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Population transfers in degenerate (or almost degenerate) two-level systems interacting with the
few-cycle laser pulse are investigated. A simple and analytical formula of nonadiabatic transition
probability is derived with completely degenerate condition, demonstrating the sensitive
dependence of the transition probability on the phase of the few-cycle pulses. As one of the
applications of this formula, a new way of controlling the nuclear wave packet dynamics at a
potential curve crossing by 1 cycle laser pulse is proposed. © 2007 American Institute of Physics.

[DOL: 10.1063/1.2767260]

I. INTRODUCTION

Active control and manipulation of molecular processes
and chemical dynamics by laser fields have been at the fore-
front of research for both chemistry and physics over the last
couple of decades. The recent remarkable progress in laser
technology has led to new possibilities to control molecule
transitions. Control algorithms involve in manipulation of
the phase and intensity of laser pulses including Rice-Tannor
pump-dump scheme,' Brumer-Shapiro coherent control
scheme,’ optimal control scheme,** adiabatic rapid passage
scheme,”™” and periodic sweeping of laser parameters.8

Recent advances of laser technology have made it pos-
sible to generate intense laser pulses shorter than 10 fs.” Un-
like the conventional laser pulses, these pulses contain only
few optical cycles. Therefore, it is expected that the phenom-
ena induced by such the few-cycle laser pulses are sensitive
to its phase. For examples, Chelkowski et al. have reported
that angular distributions of the photoelectrons created by an
intense few-cycle laser pulses clearly depend on the phase.10
Recently, Kamta et al. have shown strong phase dependences
of enhanced ionization in asymmetric diatomic molecules
such as HeH?* interacting with the few-cycle laser pulses.'l

In this paper, we report the population dynamics in de-
generate (or almost degenerate) two-level systems exposed
to an intense few-cycle laser pulses. For a two-level system
interacting with the continuous-wave (cw) laser field
F cos(wt+¢), the population dynamics is well known as
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Rabi oscillation.'? Under the rotating wave approximation,
the transition probability P;, is described by a simple for-
mula

02 (
e 2

where Q=pu,F/h denotes the Rabi frequency, w;, is the
transition dipole moment between the two levels, A=w
—wp, is the detuning, and w;, is the resonance frequency
between the two levels. In this case, P, does not depend on
the phase ¢ at all. In the case of a conventional long pulse
F(t)cos(wt+ ¢) where F(¢) is the envelope function, the tran-
sition probability is derived with use of the semiclassical

Py= (1)

theory of the Rosen-Zener (RZ)-type nonadiabatic
transition>™"  and  the Floquet (or dressed) state
representation,m’17 and it is given as

Pp=4p(1 —P)Siﬂz v, (2)

where p is the nonadiabatic transition probability at one
complex crossing point, and ¢ is the phase difference accu-
mulated between the two adiabatic Floquet states. In this
case, P, does not depend on ¢ either. Since Egs. (1) and (2)
are valid for the cw laser fields and slowly varying long
pulses, they cannot be applied to the few-cycle laser pulses.
As there is no simple and analytical formula of transition
probability for the few-cycle laser pulses, especially for
1 cycle laser pulse, we derive a simple formula of transition
probability for two-level systems interacting with an intense
1 cycle laser pulse in this paper for the sake of the simplicity.
Fortunately, when two-level system is completely degenerate
we can derive an exactly analytical solution. As we know for
nondegenerate two-level systems, we must utilize the semi-
classical matrix propagation method'*" to obtain an analyti-
cal formula of nonadiabatic transition probabilities. These

© 2007 American Institute of Physics
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FIG. 1. (Color online) (a) Time variation of the laser amplitude for 1 cycle
pulse. The phase ¢ is fixed at 0. (b) Time variation of the energy levels for
1 cycle pulse shown in (a). Solid line, adiabatic energy levels; dotted line,
energy levels +hiw;,/2 of a field-free two-level system. X denotes the times
when the LZ or RZ type nonadiabatic transitions are induced.

schemes have successfully been applied to the conventional
long pulses along with the Floquet state representation.

This paper is organized as follows. In Sec. II, we derive
a simple and analytical formula of nonadiabatic transition
probability for degenerate (or almost degenerate) two-level
systems interacting with 1 cycle laser pulse. This formula
consists of sin? function, including the field amplitude, fre-
quency, and phase of the 1 cycle pulse as parameters. This
analytical formula is compared with the numerical solution
of the time-dependent Schrodinger equation in Sec. III. Fur-
thermore, as one of the applications of this formula, we pro-
pose a new laser control of nonadiabatic dissociation dynam-
ics of a diatomic molecule at a potential curve crossing, and
agreement and limit of the formula are extensively analyzed
as well. Concluding remarks are provided in Sec. IV.

Il. THEORETICAL FRAMEWORK

In this section, we consider the interaction of the degen-
erate (or almost degenerate) two-level system with linearly
polarized few-cycle laser pulses E(z). Throughout this paper,
it is assumed that E(¢) is defined as

J. Chem. Phys. 127, 094304 (2007)
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FIG. 2. (Color online) The same as Fig. 1 but the phase ¢ is fixed at 7/2.

E\E(r) forO0<t=<2t,
E(1) = (3)
0 for t <0, t>2t,,

E(t) = e(t)cos[w(t — t,) + ¢], (4)
e(t) =g sin2<21tct> , (5)
and
=", (©6)
w

where E, is the polarization vector (unit vector, |Eo|=1), &(1)
is the pulse envelope, w is the laser frequency, ¢ is the ab-
solute phase of the laser pulse (0< ¢ <2m), g, is the peak
amplitude, and n is the number of the optical cycle. Equation
(3) represents the n-cycle laser pulses. It is also assumed that
there is a dipole-allowed transition between the two levels |1)

and |2). Therefore, the Hamiltonian H for this system under
the dipole approximation is given by
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FIG. 3. (Color online) Calculated population dynamics (lower panel) of a degenerate two-level system (w;,=0 cm~
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!, u=1.0 a.u.) interacting with 1 cycle

pulse (upper panel: £,=0.009 a.u., ®=2000 cm™!) against time 7. (a) ¢=0 and (b) ¢=7/2.

. [— hw/2 — wE(r) } ™

- —/.LE(I) ﬁw]2/2

where fw,, denotes the energy spacing between |1) and |2),
and u=pm,-Ey, where m, is the transition dipole moment
between |1) and [2). Time-dependent Schrodinger equation
for the two-level system in Eq. (7) is given by'®

Ld[e] Ta®]
lﬁdt[cz(f) ] = H[Cz(f) I ®)

The scattering matrix is defined by

{61(+°°)} ) {sn Stz {q(—m)} o
cy(+ ) Sp1 Sy JLea(=2) ]

The off-diagonal matrix element represents the overall nona-
diabatic transition probability Py,=|S,/>. In general, an ex-
actly analytical solution cannot be obtained with Hamil-

tonian in Eq. (7). However, if we take completely degenerate
case in which w;,=0, we can have

ih e )+ ex(0)]= AWe, (0 + 0]
(10)
ih e () ex()] =~ AWley () - 0],

where A(r)=—uE(t). Equation (10) can be solved exactly as
follows:

. t . t
_— éfo A(r)dt | + By exp éfo A(r)dt

ci(t)=Aqexp

if" if
-—\| A(r)dt|-B — | A(r)dt
I ﬁfo (1) | oexp_ﬁ . (1) |

(11)

from which the scattering matrix in Eq. (9) can be obtained
as

cy(t) = Ay exp

S11=Sz2=COSq,,

Slz=521=—isin\1’, (12)
where
1 [
wz—f A(r)dr. (13)
o
The simple calculation leads to
1
S {1 IR S
hw 2((mwt,) + 1)
+ ! ] in wt, ¢ (14)
—— |sin wt.. cos ¢.
2((mlwt,) — 1) ¢

If cycles of laser pluses n=2 in Eq. (6), ¥(n=2)=0. At
1 cycle laser pulse n— 1, Eq. (14) turns to be
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FIG. 4. (Color) Transition probabilities P, for a degenerate two-level sys-
tem (w,=0 cm™!, ©=1.0 a.u.) interacting with 1 cycle pulse as a function
of w and &. [(a) and (b)] Numerical solutions and [(c) and (d)] analytical
formula, Eq. (16). ¢ is set to 0.

Ccos ¢. (15)

The overall nonadiabatic transition probability is

J. Chem. Phys. 127, 094304 (2007)
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FIG. 5. (Color) Transition probabilities P, for a degenerate two-level sys-
tem (w;,=0 cm™', ©=1.0 a.u.) interacting with 1 cycle pulse as a function
of w and ¢. [(a) and (b)] Numerical calculations and [(c) and (d)] analytical
formula, Eq. (16). g is fixed at 0.01 a.u.

P,= Sin2< 77'2|,;:~|(jo cos ¢) . (16)

The condition for the population inversion reads
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€
Mcos¢>=1+2n(n=o,1,2,...). (17)
w

Let us define the pulse area of 1 cycle pulse in the same way
as the conventional long pulses:

i [

T &
pulse area = ry e(t)dt = M.

18
0 > (18)

From Egs. (17) and (18), the minimum pulse area for the
population inversion is 7r/cos ¢, which is equal to or larger
than 7. We note that it is impossible to make the pulse area
smaller than 7. This is the same as the conventional long
pulse case.

It should be emphasized that for degenerate two-level
system, only 1 cycle laser pulse gives nonzero transition for
the two-level systems. For the nondegenerate system wi,
#0, Eq. (8) cannot be solved exactly in the analytical form,
and the semiclassical propagation method has to be em-
ployed to derive analytical nonadiabatic transition probabil-
ity. We briefly discuss semiclassical procedure for two rep-
resentative cases, as shown in Figs. 1 and 2. We show the
pulse envelope &(z) and the electric field E(r) with ¢=0 in
Eq. (4) as a function of time for the 1 cycle pulse in Fig. 1(a)
and depict the adiabatic energy levels in Fig. 1(b) in which
there are four complex crossing points [see X in Fig. 1(b)]
where nonadiabatic transitions are taken place; the two out-
ermost transitions are well described by RZ-type nonadia-
batic tlrans.itions,ls_15 and the two inner transitions are
Landau-Zener (LZ)-type nonadiabatic transitions.'*'>'*2
Next we consider the case that electric field E(z) in Eq. (4)
with ¢=m/2 shown in Fig. 2(a) and depict the adiabatic
energy levels in Fig. 2(b) in which there are three complex
crossing points [see X in Fig. 2(b)] where nonadiabatic tran-
sitions are taken place; the outermost two are the RZ-type
transitions and the central transition is the LZ-type transition.
Based on those complex crossing points, we can derive over-
all nonadiabatic transition probability semiclassically, and its
results are the same as those obtained in Eq. (16) for 1 cycle
laser pulse with degenerate two-level system. We will dis-
cuss more details for nondegenerate two-level systems in the
future publication. Furthermore, the above formulation can
also be extended to the general m-level systems (m > 2)2'In
the next section, we demonstrate the validity of Eq. (16) by
comparing it with the numerical solution of the time-
dependent Schrédinger equation (8). Equation (16) is also
applied to a new laser control of the nuclear wave packet
dynamics at a potential curve crossing.

lll. RESULTS AND DISCUSSIONS
A. Numerical demonstrations of Equation (16)

In this section, for the degenerate (or almost degenerate)
two-level systems interacting with 1 cycle laser pulse, we
compare the analytical formula in Eq. (16) with the numeri-
cal solutions of the time-dependent Schrodinger equation (8)
in which ¢(¢) denotes the probability amplitude of the level
|k), and Eq. (8) is solved in terms of the conventional fourth-
order Runge-Kutta method.” Throughout this section, we
assume = lea, with initial condition ¢;(0)=1 and ¢,(0)=0.

J. Chem. Phys. 127, 094304 (2007)

In Fig. 3, the time evolution of the populations in a degen-
erate two-level system (w;,=0) under 1 cycle laser pulse is
plotted for (a) ¢=0 and (b) ¢=17/2. The peak amplitude g,
and frequency w of the 1 cycle pulse are fixed at 0.009 a.u.
and 2000 cm™!. Since |u|ey/ (fiw) is equal to 0.99, the con-
dition of Pj,=1, i.e., Eq. (17) is almost satisfied in the case
of ¢=0. As the analytical solution predicts, the calculation
result for ¢p=0 clearly indicates the population inversion. On
the other hand, in the case of ¢=/2, although some popu-
lation is transferred into |2) in the middle of the pulse, no
population remains in |2) at the end of the pulse, which is
also the same as the analytical prediction.

Two-dimensional plots of the transition probability are
depicted against w and g, in Fig. 4. The phase ¢ is fixed at 0.
As is easily found from Eq. (17), the population inversion
takes place when the linear relation ey=fhw(1+2n)/|u| is
satisfied. This is clearly seen in Fig. 4. The numerical solu-
tions completely agree with the analytical solution in a very
wide range of laser parameters. As the laser frequency be-
comes larger, larger peak amplitudes are necessary for the
population inversion. In Fig. 5, two-dimensional plots of the
transition probability are shown as a function of w and ¢.
The peak amplitude g is set to 0.01 a.u.. In this case, we
also see that the numerical solutions are in perfect agreement
with the analytical solution. It is noted that the transition
probability is periodic as a function of ¢ at the intervals of
/2 and the complete inversion takes place unless ¢=1/2
(37/2). So far, we consider a degenerate two-level system.
However, Eq. (16) is also valid for an almost degenerate
two-level system. In Fig. 6, we show the population dynam-
ics of a two-level system with w;,=500 cm™! as a function
of 7 for (a) ¢=0 and (b) ¢p=/2. The other laser parameters
are the same as those used in Fig. 3. We note that the popu-
lation in |2) at the end of the pulse slightly deviates from Eq.
(16) because of the nondegeneracy of the system. In Fig. 7(a)
, two-dimensional plots of the calculated transition probabil-
ity are depicted as a function of w and g, (w and ¢). The
laser parameters are the same as those used in Fig. 4(a) . The
lower the laser frequency, the worse the agreement between
the numerical and anlytical results becomes [compare Figs.
7(a), 7(b), 8(a), and 8(b) with Figs. 4(c), 4(d), 5(c), and 5(d),
respectively]. At such low laser frequencies, we cannot re-
gard the system as a degenerate two-level and thus it is nec-
essary to derive semiclassical solution to model this situa-
tion. It can be seen, however, that as the laser frequency
becomes higher, the numerical solutions almost follow the
analytical one in Eq. (16). This is natural since the system
can be regarded as degenerate two levels at the higher laser
frequencies. In the next section, Eq. (16) is applied to the
wave packet dynamics at a potential curve crossing under a
1 cycle pulse. It is demonstrated that controlling molecular
nonadiabatic dissociation by a 1 cycle pulse can be achieved.

B. Application to the control of the wave packet
dynamics at a potential curve crossing by 1 cycle laser
pulse

Here, 1 cycle laser pulse is shined to the propagating
wave packet to control its dynamics at a potential curve
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FIG. 6. (Color online) Calculated population dynamics of an almost degen-
erate two-level system (w;,=500 cm™!, £=1.0 a.u.) interacting with 1 cycle
pulse (£9=0.009 a.u., ©®=2000 cm™") against time . (a) ¢=0 and (b) ¢
=/2.

crossing. We treat a simple model of diatomic molecules
which consist of two dissociative linear potential energy
curves (PECs), V|(R) and V,(R), where

VR)=F{(R-Rx)+Ex (i=12), (19)

where R denotes the internuclear distance of diatomic mol-
ecules, and F, <F;<0. At R=Ry, these PECs cross, and we
have a LZ-type avoided crossing due to a diabatic potential
coupling V,(R) (see Fig. 9). Let us consider a situation that
a Gaussian wave packet is placed at R=R; on V,(R) with its
initial momentum equal to zero. This wave packet propa-
gates downward along V,(R) and bifurcates into two at Ry
because of the diabatic potential coupling: one dissociates
into channel 1 and the other into channel 2. The branching
ratio depends on the coupling strength Vy=V|,(Ry), AF
=|F,—F,|, and the velocity vy of the wave packet at Ry be-
cause the dissociation probability into channel 2 is given by
the LZ formula exp[-27V4/ (hvyAF)]. We propose a control
scheme to achieve selective dissociations into any one of the
two channels with use of a 1 cycle laser pulse. The basic idea
is as follows: when the wave packet reaches the crossing, the
situation can be regarded as an almost degenerate two-level
system. By applying 1 cycle laser pulse at the time when the

J. Chem. Phys. 127, 094304 (2007)
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FIG. 7. (Color) Transition probabilities P, obtained by the numerical cal-
culations for an almost degenerate two-level system (w;,=500 cm™, u
=1.0 a.u.) interacting with a 1 cycle pulse as a function of w and g. ¢ is set
to 0.

wave packet reaches the crossing, it may be possible to con-
trol the wave packet transitions between the two states, lead-
ing to selective dissociations. Under the Born-Oppenheimer

and the dipole approximation, the Hamiltonian H of the Sys-
tem is given as'

Via(R) — pm(R) - E(1)
T+ V,5(R)

P 7+ V,(R)
| Via(R) - p(R) - E1)
(20)

where f“:—(ﬁzl 2M)(d*/dR?) is the nuclear kinetic energy
operator, M is the reduced mass of the system, u(R) is the
transition dipole moment between V,(R) and V,(R), and E(z)
is the electric field of 1 cycle laser pulse in Eq. (3). Through-
out this paper, we assume the following: (i) molecular rota-
tions can be neglected, (ii) molecules are aligned along the
laser polarization [u(R)//E,], and (iii) m(R) is independent
of R. For the Hamiltonian H in Eq. (3), using the fast Fourier
transformation and split operator method,'®* we solve the
time-dependent ~ Schrodinger equation  i%(9/ )V =HWY,
where V=[¢(R,1)i»(R,1)], :(R,t) is the nuclear wave
function on V,(R), and the superscript ¢ denotes the matrix
transpose. The parameters of the system are given as follows:
F,=-0.005 hartree/a,, F,=-0.01 hartree/a,, Ry=9.0a,
Ex=0.15 hartree, u=1.0 e ay, and m=20 amu. We assume a
Gaussian function for Vy(R), i.e., Vo(R)=Vyexp[—(R
—Ry)?], where Vy=0.001 hartree. The initial wave packet is
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FIG. 8. (Color) Transition probabilities P, obtained by the numerical cal-

culations for an almost degenerate two-level system (w;,=500 cm™, u

=1.0 a.u.) interacting with 1 cycle pulse as a function of @ and ¢. g,
=0.01 a.u.

placed on V,(R), that is, ;(R,0)=0 and ¢»(R,0)
=(7'r0‘20)‘1/4 exp[—(R—R,)z/(Zo%))]. R; is set to 2a, and oy
=0.25a;". Since this wave packet reaches the crossing
around r=173.4 fs, the center of 1 cycle pulse is set to 7,
=173.4 fs. The dissociation flux is integrated over time at
R=18a to obtain the corresponding dissociation probability.
In order to prevent the unphysical reflection of the wave
packet at the edge, the negative imaginary potential (absorp-
tion potential)24 is set at R=19a,. The grid sizes of ¢t and
R are ér=1.0au. and O6R=0.0137a,, respectively. Vy

0.3 N T T T

025 |

-
N

o
-
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Potential energy [hartree]
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—
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ok L
0 R, 5

R 10 15 20
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FIG. 9. (Color online) A two-state model of diatomic molecules is depicted.
The initial wavepacket is placed on V,(R) at R;. When the wave packet
reaches the crossing of the potential energy curves at Ry, 1 cycle laser pulse
is shined to control the branching ratio.
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FIG. 10. (Color) For the two-state system shown in Fig. 9, the calculated
dissociation probability into channel 1, P(IWP), is plotted as a function of w
and g, of 1 cycle pulse. ¢ is set to 0.

=0.001 hartree corresponds to an intermediate coupling
strength, and thus the dissociation probability into the chan-
nel 1 is close to one-half (P;=0.4206) in the field-free case.
Figure 10 depicts P(IWP) (wave packet calculation results of
the dissociation probability into channel 1) as a function of @
and g, of 1 cycle laser pulse. ¢ is fixed at 0. It is clearly seen
that P(IWP) drastically changes between 0 and 1. Thus, selec-
tive dissociations into any one of the channel can be
achieved by properly choosing w and g. At the low frequen-
cies of @=<400 cm™', we note that P(IWP) is almost unity and
does not depend on w and g. This is because 1 cycle pulse
at such low frequencies does not change its amplitude during
the passage of the wave packets around the crossing and the
1 cycle pulse acts as a strong static electric field, leading to
the complete wave packet transfer from V,(R) to V;(R). On
the other hand, at the higher frequencies of w>400 cm™, it
can be seen that the population inversion takes place when
some linear relation between &, and w is satisfied. We note
that the linear relation deviates a little from gy=hw
(1+2n)/|u|, which is found from the analytical solution in
Eq. (16). This seems to be due to the fact that, in the case of
wave packet dynamics, the transition induced by the nuclear
motion also takes place. Equation (16) does not take into
account such transitions induced by the nuclear motion.
Some scheme for treating both time-dependent and time-
independent nonadiabatic transitions™ is necessary to fully
understand the transition mechanism. In Fig. 11, PEWP) is
shown as a function of w and ¢ of 1 cycle laser pulse. g is
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FIG. 11. (Color) For the two-state system shown in Fig. 9, the calculated
dissociation probability into channel 1, P(IWP), is plotted as a function of w
and ¢ of 1 cycle pulse. g is set to 0.01 a.u.

set to 0.01 a.u.. At the low frequencies of w<<400 cm™!, as is
mentioned above, P(lWp ) is almost unity except the case of
¢=m/2 or 3m/2 because 1 cycle pulse is regarded as a
strong static electric field. At the higher frequencies, the be-
havior of P(IWP) is similar to but not the same as Eq. (16)
[compare Figs. 11(a) and 11(b) with Figs. 5(c) and 5(d)]. The
discrepancies arise from the fact that Eq. (16) does not in-
clude any transition induced by the nuclear motion. It is in-
teresting to see that the behavior of P(1Wp) at ¢=0 is com-
pletely different from the one at ¢=m. If we use 1 cycle
pulse of =950 cm™' and £(,=0.01 a.u., we can switch the
dissociation channel by changing only the phase ¢. The dif-
ferences between P(lWp ) and Eq. (16) in Figs. 11 may contain
some information on the potential coupling at the crossing.
For example, the coefficient k for the linear relation gy=kw
where the population inversion takes place strongly depends
on the coupling strength. This might be useful for extracting
such information.

IV. CONCLUDING REMARKS

A simple and analytical solution of nonadiabatic transi-
tion probability for the degenerate (or almost degenerate)
two-level systems interacting with 1 cycle laser pulse has
been derived. The probability depends on the peak ampli-
tude, frequency, and phase of 1 cycle pulse. The population
inversion is possible unless the phase is 7/2 nor 37/2 by
properly choosing both the amplitude and frequency. It has
also been found that the minimum pulse area for the popu-
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lation inversion never becomes smaller than 7. As one of the
applications of this formula, the new way of controlling the
nuclear motions of diatomic molecules at a potential curve
crossing by 1 cycle laser pulse has been proposed. We have
treated a simple two-state model, in which two dissociative
PECs cross at a certain internuclear distance. In the field-free
case, since the potential coupling strength at the crossing is
intermediate, the dissociation probability into one channel is
almost one-half. It has been demonstrated that selective
nonadiabatic dissociations into any one of the two channels
can be achieved by properly choosing the laser frequency,
amplitude, and phase of the 1 cycle laser pulse. The applica-
tion to the real system such as NaT will be presented some-
where. Although we have concentrated on 1 cycle laser pulse
in this paper, the extensions of the present semiclassical
scheme to the general n-cycle pulses (n>1) and/or compli-
cated systems with more than two levels are straightforward.
Since the amplitude is larger and the pulse duration is longer
than the 1 cycle pulse used in Fig. 3, the population dynam-
ics is much more complicated. However, the final transition
probability is equal to unity. The general formula of the tran-
sition probability for n-cycle pulses with nondegenerate two-
level system will be reported in the near future.
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