by setting ψ = ψ0 + δψ and
perturb the field equation (9). The result is DA∂Aδψ = 0. Here we have also used the identity
δL = 0 under the linear perturbation shown above. Assuming δψ(Z) = δψ(z) such that the
internal space z is completely decoupled from the 4D space time. As a result, the perturbation
equation DA∂Aδψ = 0 is consistent if δψ(z) is a harmonic function obeying ∂m∂mδψ = 0.
Hence, δψ(z) = constant for a consistent perturbation. Therefore, the constant ψ is also a
consistent choice of background solution.

Note also that the effect of the ψ = constant implies that L = 0. Together with the
constraint 2c1 + c2 = 0 for the existence of an inflationary phase, one effectively has a scalar
equation of the form

1

2
∂Aφ∂Aφ + V (φ) +

ε

2
φ2R = c2

2

(
RAB

CE

)2 − c2
(
RA

B

)2 − c3R2 (57)

with a purely geometric source. Although the equation L = 0 is not exactly a Klein–Gordon
equation of the form (∂2 + m2 + R/5)φ = αR2 studied in [19], both theories appear to have a
similar physical origin. It was shown that an effective re-normalized Lagrangian of the form
αφR2 is a result of dimensional consideration. Indeed, the coupling constant α can only be
made dimensionless, rendering a system free from introducing any additional arbitrary length
scale, if the spacetime dimension N = 6 [19].

Note that the scalar fields ψ and φ, both with dimension 1, considered in this paper are
designed to replace all dimensionful coupling constants with appropriate scalar fields. As a
result, all coupling constants are assumed to be dimensionless in this approach. The only
exceptions are some parameters associated with the SSB potential V (φ) designed to pick up
a symmetry-breaking scale. The constraint equation L = 0 indicates that the scalar field ψ

introduced here may have a close relation with the re-normalizability of the energy–momentum
tensor for φ. In addition, a similar model has been studied in [20] with the Gauss–Bonnet
(GB) Lagrangian coupled to a perfect fluid. The constraint 2c1 + c2 = 0 in this paper follow
first from the stability of the Friedmann equation (35) with a coefficient of the combination
(c1 + c2 + 3c3) coupled to the quadratic interactions Ḣ 2 − 2HḦ − 6H 2Ḣ . This coefficient
vanishes for the GB term with c1 : c2 : c3 = 1 : −4 : 1. This is the main difference between
the model considered in [20] and the current models. In addition, we have also shown in the
appendix that the Friedmann equation agrees with [21] up to a difference in the definition
of sign of the coupling constants ci . Our inflationary phase solution also agrees with [21]
up to a scale due to the effect of the scalar field in this induced-gravity model. Indeed,
the Friedmann equation and the I-equation implies that H 2

0 = �/6 and (c2 + 4c3)� = 1,
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respectively, after setting V = � for a system without a dynamical scalar field φ. As a result,
H 2

0 = 1/[6((c2 + 4c3)].

5. Conclusion

It is shown that replacing the internal space dimensionful coupling constant with a dimension
1 scalar field ψ = constant works harmonically with the Kaluza–Klein inflationary universe
under the constraint 2c1 + c2 = 0. In addition, from the effective Lagrangian shown in
equation (29), it is easy to find that any quadratic Lagrangian must present itself as
combinations of the form L̄2 = l1Ḣ

2 + l2(ḢH 2 + H 4) ≡ −12(c1 + c2 + 3c3)[(Ḣ + H 2)2 +
H 4] − 12(c2 + 6c3)[(Ḣ + H 2)H 2] with a dimensionless li corresponding to the linear
combinations of ci defined accordingly. Here, L̄2 denotes the quadratic part of the effective
Lagrangian L̄. As a result, it can be shown that any quadratic Lagrangian of the combinations
L̄2 ∼ l1Ḣ

2 + l2(ḢH 2 + H 4) will not contribute to the Friedmann equation.
Indeed, the quadratic terms contribute to the Friedmann equation (32) according to

E2 = L̄2 + H

(
d

dt
+ 3H

)
L̄Ḣ − HL̄H − Ḣ L̄Ḣ → L̄2 + 3H 2L̄Ḣ − HL̄H (58)

in the de Sitter background with LH ≡ δL̄2/δH and LḢ ≡ δL̄2/δḢ shown in the above
equation. It is clear that the l1 term does not contribute to the above equation E2 in the
de Sitter space with Ḣ 0 = 0. Therefore, we effectively have the quadratic Lagrangian
L̄2 = l2(ḢH 2 + H 4) needed to be considered for its effect on the leading-order Friedmann
equation. As a result, we can show that L̄2 → l2H

4
0 ,H 2L̄Ḣ → l2H

4
0 and HL̄H → 4l2H

4
0 .

Hence, the total contribution of the quadratic Lagrangian to E2 cancels each other. Therefore,
this proves that the quadratic Lagrangian does not contribute to the de Sitter solution in
4-dimension.

The perturbation equation for δφ indicates a constraint (46) V ′′(φ0) = 12εH 2
0 − 4H 2

0
which turns out to be inconsistent with the SSB scalar potential (40). Indeed, V ′′

0 =
2λφ2

0 + 12εH 2
0 for this potential. Hence, the constraint (46) implies that λφ2

0 = −2H 2
0 . A

negative λ indicates that the SSB potential is an unstable potential without a global minimum.
In fact, we can show that the local minimum is at φ2

m = 0 and the local maximum is at
φ2

M = (1 + 6ε)φ2
0 . Hence, the consistent initial state φ0 of the scalar field will be expected

to locate at the left-hand side of the maximum point φM . The scalar field will hence roll
down to the local minimum which is located at φ = 0. This will lead to an un-physical
state with an infinite Newtonian constant G. In addition, this local minimum is also not a
stable vacuum state. φ will eventually tunnel to its global minimum at φ → ∞. Therefore,
the constraint (46) is not a physical constraint for the SSB potential and this is also true for the
Coleman–Weinberg effective potential [17]. Hence, the only consistent perturbation of φ is
δφ = 0. This indicates that the de Sitter background is highly stable and compatible with the
stable mode δH → 0. Therefore, the system will remain stable as long as the scalar field does
change very slowly. Note that the negative coupling constant appears to be a universal feature
of any coupled effective potential including the Eric–Weinberg dynamical symmetry-breaking
potential [18].

Indeed, the φ equation under the slow rollover assumptions, |φ̇/φ| 	 H0 and |φ̈/φ| 	
H 2

0 , states that

φ̈ + 3H0φ̇ ∼ 0

during the period where H ∼ H0. This gives

φ ∼ φ0 +
φ̇0

3H0
[1 − exp(−3H0t)]. (59)
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Therefore, the slow rollover approximation is indeed consistent with the dynamics of the scalar
field equation that has been a focus of research interests in the literature. Therefore, φ does
change very slowly during this inflationary phase.

In summary, we have derived abundant constraints from the assumptions: (i) ψ(z) =
constant and (ii) d(t) = constant. These assumptions are adopted partly from the fact that
they are both not appreciable in the 4-dimensional physical universe observed today. Hence,
it is reasonable to freeze their dynamics at certain stage of the evolutionary process. The
abundant consistency shown in this paper compatible with the abundant constraints from these
assumptions implies that these assumptions are in fact rather reliable. Although we are unable
to provide a dynamical reason for these assumptions from the first principle, the compatibility
of these assumptions with the inflationary 4-space deserves more attention for its possible
physical implications.

Our result indicates, however, that both assumptions, static ψ and static d, appear to be
a consistent set of choices for the higher-derivative Kaluza–Klein models. As a result, the
Kaluza–Klein higher-derivative induced-gravity theory behaves similarly to the conventional
4-dimensional induced higher-derivative gravity in the lower-energy limit, namely, only R2

and R2
ab couplings remain effective during the inflationary de Sitter phase. This is inconsistent

with the 4D theories that R2
abcd terms can be replaced by R2 and R2

ab couplings following the
GB theorem. Therefore, the related research deserves more attention.
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Appendix

A.1. Field equation

The field equation of the Lagrangian L = −εφ2R/2 − c1
(
RAB

CE

)2 − c2
(
RA

B

)2 − c3R2 −
∂Aφ∂Aφ/2 − V can be derived by the variation of gAB . The result is

εφ2

2

(
1

2
RgAB − RAB

)
+

1

2
gAB

(
c1

(
RAB

CE

)2
+ c2

(
RA

B

)2
+ c3R2 − Lφ

)

= 2
(
c3RRAB + c2RACRC

B + c1RACDERCDE
B

) − 2c3(gABD2 − DADB)R

− c2

2
gABD2R − (4c1 + c2)D

2RAB + 2(2c1 + c2)DADCRB
C

+
ε

2
(DA∂B − gABD2)φ2 +

1

2
∂Aφ∂Bφ. (A.1)

In addition, the scalar equation can be shown to be

D2φ = V ′ + εφR. (A.2)

In order to derive the field equation in a covariant way, we may write the variation of the
Riemann curvature tensor as δRD

CBA = −DAδ�D
BC + DBδ�D

AC as if δ�A
BC is a type T(1,2)

tensor. The derivation has nothing to do with whether δ�A
BC is a tensor or not. Rather,

by imagining δ�A
BC as a tensor and using all the related properties of the tensor, it helps in

reducing the effort in deriving these equations, especially when integration-by-part is required.
In addition, we have also used the Bianchi identity DCDDRACDB = D2RAB − DCDARBC in
converting the differentiation of the Riemann tensor into the differentiation of the Ricci tensor.
Note also that our result agrees with [21] up to a difference in the definition of sign in ci .
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In particular, we can show explicitly that the Friedmann equation for static internal space
agrees with equation (15) in [21].

In addition, the static I-equation (28) can be written as

DL̄ = DtY = 6D(c2 + 4c3)Dt [Ḧ + 4HḢ ]

= 6D(c2 + 4c3)Dt∂t [Ḣ + 2H 2] = −D(c2 + 4c3)D
2R. (A.3)

Here, Dt ≡ ∂t + 3H . As a result, the static internal space I-equation can be written as

L̄ + (c2 + 4c3)D
2R = 0, (A.4)

which is identical with the mn-component of the Einstein equation (A.1). Note that
Rmn = Ran = 0 in the static internal space condition. Therefore, the only thing left over
from the mn-component Einstein equation is identical to equation (A.4). Note that this result
agrees with equation (17) in [21].

As shown earlier, JAB = GAB − TAB = 1
2 RgAB − RAB − TAB = 0 can be decomposed

into three different equations: Jt t = 0, gij Jij = 0 and gmnJmn = 0 in the (4 + D)-dimensional
spacetime described by the GFRW metric (6). These equations correspond to the Friedmann
equation (24), the a-variational equation (25) and the d-variational equation (26). Therefore,
this proves that equations (24)–(26) and (36) are the complete set of field equations in the
GFRW spacetime. We choose to ignore one of the redundant equations (25) in this paper
without losing any physical information as implied by the Bianchi identity (11).

In summary, the reduced formulae shown in this paper can be helpful in extracting some
useful information without going into the details of the field equations. For example, the
existence of the inflationary solution H = H0 has to do with the leading-order equations. It
can be done by ignoring any term like f (H)Ḣ , with f (H) an arbitrary function of H. On the
other hand, the stability of the inflationary solution has to do with those leading-order terms
linear in time differentiation of δH . We can freely ignore the terms like Ḣ 2. In particular,
(d/dt)(f (H)δH) = f (H)δḢ can be used to skip unrelated terms, with f (H) an arbitrary
function of H, with the close formula shown in this paper.

A.2. Curvature tensor

For completeness of the calculation, we will list all non-vanishing components of the Ricci
tensors, scalar curvatures and terms present in the Lagrangian

Rt i
tj = [Ḣ + H 2]δi

j , (A.5)

Rij
kl =

(
H 2 +

k1

a2

) (
δi
kδ

j

l − δi
l δ

j

k

)
, (A.6)

Rtm
tn = (İ + I 2)δm

n , (A.7)

Rim
jn = HIδm

n δi
j , (A.8)

Rmn
pq =

(
I 2 +

k2

d2

) (
δm
p δn

q − δm
q δn

p

)
. (A.9)

In addition, one has

Rt
t = −[3(Ḣ + H 2) + D(İ + I 2)], (A.10)

Ri
j = −

[
Ḣ + 3H 2 + 2

k1

a2
+ DHI

]
δi
j , (A.11)
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Rm
n = −

[
İ + DI 2 + (D − 1)

k2

d2
+ 3HI

]
δm
n , (A.12)

R = −
[

6

(
Ḣ + 2H 2 +

k1

a2
+ DHI

)
+ D(D − 1)

(
I 2 +

k2

d2

)
+ 2D(İ + I 2)

]
, (A.13)

and

(
RAB

CD

)2 = 12(Ḣ + H 2)2 + 4D(İ + I 2)2

+ 12DH 2I 2 + 12

(
H 2 +

k1

a2

)2

+ 2D(D − 1)

(
I 2 +

k2

d2

)2

, (A.14)

(
RA

B

)2 = 12(Ḣ + H 2)2 + D(D + 1)(İ + I 2)2 + 12

(
H 2 +

k1

a2

)2

+ D(D − 1)2

(
I 2 +

k2

d2

)2

+ 3D(D + 3)H 2I 2

+ 12(Ḣ + H 2)

(
H 2 +

k1

a2

)
+ 6D(Ḣ + H 2 + HI)(İ + I 2)

+ 6DHI

(
Ḣ + 3H 2 + 2

k1

a2

)
+ 2D(D − 1)(İ + I 2)

(
I 2 +

k2

d2

)

+ 6D(D − 1)HI

(
I 2 +

k2

d2

)
, (A.15)

(R)2 = 36(Ḣ + H 2)2 + 4D2(İ + I 2)2 + 36D2H 2I 2 + 36

(
H 2 +

k1

a2

)2

+ D2(D − 1)2

(
I 2 +

k2

d2

)2

+ 72(Ḣ + H 2)

(
H 2 +

k1

a2
+ DHI

)

+ 12D(D − 1)

(
Ḣ + 2H 2 +

k1

a2

)(
I 2 +

k2

d2

)

+ 24D

(
Ḣ + 2H 2 +

k1

a2

)
(İ + I 2) + 72DHI

(
H 2 +

k1

a2

)

+ 4D2(D − 1)(İ + I 2)

(
I 2 +

k2

d2

)

+ 24D2(İ + I 2)HI + 12D2(D − 1)HI

(
I 2 +

k2

d2

)
. (A.16)

A.3. Compactification

Another way to derive the decoupled field equation is to assume that the N-space decouples
according to MN → M4 × MD via the following metric decomposition:

ds2 = gab(x) dxa dxb + d2(x)hmn(z) dzm dzn (A.17)

with the internal space metric gmn(x, z) = d2(x)hmn(z).
Non-vanishing spin connections are

�a
bc = �a

bc; �c
mn = −Ecgmn; �m

cn = Ecδ
m
n ; �m

np = �m
np, (A.18)
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with Ec ≡ ∂cd(x)/d(x) a vector-like function. As a result, we can also show that all non-
vanishing curvature tensors are

Rab
cd = Rab

cd, (A.19)

Ram
bn = −∇aEbδ

m
n , (A.20)

Rmn
pq = −EaEa

(
δm
p δn

q − δm
q δn

p

)
, (A.21)

Ra
b = Ra

b + D∇aEb, (A.22)

Rm
n = (Da + DEa)E

bδm
n , (A.23)

R = R + 2D∇′
aE

a, (A.24)

with ∇aEb ≡ (Da + Ea)Eb and ∇′
aEb ≡ [Da + (D + 1)/2Ea]Eb.

The Lagrangian L = − ε
2φ2R − c1

(
RAB

CE

)2 − c2
(
RA

B

)2 − c3R2 − ∂Aφ∂Aφ/2 − V can
be shown to be

L(Ea) = εφ2

2
[R + 2D∇′

aE
a] − c3[R2 + 4DR∇′

aE
a + 4D2(∇′

aE
a)2] − ∂Aφ∂Aφ/2 − V

(A.25)

−c2
(
Ra

b
2 + 2DRab∇aEb + D2[(Da + DEa)Eb][(Da + DEa)Eb]

)
(A.26)

−c1
[
Rab

cd
2

+ 4D(∇aE
a)2 + 2D(D − 1)(EaE

a)2
]
. (A.27)

Note that Ea = ∂ad/d, therefore the I-equation can be derived by varying the above effective
Lagrangian with respect to d. We can first derive the field equation with respect to δEa and
perform another integration-by-part to find the field equation of δd. Note also that only terms
linear in Ea will contribute to the I-equation once I = 0 is imposed for the static internal
space solution. Therefore, we only need to consider

L = Dφ2DaE
a − 4c3DRDaE

a − 2c2DRabDaEb ∼ D[(c2 + 4c3)DaR − Daφ
2]Ea.

(A.28)

In addition, there is also a term derived from the volume measure
√

g ∝ dD . Therefore, the
I-equation can be shown to be

D[L̄ − (c2 + 4c3)D
2R] = 0. (A.29)

This is identical to the I-equation (A.4) L̄+ (c2 + 4c3)DtDtR = 0 shown above. And also note
that equation (A.29) holds for the case with d = d(x) in the presence of a constant background
internal space d = constant. Therefore, the conditions of the inflationary phase remain the
same for inhomogeneous d(x) in the presence of a static internal background.
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