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bstract

Accurate prediction methods of protein subnuclear localizations rely on the cooperation between informative features and classifier
esign. Support vector machine (SVM) based learning methods are shown effective for predictions of protein subcellular and
ubnuclear localizations. This study proposes an evolutionary support vector machine (ESVM) based classifier with automatic
election from a large set of physicochemical composition (PCC) features to design an accurate system for predicting protein
ubnuclear localization, named ProLoc. ESVM using an inheritable genetic algorithm combined with SVM can automatically
etermine the best number m of PCC features and identify m out of 526 PCC features simultaneously. To evaluate ESVM, this study
ses two datasets SNL6 and SNL9, which have 504 proteins localized in 6 subnuclear compartments and 370 proteins localized in
subnuclear compartments. Using a leave-one-out cross-validation, ProLoc utilizing the selected m = 33 and 28 PCC features has
ccuracies of 56.37% for SNL6 and 72.82% for SNL9, which are better than 51.4% for the SVM-based system using k-peptide
omposition features applied on SNL6, and 64.32% for an optimized evidence-theoretic k-nearest neighbor classifier utilizing
seudo amino acid composition applied on SNL9, respectively.

2007 Elsevier Ireland Ltd. All rights reserved.
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. Introduction
Eukaryotic cells consist of two major parts, namely
he nucleus and cytoplasm. The nucleus is a highly com-
lex organelle that forms a package for cells and their
orresponding regulatory factors (Heidi et al., 2001).
he nucleus guides the life processes of cells by per-
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forming the following functions: (1) storing genes in
chromosomes; (2) assembling genes into chromosomes
to allow cell division; (3) transporting regulatory factors
and gene products via nuclear pores; (4) producing mes-
sages (messenger ribonucleic acid or mRNA) that code
for proteins; (5) generating ribosome in the nucleolus;

and (6) organizing uncoiling of DNA to reproduce key
genes (Heidi et al., 2001; Spector, 2001).

Many nuclear proteins participating in life pro-
cesses tend to concentrate on subnuclear compartments.

ed.
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The concentration within specific subnuclear compart-
ments is important for the construction and function
of the nucleus. Poor protein localization leads to
human genetic diseases and cancers (Phair and Misteli,
2000). Therefore, accurately predicting protein subnu-
clear localization is crucial for understanding genome
regulation and functions. Computational prediction
methods for subnuclear localization from primary pro-
tein sequences are fairly economic in terms of identifying
many nuclear proteins with unknown functions (Lei and
Dai, 2005; Shen and Chou, 2005).

Many computational systems for predicting protein
subcellular localization have emerged in the recent two
decades (Nakai and Horton, 1999; Hua and Sun, 2001;
Cai et al., 2002; Bhasin and Raghava, 2004; Szafron et
al., 2004; Yu et al., 2004; Bhasin et al., 2005; Gardy
et al., 2005; Nair and Rost, 2005; Sarda et al., 2005).
Since these systems allow broad treatment of subcellular
localization at the genomic level, they enable the predic-
tion of particular subnuclear compartments. However,
the predictors at the subnuclear level encounter more
obstacles than those at the subcellular level (Lei and
Dai, 2005). Two computational methods for predicting
protein subnuclear localization have recently been pro-
posed, namely an SVM-based system (Lei-SVM) using
k-peptide composition encoded into the kernel function
(Lei and Dai, 2005) and an optimized evidence-theoretic
k-NN (OET-KNN) classifier using pseudo-amino-acid
composition (Shen and Chou, 2005).

The high performance of most prediction methods
arises mainly from the cooperation between informa-
tive features and efficient classifier design. Informative
features from protein sequences have been investigated
from factors such as amino acid composition (Nakai and
Horton, 1999; Hua and Sun, 2001; Lei and Dai, 2005)
and k-peptide encoding vectors (Nakai and Horton,
1999; Hua and Sun, 2001; Yu et al., 2004; Lei and
Dai, 2005). The physicochemical properties of amino
acids have recently been used to predict the subcel-
lular localization of proteins. Bhasin et al. proposed
ESLpred and PSLpred systems by using the features of
amino acid composition, dipeptide composition and 33
different physicochemical properties averaged over the
entire protein (Bhasin and Raghava, 2004; Bhasin et al.,
2005). The 33 physicochemical properties were deter-
mined by analyzing the abundance of amino acids and
variations in physicochemical properties from the P1 to
P9 positions of TAP binders. Sarda et al. (2005) pre-

sented the pSLIP system by applying five top-ranking
features of physicochemical properties according to
the prediction accuracy of SVM using a single
feature.
s 90 (2007) 573–581

As for efficient classifier design, SVM-based learn-
ing methods are shown to be effective for accurately
predicting protein subcellular and subnuclear localiza-
tions from protein sequences (Hua and Sun, 2001; Cai
et al., 2002; Bhasin and Raghava, 2004; Szafron et al.,
2004; Yu et al., 2004; Bhasin et al., 2005; Gardy et
al., 2005; Lei and Dai, 2005; Nair and Rost, 2005;
Sarda et al., 2005). The extraction of informative features
from a primary protein sequence using SVM is essential
for designing an accurate system of predicting protein
subnuclear localization. A well-designed SVM-based
classifier for prediction aims to combine feature opti-
mally according to feature correlation, parameter setting
of SVM and cross-validation performance. However,
conventional SVM does not provide internal detection
of relevant-feature correlation, and appropriate setting of
their control parameters is generally treated as another
independent problem (Joachims, 2002).

The role of simultaneous optimization of feature
selection and classifier design in high performance of
predictors is well recognized (Brotherton et al., 1994;
Ho et al., 2002; Ooi and Tan, 2003; Sun et al., 2004;
Ho et al., 2006). Under consideration of such simulta-
neous optimization, this study proposes an SVM-based
learning method with automatic selection from a large
set of physicochemical composition (PCC) features to
design an accurate system for predicting protein sub-
nuclear localization, named ProLoc. The set of PCC
features is derived from a protein sequence, and com-
prises 506 physicochemical properties obtained from an
amino acid index (AAindex) database (Kawashima and
Kanehisa, 2000) and 20 features of amino acid com-
position. Consequently, an evolutionary support vector
machine (ESVM) method cooperated with an SVM clas-
sifier is used to automatically determine the best number
m of PCC features and identify m out of 526 PCC features
simultaneously.

The ESVM is measured from two datasets, SNL6
and SNL9, are used for comparison with the existing
method Lei-SVM (Lei and Dai, 2005) and OET-KNN
(Shen and Chou, 2005). SNL6 has 504 proteins local-
ized in 6 subnuclear compartments, and SNL9 has
370 proteins localized in 9 subnuclear compartments.
ESVM determined the best number of PCC features
for SNL6 and SNL9 as m = 33 and 28, respectively.
ProLoc utilizing SVM with the m selected PCC fea-
tures, using the same leave-one-out cross-validation
(LOOCV), yields accuracies of 56.37% for SNL6 and

72.82% for SNL9, which are better than 51.4% for
Lei-SVM applied on SNL6, and 64.32% for OET-KNN
applied on SNL9. The effectiveness of the selected PCC
features to prediction accuracy can be quantified and
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anked for biological analysis based on factor analysis
Ho et al., 2004b).

. Materials and methods

.1. Datasets

Two datasets, SNL6 (Lei and Dai, 2005) and SNL9 (Shen
nd Chou, 2005), were used to evaluate the proposed prediction
ystem ProLoc. SNL6 has 504 proteins localized in 6 subnu-
lear compartments, and SNL9 has 370 proteins localized in 9
ubnuclear compartments. Table 1 shows the numbers of pro-
ein sequences within each subnuclear compartment in SNL6
nd SNL9. The two datasets were obtained from the Nuclear
rotein Database (Dellaire et al., 2003), which is a search-
ble database of information on proteins consisting of more
han 2000 vertebrate proteins (mainly from mouse and human)
n cell nuclei. Spector (2001) shows the known subnuclear
ompartments where proteins have been found.

The data about SNL6 proteins were extracted by a Perl
cript. The SNL6 proteins associated with more than one com-
artment were eliminated. SNL6 is a non-redundant dataset
onstructed from PROSET (Brendel, 1992) with low sequence
dentity (<50%). The SNL9 proteins were screened strictly
sing the following procedure: (1) sequences without a clear
ompartment description in the nucleus were eliminated; (2)
nly one of a group of protein sequences having the same name
ut from different species was included to avoid redundancy;

3) sequences annotated by multiple subnuclear compartments
ere eliminated; (4) sequences with fewer than 50 amino acid

esidues were eliminated; and (5) compartments with fewer
han 10 proteins were eliminated (Shen and Chou, 2005).
NL6 and SNL9 have five common compartments, namely

able 1
he numbers of protein sequences within each subnuclear com-
artment in the datasets SNL6 (six compartments) and SNL9 (nine
ompartments)

abel Compartment Number of sequences

SNL6 SNL9

PML body 38 40
Chromatin 61 59
Nucleoplasm (nuclear
diffuse)

75 65

Nucleolus 219 115
Nuclear splicing speckles (or
splicing factor enriched
speckles)

56 15

Nuclear lamina 55
Heterochromatin 31

Nuclear pore (nuclear pore
complex)

25

PcG body 10
Cajal body 11

otal 504 370
s 90 (2007) 573–581 575

PML body, chromatin, nuclear diffuse, nucleolus, and nuclear
splicing speckles, but different numbers of proteins.

2.2. ESVM-based prediction system ProLoc

Implementing the prediction system ProLoc for protein sub-
nuclear localization by machine learning approach involves
three essential tasks: (1) establishing a set of n potentially good
candidate features from protein sequences; (2) determining the
best number m of features and identify m out of n candidate
features cooperated with SVM; and (3) designing an efficient
SVM-based classifier with the selected features. The opti-
mization of feature selection is a combinatorial optimization
problem with a huge search space C(n, m) = n!/(m!(n − m)!),
which attempts to maximize a specified training accuracy by
using a small number of selected features. The m features are
selected by utilizing an inheritable genetic algorithm (IGA)
that was proposed by Ho et al. (2004a). The inheritance mech-
anism makes IGA efficient in searching for a good solution
Sr+1 in the space C(n, r + 1) by inheriting a good solution Sr

in the space C(n, r), where 0 < r < n. Let Sm be the most accu-
rate solution among all investigated solutions Sr. For instance,
r is in the range [15, 50] in this study. The proposed ESVM
simultaneously selects r out of n features, and determines the
corresponding SVM parameter setting using 10-fold cross-
validation (10-CV) as an estimator of generalization ability in
an independent run, where r = 15, . . ., 50. Finally, the m selected
features and the corresponding SVM classifier are employed
to implement ProLoc.

2.2.1. Physicochemical composition features
A given protein sequence has n = 526 physicochemical

composition (PCC) generated features, comprising 20 features
of the conventional amino acid composition (AAC) and 506
physicochemical properties. Therefore, the sequence is repre-
sented as a 526-dimensional feature vector P:

P = [p1, . . . , p20, p21, . . . , p526]T (1)

The AAC features reflect the normalized occurrence fre-
quencies pi of the 20 native amino acids where i = 1, . . ., 20.
The remaining 506 features are derived from the 506 physico-
chemical properties of AAindex by averaging over the protein
sequence. All the features of P are rescaled in the range [0, 1]
to apply SVM.

2.2.2. Evolutionary support vector machine (ESVM)
ESVM using IGA can efficiently determine a specified

number r out of the n = 526 PCC features, and determine all
parameter values of SVM simultaneously by maximizing the
prediction accuracy. The N-fold cross-validation test provides
a bias-free estimate of the accuracy at a much-reduced compu-

tational cost with comparison to LOOCV, and is considered an
acceptable test for evaluating the prediction performance of an
algorithm (Stone, 1974). In this study, N = 10. Consequently,
the fitness function of IGA has a training accuracy of 10-CV.
The multi-classification problem is solved by utilizing a series
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Fig. 1. A protein sequence is represented using a PCC feature vector
inheritable genetic algorithm (IGA) with the IGA-chromosome encod

of binary classifiers of SVMLight (Joachims, 2002). A radial
basis kernel function exp (−γ||xi − xj||2) is adopted, where xi

and xj are training samples, and γ is a kernel parameter, is
adopted for the SVMLight.

Fig. 1 illustrates the IGA-chromosome encoding method
for feature selection and parameter setting of SVM. The
IGA-chromosome consists of n = 526 binary IGA-genes fi for
selecting informative features and two 4-bit IGA-genes for
encoding the kernel parameter γ and a cost parameter C of
SVM. The corresponding feature pi is excluded from the SVM
classifier if fi = 0, and is included otherwise. This encoding
method maps the 16 values of γ and C into (2−12, 2−11, . . ., 23)
and (2−10, 2−11, . . ., 25), respectively.

IGA with orthogonal array crossover (Ho et al., 2004a) per-
forms well in exploring an enormous search space C(n, r). The
orthogonal array crossover based on orthogonal experimental
design (Ho et al., 2004b) uses a divide-and-conquer strategy
to solve large-scale parameter optimization problems. Further-
more, to speed up exploration, the orthogonal array crossover
uses a systematic reasoning method instead of the conventional
generate-and-go method by genetic algorithms. The proposed
ESVM is concisely presented here. Ho et al. (2004a,b) have
described in detail the merits of the inheritable mechanism and
superiority of IGA.

ESVM generates the solutions Sr to design the SVM clas-
sifiers with r features by utilizing an inheritable mechanism
in a single run, where r = rstart, . . ., rend. The ESVM algorithm
optimizes the parameter values in an IGA-chromosome (indi-
vidual) by using the training accuracy of 10-CV as a fitness
function, which is described as follows:

Step 1: Initialization: Randomly generate an initial population
of Npop feasible individuals where the n binary param-

eters fi have r 1s and n − r 0s in an IGA-chromosome.
Let r = rstart and a generation index g = 1.

Step 2: Evaluation: Compute fitness values of all individuals
in the population. Let Ibest be the best individual in the
population.
ntially good feature set cooperated with SVM can be selected by the
hod.

Step 3: Selection: Use the simple truncation selection that
replaces the worst Ps·Npop individuals with the best
Ps·Npop individuals to form a new population, where
Ps is a selection probability.

Step 4: Crossover: Randomly select Pc·Npop individuals
including Ibest, where Pc is a crossover probability.
Perform orthogonal array crossover operations for all
selected pairs of parents.

Step 5: Mutation: Apply a bit-inverse mutation operator to the
population using a mutation probability Pm by keeping
the n binary parameters in an individual having r 1s.
To prevent the best fitness value from deteriorating,
mutation is not applied to the best individual.

Step 6: Termination test: If g is not equal to a maximal number
Gmax of generations, then set g = g + 1 and go to Step
2. Decode Ibest to obtain a solution Sr. If r = rend, then
stop the algorithm.

Step 7: Inheritance: Reserve the best Npop/2 individuals and
randomly change one of the n − r bits from 0 to 1 for
each individual in the population. Randomly gener-
ate additional Npop/2 individuals where the n binary
parameters have r + 1 1s and n − r − 1 0s. Let g = 1
and r = r + 1. Go to Step 2.

Table 2 shows the parameter settings of ESVM. In this
study, rstart = 15, rend = 50, and Gmax = 20. The solution Sm with
m selected features is the best among S15, S16, . . ., S50.

3. Results and discussion

3.1. Automatic feature selection

Two sets of candidate features are used to evalu-

ate the PCC feature set performed with ESVM. One
is the set of PCC features given in (1) and the other
is an additional feature set named short physicochemi-
cal composition (SPC), which only consists of the 506
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Table 2
The control parameters used in ESVM

Parameter Value

Population size, Npop 50
Selection probability, ps 0.2
Crossover probability, pc 0.8
Mutation probability, pm 0.05
Factor number of orthogonal arrays (Ho et al., 2004a) 7
Maximum generations, Gmax 20
Start number of selected features, rstart 15
End number of selected features, rend 50
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index g from 1 to Gmax = 20. The convergence stabilizes
ig. 2. Evaluations of the feature selection of ESVM and its associated
CC features, compared with the feature selection method RBS and a
maller feature set SPC using the dataset SNL6.

hysicochemical properties. The proposed ESVM first
etermines r out of n features and the corresponding
arameter setting of SVM, where n = 506 and 526 for
PC and PCC, respectively. The corresponding SVM
lassifier with the m selected features is then adopted to
mplement the prediction system ProLoc. Figs. 2 and 3

llustrate the accuracies of from performing 10-CV per-
ormed on SNL6 and SNL9, respectively. ESVM using
CC is much more accurate than ESVM using SPC for
oth SNL6 and SNL9. Additionally, Figs. 2 and 3 indi-

ig. 3. Evaluations of the feature selection of ESVM and its associated
CC features, compared with the feature selection method RBS and a
maller feature set SPC using the dataset SNL9.
s 90 (2007) 573–581 577

cate that SVM with m = 33 and 28 PCC features has the
best accuracy for SNL6 and SNL9, respectively.

For further evaluating the feature selection method of
ESVM, a rank-based selection (RBS) method (Li et al.,
2004) cooperated with the SVMLight using the best val-
ues of C and γ was applied, where C {2−12, 2−11, . . .,
23} and γ {2−10, 2−11, . . ., 25}. Each feature in the tested
feature set was first ranked according to the accuracy of
SVM with the evaluated single feature. The top-rank 50
features ai, i = 1, . . ., 50 were then picked, and the top-
rank 14 features were used as an initial feature set {a1,
. . ., a14} and. Let the size of the current feature set be
r, where r = 14 initially. The feature set with size r + 1 is
incrementally established by adding the best feature br+1
from the remaining 50 − r features into the current fea-
ture set. The feature br+1 from the current feature set can
derive the highest SVM prediction accuracy, among all
50 − r using 10-CV. are shown in Figs. 2 and 3 show the
prediction accuracies of SVM using the feature set with
size r, r = 15, . . ., 50, applied on SNL6 and SNL9, respec-
tively. These two figures reveal that the feature selection
of ESVM is better than that of RBS, where using PCC or
SPC feature. The high performance of the feature selec-
tion in ESVM is due to the consideration of the internal
relevant-feature correlation in global optimization using
IGA.

To understand further the performance of inheritance
mechanism in the feature selection of ESVM, we observe
the convergence of IGA in selecting the feature set with
size r + 1 based on the feature set with size r was studied.
Fig. 4 illustrates the convergence performance of IGA at
r = 33 and r = 28 on SNL6 and SNL9, respectively, in
terms of a training accuracy of 10-CV and a generation
when g = 13. Analytical results reveal that (1) Gmax = 20
generations are sufficient for IGA to obtain a satisfactory
solution and (2) the inheritance mechanism makes IGA

Fig. 4. The training accuracies are obtained by recording the best solu-
tion Ibest of ESVM at r = 33 and 28 using SNL6 and SNL9, respectively.
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efficient in exploring the search space C(n, r + 1), based
on the exploration result of C(n, r) using a small number
(20) of generations (Ho et al., 2004a).

3.2. Factor analysis of selected features

The effect of several factors can be efficiently stud-
ied simultaneously by orthogonal experimental design
with both orthogonal array and factor analysis (Ho et
al., 2004b). The factors are the parameters that affect the
evaluation function (i.e., the fitness function of IGA),
and a setting (or a discriminative value) of a factor is
regarded as a level of the factor. The main effect reveals
the individual effect of a factor. The factor analysis using
the orthogonal array’s tabulation of experimental results
allow the rapid estimation of the main effect of a spe-
cific factor, without the fear of distortion of results by the
effects of other factors. The most effective factor has the
largest main effect difference between two main effects
corresponding to the two levels of an evaluated factor. In
this study, the two levels of one factor are the inclusion
(fi = 1) and exclusion (fi = 0) of a PCC feature (fi) in the
feature selection using IGA. Therefore, the factor anal-
ysis can evaluate the effects of individual factors on the
evaluation function, rank the most effective factors and
determine the best level for each factor to optimize the
evaluation function (Ho et al., 2004b).

Each of these m = 33 or m = 28 PCC features is treated
as a factor. The main effect of features on the fitness
function can be estimated using the orthogonal experi-
mental design. Figs. 5 and 6 display the features selected
by ESVM using SNL6 and SNL9, respectively, ranked
according to main effect difference (MED). For SNL6,
five of the m = 33 features are from AAC, and 28 features

are physicochemical properties. The five components
of AAC (C, K, M, R, G) make a significant contri-
bution, as illustrated in Fig. 5. The physicochemical
property with the highest rank (MED = 34.47) is the

Fig. 5. The m = 33 features selected by ESVM with SNL6. The features
are ranked according to the main effect difference (MED).
Fig. 6. The m = 28 features selected by ESVM with SNL9. The features
are ranked according to the main effect difference (MED).

identity RICJ880108 of AAindex, which corresponds to
a relative preference value at N5. Table 3 presents the
detailed descriptions of the remaining selected features.

The m = 28 features using SNL9 comprise two
components of AAC (N, L) and 26 physicochemical
properties, as listed in Fig. 6. The physicochemical prop-
erty with the highest rank (MED = 54.80) is the identity
LEVM760107 of AAindex, which corresponds to a van
der Waals parameter epsilon. Table 4 lists the detailed
descriptions of the remaining selected features. With a
comparison between Tables 3 and 4, there are five com-
mon informative features: CHOP780215, FINA910104,
ISOY800108, MAXF760104, and RICJ880115 whose
corresponding main effect differences are shown in
Table 5. Besides the features with high ranks, the com-
mon features working for two different datasets have
high reliability for further verification by biologists.

The number of common PCC features selected by
ESVM using SNL6 and SNL9 is not large for the fol-
lowing three reasons: (1) the numbers of training samples
for both SNL6 and SNL9 are not large enough; (2) the
numbers of compartments for two datasets are not equal;
and (3) only five of the nine compartments in SNL9
are common to those in SNL6. The proposed method
ESVM using PCC features from protein sequences is
effective for small-scale training datasets by considering
avoidance of overtraining. To obtain stable features for
prediction of protein subnuclear localization from novel
proteins, it is better to adopt a larger training dataset due
to high overlap of sample distributions.

3.3. Performance comparison of ProLoc

ProLoc utilizes the m PCC features and the estab-

lished SVM classifier in the training phase. For
comparison, the LOOCV performance is used to eval-
uate ProLoc. For SNL6, the overall prediction accuracy
56.37% for ProLoc using m = 33 PCC features is better
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Table 3
Selected features by utilizing ESVM with the dataset SNL6

ID of AAindex Description

RICJ880108 Relative preference value at N5
CEDJ970103 Composition of amino acids in membrane pro-

teins (percent)
QIAN880138 Weights for coil at the window position of 5
KUMS000104 Distribution of amino acid residues in the alpha-

helices in mesophilicsproteins
KUMS000103 Information measure for C-terminal helix
WILM950104 Hydrophobicity coefficient in RP-HPLC, C18

with 0.1%TFA/2-PrOH/MeCN/H2Os
PALJ810107 Normalized frequency of alpha-helix in all-alpha

class
SNEP660101 Principal component I
ROBB760101 Information measure for alpha-helix
WILM950102 Hydrophobicity coefficient in RP-HPLC, C8 with

0.1%TFA/MeCN/H2O
FINA910104 Helix termination parameter at posision j + 1
RICJ880115 Relative preference value at C-cap
KARP850103 Flexibility parameter for two rigid neighbors
CHOP780207 Normalized frequency of C-terminal non-helical

region
CHOP780212 Normalized frequency of C-terminal non-helical

region
EISD860102 Atom-based hydrophobic moment
QIAN880112 Weights for alpha-helix at the window position of

5
CHOP780214 Frequency of the third residue in turn
YUTK870103 Activation Gibbs energy of unfolding, pH7.0
ISOY800108 Normalized relative frequency of coil
CHOP780215 Frequency of the fourth residue in turn
KLEP840101 Net charge
FODM020101 Propensity of amino acids within pi-helices
WOLS870103 Principal property value z3
RACS770103 Side chain orientational preference
NAKH900112 Transmembrane regions of mt-proteins
K
M
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Table 4
Selected features by utilizing ESVM with the dataset SNL9

ID of AAindex Description

LEVM760107 van der Waals parameter epsilon
GEOR030106 Linker propensity from medium dataset (linker

length is between six and 14sresidues)
FAUJ880110 Number of full non-bonding orbitals
RICJ880117 Relative preference value at C′′
JOND750102 pK (–COOH)
KOEP990102 Beta-sheet propensity derived from designed

sequences
NAKH920104 AA composition of EXT2 of single-spanning

proteins
ZHOH040101 The stability scale from the knowledge-based

atom-atom potential
FINA910101 Helix initiation parameter at posision i − 1
VHEG790101 Transfer free energy to lipophilic phase
CEDJ970101 Composition of amino acids in extracellular pro-

teins (percent)
MAXF760104 Normalized frequency of left-handed alpha-helix
CHOP780215 Frequency of the fourth residue in turn
FASG760102 Melting point
OOBM850104 Optimized average non-bonded energy per atom
SUYM030101 Linker propensity index
ISOY800108 Normalized relative frequency of coil
NAKH900105 AA composition of mt-proteins from animal
ROBB760110 Information measure for middle turn
FINA910104 Helix termination parameter at posision j + 1
CHAM830104 The number of atoms in the side chain labelled

2 + 1
RICJ880115 Relative preference value at C-cap
QIAN880128 Weights for coil at the window position of −5
BASU050103 Interactivity scale obtained by maximizing the

mean of correlations over pairs of sequences shar-
ing the TIM barrel fold

ZHOH040102 The relative stability scale extracted from muta-

of an individual compartment. Notably, the fitness func-
tion of IGA can be adaptively modified according to the
preference of predictor designers.

Table 5
Main effect differences (MEDs) of the common features selected by
ESVM using SNL6 and SNL9

ID of AAindex MED

SNL6 SNL9

CHOP780215 7.729404 16.238091
HAG800101 The Kerr-constant increments
AXF760104 Normalized frequency of left-handed alpha-helix

han the 51.4% for the Lei-SVM method using k-peptide
omposition (Lei and Dai, 2005). Table 6 displays the
esults of ProLoc for every compartment, revealing that
roLoc performs best in three compartments, worst in
ne, and ties with Lei-SVM in two compartments.

For SNL9, ProLoc using the m = 28 PCC features has
n accuracy 72.82% using LOOCV, which is better than
4.32% for the OET-KNN utilizing a pseudo-amino acid
omposition (Shen and Chou, 2005). Table 7 presents the
etailed results of ProLoc using m = 28 PCC features for
very compartment. The accuracies of all compartments
re larger than 60%, except for the four compartments

ucleolus, chromatin, PcG body, and Cajal body having
5, 15, 10, and 10 training samples, respectively. The
ow accuracies of these four compartments arise from
wo aspects: (1) the numbers of these four compartments
tion experiments
PALJ810116 Normalized frequency of turn in alpha/beta class

are fairly small and (2) the fitness function of IGA is
the overall accuracy without considering the accuracy
FINA910104 15.015682 10.956711
ISOY800108 10.145092 11.645027
MAXF760104 0.545101 16.582489
RICJ880115 14.937252 6.548813
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Table 6
Prediction accuracies (%) of performance comparisons on the dataset
SNL6

Compartment Lei-SVM ESVM

PML body 10.5 18.42
Nuclear splicing speckles 33.9 26.79
Chromatin 21.3 21.31
Nuclear diffuse 28.0 42.67
Nucleolus 83.1 90.32

Nuclear lamina 36.4 36.37

Overall prediction accuracy 51.4 56.37

ProLoc utilizing the m PCC features selected by a
general-purpose method ESVM performs better for two
different datasets, than the two existing methods where
each designed for one dataset. Simulation results reveal
that the automatic feature selection of ESVM is efficient,
and the selected PCC features employed in SVM are
effective.

3.4. Discussion

ProLoc benefits from ESVM by extracting informa-
tive features from a large set of candidate PCC features
cooperating with SVM without using domain knowl-
edge. The automatic feature selection and parameter
tuning of SVM embedded in ESVM are simultane-
ously optimized by IGA. IGA having the advantages of
inheritance mechanism and an intelligent evolutionary
algorithm (Ho et al., 2004b) can efficiently identify a
small set of informative features to establish an SVM-
based classifier. Factor analysis also allows the feature

selection of ESVM to rank the most effective features.

Because the number of training samples is usually
much smaller than the number of candidate features,
which can be obtained from protein sequences, that

Table 7
Prediction accuracies (%) of performance comparisons on the dataset
SNL9

Compartment OET-KNN ESVM

PML body NA 62.50
Chromatin NA 40.00
Nuclear diffuse NA 74.13
Nucleolus NA 50.00
Nuclear splicing speckles NA 94.78
Heterochromatin NA 74.19
Nuclear pore complex NA 67.69
PcG body NA 30.00
Cajal body NA 30.00

Overall prediction accuracy 64.32 72.82

NA: not available.
s 90 (2007) 573–581

multiple different sets may have the same small num-
ber of selected features may happen. To cope with this
problem of system uncertainty, the quantized informa-
tion such as main effect difference and rank of selected
features are valuable for further verification by biolo-
gists. Therefore, ESVM can serve as an adaptive feature
extractor for solving the prediction problems involving
system uncertainty. ESVM is an efficient bioinformatic
tool, and can be treated as the core for designing vari-
ous prediction systems for novel proteins using only the
protein sequence information. For example, ESVM can
be utilized for designing a prediction system for protein
subcellular localization.

4. Conclusions

Computational prediction of protein subnuclear local-
ization from primary protein sequences is crucial for
understanding genome regulation and functions. Sup-
port vector machine (SVM) based learning methods are
shown to be effective for predicting protein subcellular
and subnuclear localizations. Extraction of informative
features cooperating with SVMs plays an important role
in designing an accurate system for predicting protein
subnuclear localization.

This study proposes an ESVM learning method with
automatic feature selection from physicochemical com-
position features to design an accurate system named
ProLoc for predicting protein subnuclear localization. To
discover potentially good informative features, ESVM
utilizes 526 candidate features from protein sequences,
comprising 20 features of amino acid composition and
506 physicochemical properties, taken from the AAin-
dex database. ESVM utilizing an inheritable genetic
algorithm combined with SVM can automatically deter-
mine the best number m of PCC features and identify
m out of 526 PCC features simultaneously. The fea-
ture selection of ESVM can also rank the most effective
features when accompanied by factor analysis.

To evaluate the efficiency of ESVM, two datasets
SNL6 and SNL9 were used to compare two existing
methods. Simulation results show that ProLoc performs
well when using ESVM, which can select a small
set of physicochemical composition features with a
high prediction accuracy. Using a leave-one-out cross-
validation, ProLoc utilizing the selected m = 33 and 28
PCC features has accuracies of 56.37% and 72.82%,
respectively, which is better than the 51.4% of the exist-

ing SVM-based system using k-peptide composition
features applied to SNL6, and 64.32% of an optimized
evidence-theoretic k-nearest neighbor classifier utiliz-
ing pseudo amino acid composition applied to SNL9,
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espectively. A web site for ProLoc has also been (set
p OR established) to accurately predict protein subnu-
lear localization across SNL6 and SDN9 (available at
ttp://iclab.life.nctu.edu.tw/proloc).
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