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We develop a necessary condition of quantum correlation. It is utilized to construct a d-level bipartite
Bell-type inequality which is strongly resistant to noise and requires only analyses of O�d� measurement
outcomes compared to the previous result O�d2�. Remarkably, a connection between the arbitrary high-
dimensional bipartite Bell-type inequality and entanglement witnesses is found. Through the necessary condi-
tion of quantum correlation, we propose that the witness operators to detect truly multipartite entanglement for
a generalized Greenberger-Horne-Zeilinger �GHZ� state with two local measurement settings and a four-qubit
singlet state with three settings. Moreover, we also propose a robust entanglement witness to detect a four-level
tripartite GHZ state with only two local measurement settings.
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Entanglement is at the heart of quantum physics and a
resource for quantum information processing �1�. Multipar-
tite entanglement for two-level quantum systems �qubits� has
attracted attention for its unusual features �2� and necessity
in a large-scale realization of quantum computation and com-
munication �3�. In particular, with the rapid development of
technology for manipulating quantum states, multipartite en-
tanglement has been created experimentally and then utilized
for quantum information processing �4�. In addition, en-
tangled qubits, entanglement for multilevel quantum systems
�qudits� has been realized in a few physical systems �5�.
Moreover, it has been proven that qudits have an advantage
over qubits �6�. Thus, identifying whether an experiment’s
output is an entangled state for multipartite or multilevel
systems is very important for further studies on quantum
correlation and to perform reliable quantum protocols.

Bell-type inequalities �BIs� �7–9� and entanglement wit-
nesses �EWs� �10–13� are widely used to verify quantum
correlation. BIs are based on the local hidden variable theo-
ries whereas EWs rely on an utilization of the whole or par-
tial knowledge of the entangled state to be created. However,
a single systematic approach to construct EWs for entangled
qudits and to connect BIs for arbitrary high-dimensional sys-
tems with EWs is still lacking. Investigations on how en-
tangled qudits can be shown efficiently and what the funda-
mental feature is in entanglement verifications are both
significant for a deeper understanding of quantum correlation
of qudits �14� and for efficient manipulations to achieve
quantum information processing �15�.

In this work, we develop a necessary condition of quan-
tum correlation. This enables d-level bipartite BIs to be
tested with only analyses of O�d� measurement outcomes for
detection events which is much smaller than the previous
result O�d2� �9,16�. In particular, a connection between arbi-
trary high-dimensional bipartite BIs and EWs is found. We

then use the correlator operators involved in the necessary
condition of quantum correlation to construct EWs for de-
tecting genuine multipartite entanglement, which can only be
generated with participation of all parties of a system, in the
generalized Greenberger-Horne-Zeilinger �GHZ� state with
two local measurement settings �LMSs� �which will be de-
scribed in detail� and four-qubit singlet states �17� with only
three LMSs. More recently, it has been shown that the four
qubit singlet state is very useful for quantum secret sharing
�18�. Through our method, the 15 LMSs required for the EW
by Ref. �12� can be reduced greatly. In order to show the
high generality of the condition of quantum correlation, we
also describe an EW that can detect a four-level tripartite
GHZ state �14� with only two LMSs. Moreover, the proposed
EWs are resistant to noise. In what follows, an introduction
to the necessary condition of quantum correlation will be
given as a preliminary to further applications.

I. CORRELATION CONDITIONS FOR QUANTUM
CORRELATION

In an experiment whose aim is to generate a multipartite
entangled state ���, if the experimental conditions are imper-
fect, it is important to know whether an experimental output
state still possesses multipartite quantum correlation which is
close to the state ���. One EW for detecting genuine multi-
partite entanglement is given by Ref. �11� and formulated as

W�
p = ��

p1 − ������ , �1�

where ��
p=max����B��� ����2 and B denotes the set of bisepa-

rable states. Although it is difficult to determine the overlap
��

p, through the general method proposed by Bourennane et
al. �12�, one can perform this task. Thus, for some experi-
mental output state, say �, if measured outcomes show that
Tr�W�

p���0, the state � is identified as a genuine multipar-
tite entanglement which is close to the state ���.

It is worth noting that complete knowledge of the state
���, i.e., all information about correlation characters, is uti-*Electronic address: dschuu@mail.nctu.edu.tw
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lized for the witness operator and in order to measure the
operator W�

p experimentally, the number of LMSs appears to
increase with the number of qubits of the state ��� �12�. A

LMS, denoted by M : �V̂1 , . . . , V̂n� in this paper, means that

single-qubit measurements of operator V̂i for i=1, . . . ,n are
taken on the n remote parties in parallel. In addition, EWs
with forms such as W�

p, the number of LMSs utilized to
realize BIs typically increases exponentially with the number
of parties of the state. Moreover, the analyses of measured
outcomes for detection events also depend on the structures
of BIs. A detection event means a set of measurement out-
comes, denoted by �v1 , . . . ,vn�, under some LMS. For ex-
ample, the LMS M2z= ��z ,�z� corresponds to four possible
detection events: �0,0�, �0,1�, �1,0�, and �1,1�, where vi=0 or
1 stands for the eigenvalue �−1�vi of Pauli operator �z. The
meaning of LMS and that of the detection event are strictly
different.

The witness operators proposed in this paper to detect
genuine multipartite entanglement have the following form:

W� = ��1 − Ĉ�, �2�

where �� is some constant and Ĉ� is the operator which is
composed of several different kinds of correlator operators
with necessary conditions of quantum correlations imbedded
in the state ���. If outcomes of measurements show that
Tr�W����0, the state � is identified as a truly multipartite
entanglement. In what follows we will show that the operator

Ĉ� can be constructed systematically and measured with
fewer LMSs for different kinds of pure multipartite en-
tangled qubits or qudits.

Furthermore, through the same idea behind the method to
construct correlator operators, a d-level bipartite BI is con-
structed and able to be tested experimentally with fewer
analyses of detection events. We then consider the correla-
tion conditions for quantum correlation involved in the ap-
proach to construct correlator operators utilized in EWs and
BIs as a connection between them. We will see that the
building blocks of the proposed EWs and BIs are all derived
from the correlation conditions for quantum correlation.

In order to present the idea behind the correlation condi-
tion for quantum correlation clearly, let us first illustrate a
derivation of correlation condition for the generalized four-
qubit GHZ state

����,	�� = cos����0000�z + ei	 sin����1111�z �3�

for 0���
 /4 and 0�	�
 /2, where �v1v2v3v4�z=
�k=1

4 �v�kz for v� �0,1	 and �v�kz corresponds to an eigenstate
of �z with eigenvalue �−1�v for the party k. For the four-qubit
system, the kernel of our strategy for identifying correlation
between a specific subsystem, say A, and another one, say B,
under some LMS, Ml, relies on the sets of correlators with
the following forms:

C0
�l� = P�vA0,vB0� − P�vA1,vB0� , �4�

C1
�l� = P�vA1,vB1� − P�vA0,vB1� , �5�

where P�vAi ,vBj� is the joint probability for obtaining the
measured outcomes vAi for the A subsystem and vBj for the B
one. By the values of the correlators for an experimental
output state, we could identify correlations between out-
comes of measurements for the subsystems.

Proposition 1. If the results of measurements reveal that
C0

�l� and C1
�l� are all positive or all negative, i.e., C0

�l�C1
�l��0,

we are convinced that the outcomes of measurements per-
formed on the A subsystem are correlated with the ones per-
formed on the B subsystem.

Proof. If the A subsystem is independent of the B one, we
recast P�vAi ,vBj� as P�vAi�P�vBj�, where P�vAi� and P�vBj�
denote the marginal probabilities for obtaining results vAi and
vBj, respectively. Then, we have

C0,n
�l� = �P�vA0� − P�vA1��P�vB0� , �6�

C1,n
�l� = �P�vA1� − P�vA0��P�vA1� . �7�

Since P�vA1� , P�vB0�
0, we conclude that C0
�l�C1

�l��0.
Therefore, C0

�l�C1
�l��0 implies that the measured outcomes

performed on the A subsystem are dependent on the one
performed on the B subsystem. Q.E.D.

We start showing the strategy with the help of proposition
1. First, to describe the correlation between a specific party
and others of the four-qubit system, we give four sets of
correlator operators

Ĉ0,nz
�z� = �0̂nz − 1̂nz� � 0̂mz � 0̂pz � 0̂qz, �8�

Ĉ1,nz
�z� = �1̂nz − 0̂nz� � 1̂mz � 1̂pz � 1̂qz, �9�

for n=1, . . . ,4, where v̂nz= �v�nznz�v� and n, m, p, and q de-
note four different parties under the LMS M4z
= ��z ,�z ,�z ,�z�. In order to have compact forms, in what
follows, symbols of tensor product will be omitted from cor-
relator operators. Then, for some experimental output state,

the expectation values of the Hermitian operators Ĉ0,n
�z� and

Ĉ1,n
�z� are expressed in the following correlators in terms of

joint probabilities:

C0,n
�z� = P�vn = 0,v = 0� − P�vn = 1,v = 0� , �10�

C1,n
�z� = P�vn = 1,v = 3� − P�vn = 0,v = 3� , �11�

where v=
i=1,i�n
4 vi. By proposition 1, we know that if results

of measurements reveal that C0,n
�z� C1,n

�z� �0, we are convinced
that the outcomes of measurements performed on the nth
party are correlated with the ones performed on the rest. If
the nth party is independent of the rest, we have

C0,n
�z� = �P�vn = 0� − P�vn = 1��P�v = 0�, C1,n

�z� = �P�vn = 1�

− P�vn = 0��P�v = 3� ,

and realize that C0,n
�z� C1,n

�z� �0.
For the pure generalized four-qubit GHZ state ���� ,	��

we have
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C0,n,���,	�
�z� = cos2���, C1,n,���,	�

�z� = sin2��� �12�

and, hence, C0,n,���,	�
�z� C1,n,���,	�

�z�
�0, which describes the out-

comes of measurements are correlated. Then the condition
C0,n

�z� C1,n
�z� �0 is a necessary condition of the pure generalized

four-qubit GHZ state.
Further, we construct the following correlator operators to

identify correlations between a specific group, which is com-
posed of the nth and mth parties, and another:

Ĉ0,nm
�z� = �0̂nz0̂mz − 1̂nz1̂mz�0̂pz0̂qz, �13�

Ĉ1,nm
�z� = �1̂nz1̂mz − 0̂nz0̂mz�1̂pz1̂qz �14�

for n ,m=1, . . . ,4 and n�m. Moreover, we can express the

expectation values of the Hermitian operators Ĉ0,nm
�z� and

Ĉ1,nm
�z� in terms of joint probabilities for some output state

C0,nm
�z� = P�vnm = 0,v� = 0� − P�vnm = 2,v� = 0� , �15�

C1,nm
�z� = P�vnm = 2,v� = 2� − P�vnm = 0,v� = 2� , �16�

where vnm=vn+vm and v�=
i=1,i�n�m
4 vi. Proposition 1

shows that if the subsystem composed of the nth and the mth
parties is uncorrelated with another one, the measured out-
comes must satisfy C0,nm

�z� C1,nm
�z� �0 . On the other hand,

C0,nm
�z� C1,nm

�z� �0 indicates that they are dependent.
It is clear that, for a pure generalized four-qubit GHZ

state, we have

C0,nm,���,	�
�z� = cos2���, C1,nm,���,	�

�z� = sin2��� , �17�

and hence C0,nm,���,	�
�z� C1,nm,���,	�

�z�
�0. Thus we know that the

subsystem composed of the nth and the mth parties are cor-
related with another. Therefore, the condition, C0,nm

�z� C1,nm
�z�

�0, is also a necessary condition of the state ���� ,	��.
After introducing two correlation conditions for the pure

generalized GHZ state under M4z, let us progress toward the
third one for correlation. Under the LMS, M4x
= ��x ,�x ,�x ,�x�, we formulate four sets of correlators which
correspond to the following operators for identifying corre-
lations between the nth party and others:

Ĉ0,n
�x� = �0̂nx − 1̂nx� � Ê , �18�

Ĉ1,n
�x� = �1̂nx − 0̂nx� � Ô , �19�

where

Ê = �0̂mx0̂px0̂qx + 0̂mx1̂px1̂qx + 1̂mx0̂px1̂qx + 1̂mx1̂px0̂qx� ,

�20�

Ô = �1̂mx1̂px1̂qx + 1̂mx0̂px0̂qx + 0̂mx1̂px0̂qx + 0̂mx0̂px1̂qx� .

�21�

From the expectation values of Ĉ0,n
�x� and Ĉ1,n

�x� for some state
and proposition 1, we could know the correlation behavior of
the system, i.e., for a system in which the nth party is uncor-
related with the rest under M4x, the outcomes of measure-

ments must satisfy the condition C0,n
�x� C1,n

�x� �0.
For the pure state, ���� ,	��, the expectation values of

Ĉk,n
�x� is given by

C0,n,���,	�
�x� = C1,n,���,	�

�x� = sin�2��cos�	�/2 �22�

and ensure that there are correlations between measured out-
comes under the LMS M4x. Thus the condition C0,n

�x� C1,n
�x� �0

is necessary for the pure generalized four-qubit GHZ state.
Entanglement imbedded in the pure generalized four-

qubit GHZ state manifests itself via necessary conditions of
correlations presented above under two LMSs. Therefore we
combine all of the correlator operators involved in the nec-
essary conditions

Ĉ� = Ĉ�z� + Ĉ�x�,

where

Ĉ�z� = 

j=0

1

�

n=1

4

Ĉj,n
�z� + 


m=2

4

Ĉj,1m
�z� �

= 8�0̂1z0̂2z0̂3z0̂4z + 1̂1z1̂2z1̂3z1̂4z� − 1 , �23�

Ĉ�x� = 

n=1

4



k=0

1

Ĉk,n
�x� = 4�x�x�x�x, �24�

and 1 is an identify operator, and then utilize the operator Ĉ�

to construct a witness operator for detections of truly multi-
partite entanglement. Three example are shown as follows.
The witness operator

W���,	� = ����,	�1 − Ĉ�, �25�

where ���� ,	� is some constant, detects genuine multipar-
tite entanglement for the cases �� ,	�: �
 /4 ,
 /6�,
�
 /4.9,0�, and �
 /3.7,
 /9�. Table I gives a summary of
���� ,	� for these cases.

In order to prove that W��� ,	� is a EW for detecting
genuine multipartite entanglement, we have to show the fol-
lowing comparison between

W�
p ��,	� = ��

p 1 − ����,	������,	�� �26�

and W��� ,	� �13�: if a state � satisfies Tr�W��� ,	����0, it
also satisfies Tr�W�

p �� ,	����0, i.e., W��� ,	�
−��W�

p �� ,	�
0, where ���� ,	� is some positive constant.

TABLE I. Summaries of numerical results of ���� ,	� for
W��� ,	�, the parameters ��, which are utilized to prove W��� ,	�
and �noise,� involved in robustness of the proposed witness operator
for detecting truly multipartite entanglement. Three different cases
for the state ���� ,	�� corresponding to W��� ,	� have been
demonstrated.

�� ,	� � 


4 , 


6
� � 


4.9 ,0� � 


3.7 , 


9
�

�� 9.01 9.21 8.92

�� 6.54 6.44 6.86

�noise,� 0.139 0.150 0.169
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Through the method given by Bourennane et al. �12�, we
derive the operator W�

p �� ,	� and have ��
p =cos2��� for 0

���
 /4 and ��
p =sin2��� for 
 /4���
 /2. Table I sum-

marizes the parameters �� utilized to prove that the proposed
operators are indeed EWs for detecting truly multipartite en-
tanglement.

In addition, we are concerned with the robustness to noise
for the witness W��� ,	�. The robustness of W��� ,	� de-
pends on the noise tolerance pnoise��noise is such that

� =
pnoise

2N 1 + �1 − pnoise�����,	������,	�� , �27�

where pnoise describes the noise fraction, is identified as a
genuine multipartite entanglement. Three cases for the ro-
bustness to noise for the witness W��� ,	� have been sum-
marized in Table I.

Further, we show the expectation values of the proposed
EWs for different pure states by Table II. From comparison
with the results we know that a state, say ����� ,	���, does
not always give the smallest expectation value of the corre-
sponding witness operator. One can identify with the opera-
tor W���� ,	�� that an experimental output � is truly multi-
partite entanglement if Tr�W���� ,	�����0. Further, if
Tr�W���� ,	�����Tr�W���� ,	������� ,	�������� ,	����,
the state � is not in the state ����� ,	��� class.

An approach to derive Ĉ� shown above can be applied to
the cases for arbitrary number of qubits straightforwardly.
One can formulate sets of correlator operators to identify
correlations between two subsystems under two LMSs and
then construct the witness operators further. In particular, we
have found that the proposed method also provides an ana-
lytical and systematic way to construct correlator operators
for entangled states with local stabilizers and the correspond-
ing EWs as the previous results �13,19�.

Before proceeding further, let us give a brief summary
and conclusion for this section. We have demonstrated a sys-
tematical method to derive correlator operators utilized to
construct witness operators. The proposed correlator opera-
tors are based on necessary conditions of some pure multi-
partite entangled state to be created experimentally. More-
over, in the example, these witness operators can be
measured with only two LMSs. In what follows, we will give
two EWs in which the correlator operators can be con-
structed systematically. Through these cases for entangle-
ment detection, one could realize that the proposed condi-
tions of quantum correlations possess a wide generality.

II. EWs FOR MULTIPARTITE ENTANGLED STATES

A. Detection of genuine multipartite entanglement of the four-
qubit singlet state

Very recently, four-party quantum secret sharing has been
demonstrated via the resource of four photon entanglement
�18�, which is called the four-qubit singlet state �17�.
Through the same method presented in the Introduction, we
give an EW to detect the four-qubit singlet state.

The four-qubit singlet state is expressed as the following
form:

��� =
1
�3
��0011�z + �1100�z −

1

2
��0110�z + �1001�z + �0101�z

+ �1010�z�
 . �28�

Under the LMS M4z, we formulate eight sets of criteria for
identifying quantum correlation between a specific party and
others: the first type of identifications include the following
four sets of correlators:

Ĉ0,m
�z� = 0̂1z0̂2z1̂3z1̂4z − Xm�0̂1z0̂2z1̂3z1̂4z�Xm, �29�

Ĉ1,m
�z� = 1̂1z1̂2z0̂3z0̂4z − Xm�1̂1z1̂2z0̂3z0̂4z�Xm, �30�

where Xm=�x is performed on the mth party for m
=1, . . . ,4. Then, the second type of criteria are formulated as

Ĉ0n,k
�z� = �0̂�2n+1�z1̂�2n+2�z − Xk�0̂�2n+1�z1̂�2n+2�z�Xk�

��0̂�2n�3�z1̂�2n�4�z + 1̂�2n�3�z0̂�2n�4�z� , �31�

Ĉ1n,k
�z� = �1̂�2n+1�z0̂�2n+2�z − Xk�1̂�2n+1�z0̂�2n+2�z�Xk�

��0̂�2n�3�z1̂�2n�4�z + 1̂�2n�3�z0̂�2n�4�z� , �32�

where k= �2n+1� , �2n+2� for n=0,1; and the symbol “�”
behaves as the addition of modulo 4 for n=1 and as an
ordinary addition for n=0. The expectation values of the

operators Ĉl,m
�z� and Ĉln,k

�z� for the pure four-qubit singlet state
can be evaluated directly and are given by Cl,m,�

�z� =1/3 and
Cln,k,�

�z� =1/6 for l=0,1.
It is easy to see that the conditions involved in the expec-

tation values of Ĉl,m
�z� and Ĉln,k

�z� :

C0,m
�z� C1,m

�z� � 0 and C0n,k
�z� C1n,k

�z� � 0, �33�

are necessary for the pure four-qubit singlet state. The proof
of this statement is similar to the one for proposition 1 pre-
sented in the first section.

For invariance of the wave function presented in the
eigenbasis of �x ��y�, in analogy, we can construct eight sets
of Hermitian operators

�Ĉ0,m
�x�y��,Ĉ1,m

�x�y��� and �Ĉ0n,k
�x�y��,Ĉ1n,k

�x�y��� ,

via the replacement of the index z in above Hermitian opera-
tors by the index x �y� and constructing the operators in the
eigenbasis of �x�y�. The expectation values of the above op-

TABLE II. Expectation values of three proposed EWs including
W�� 


4 , 


6
�, W�� 


4.9 ,0�, and W�� 


3.7 , 


9
� for the pure states ���:

��� 


4 , 


6
��, ��� 


4.9 ,0��, and ��� 


3.7 , 


9
��.

��� ��� 


4 , 


6
�� ��� 


4.9 ,0�� ��� 


3.7 , 


9
��

Tr�W�� 


4 , 


6
�������� −1.45 −1.83 −1.72

Tr�W�� 


4.9 ,0�������� −1.25 −1.63 −1.52

Tr�W�� 


3.7 , 


9
�������� −1.55 −1.92 −1.81
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erators are all positive for the state ���, and so we have the
following necessary conditions of the state ���:

C0,m
�x�y��C1,m

�x�y�� � 0 and C0n,k
�x�y��C1n,k

�x�y�� � 0. �34�

Then, we combine all of the correlator operators proposed
above:

Ĉ� = Ĉ�
�x� + Ĉ�

�y� + Ĉ�
�z�, �35�

where

Ĉ�
�i� = 


l=0

1

�5

m=1

4

Ĉl,m
�i� + 


n=0

1



k=2n+1

2n+2

Ĉln,k
�i� � �36�

for i=x ,y ,z, and present a EW to detect the four-qubit sin-
glet state. The following witness operator detects truly mul-
tipartite entanglement for states close to the state ���:

W� = ��1 − Ĉ�, �37�

where ��=36.5.
We use the method utilized for W��� ,	� to prove W� is

a EW. First, we seek the witness operator W�
p . Through Ref.

�12�, the operator is given by:

W�
p =

3

4
1 − ������ . �38�

Then, we have to show that if a state � satisfies Tr�W���
�0, it also satisfies Tr�W�

p ���0. We find that ��=30 is
such that W�−��W�

p 
0.

The sets of correlator operators Ĉ�
�x�, Ĉ�

�y�, and Ĉ�
�z� note

that only three LMSs are used in the witness operator W�.
The number of LMSs is smaller than the required one, 15
LMSs, in Ref. �12�. Moreover, the robustness of the witness
W� is specified by �noise,�=15/88�0.170455. This result
satisfies the experimental requirement of robustness in Ref.
�12�.

B. Detection of genuine multipartite entanglement for a four-
level tripartite system

In order to show further utilities of the proposed ap-
proach, we proceed to provide a witness to detect genuine
multipartite entanglement close to a four-level tripartite GHZ
state �14�:

�GHZ4�3� =
1

2

l=0

3

�l�1z � �l�2z � �l�3z. �39�

First of all, with the knowledge of the wave function repre-
sented in the eigenbasis: �l�nz for n=1,2 ,3, we have nine sets
of correlator operators for identifying quantum correlation
between the nth party and others, and are given by

Ĉnk,j
�z� = �k̂ − ŝkj�nzk̂pzk̂qz �40�

for j=1, . . . ,9; k=0, . . . ,3; n , p ,q=1,2 ,3, and n�p�q;

where ŝkj =0̂ , . . . , 3̂; k̂� ŝkj, and ŝkj� ŝk�j for k�k�; and

Ĉnk,j
�z� � Ĉ

nk,j�
�z� for j� j�. To show Ĉnk,j

�z� explicitly, let us take

the following set of operators numbered by j=1, for ex-
ample,

Ĉn0,1
�z� = �0̂nz − 1̂nz�0̂pz0̂qz, Ĉn1,1

�z� = �1̂nz − 2̂nz�1̂pz1̂qz, Ĉn2,1
�z�

= �2̂nz − 3̂nz�2̂pz2̂qz, Ĉn3,1
�z� = �3̂nz − 0̂nz�3̂pz3̂qz.

Another example for the second set of operators j=2
could be the following one:

Ĉn0,2
�z� = �0̂nz − 2̂nz�0̂pz0̂qz, Ĉn1,2

�z� = �1̂nz − 3̂nz�1̂pz1̂qz, Ĉn2,2
�z�

= �2̂nz − 0̂nz�2̂pz2̂qz, Ĉn3,2
�z� = �3̂nz − 1̂nz�3̂pz3̂qz.

We progress to a correlation condition for the pure four-level
tripartite GHZ state by the following proposition.

Proposition 2. If the expectation values of Ĉnk,j
�z� for some

state are all positive for k=1, . . . ,3 under some j, the out-
comes of measurements for the party n and the rest of the
systems are correlated.

Proof. If the nth party is independent of the rest of the
system, we can cast the expectation values of the operators

Ĉnk,j
�z� as

Cnk,j
�z� = �P�vn = k� − P�vn = skj��P�vp = k,vq = k� .

Since P�vp=k ,vq=k�
0, Cnk,j
�z� should not be all positive.

Thus Ĉnk,j
�z� �0 for all k’s implies that the measured outcomes

for the party n and the rest are correlated. Q.E.D.

All of the expectation values of the operators Ĉnk,j
�z� for the

pure four-level tripartite GHZ state are given by
Cnk,j,GHZ4�3

�z� =1/4, which are greater than zero. We then con-

sider that Ĉnk,j
�z� �0 as a necessary condition of the state. Sec-

ond, if an observable with the eigenvector

�g�nf =
1

2

h=0

3

exp�− i
2
h

4
g
�h�nz �41�

for g=0, . . . ,3, is measured for each party n=1,2 ,3, we give
nine sets of correlator operators to identify quantum correla-
tion between the nth party and others

Ĉnk,j
�f� = �k̂ − ŝkj�nfV̂klr, �42�

where

V̂klr = 

l,r=0

3

�„�k + l + r�mod 4,0…l̂pfr̂qf �43�

and definitions of k̂, ŝkj, n, p, q, and j are the same as the

ones mentioned for Ĉnk,j
�z� . For j=1, the set of operators speci-

fied by the above equations could be:

Ĉn0,1
�f� = �0̂ − 1̂��0̂0̂ + 1̂3̂ + 2̂2̂ + 3̂1̂�, Ĉn1,1

�f� = �1̂ − 2̂��0̂3̂ + 1̂2̂

+ 2̂1̂ + 3̂0̂�, Ĉn2,1
�f� = �2̂ − 3̂��0̂2̂ + 1̂1̂ + 2̂0̂

+ 3̂3̂�, Ĉn3,1
�f� = �3̂ − 0̂��0̂1̂ + 1̂0̂ + 2̂3̂ + 3̂2̂� .

For j=2, we could give the set of operators as follows:
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Ĉn0,2
�f� = �0̂ − 2̂��0̂0̂ + 1̂3̂ + 2̂2̂ + 3̂1̂�, Ĉn1,2

�f� = �1̂ − 3̂��0̂3̂ + 1̂2̂

+ 2̂1̂ + 3̂0̂�, Ĉn2,2
�f� = �2̂ − 0̂��0̂2̂ + 1̂1̂ + 2̂0̂

+ 3̂3̂�, Ĉn3,2
�f� = �3̂ − 1̂��0̂1̂ + 1̂0̂ + 2̂3̂ + 3̂2̂� .

Please note that in order to have compact forms, we have
omitted the subscripts nf , pf , and qf from the above ex-
amples. A correlation condition similar to the one discussed
in proposition 2 is proposed by the statement, �if the expec-

tation values of Ĉnk,j
�f� are all positive for k=1, . . . ,3 under

some j, there are correlations between the measured out-
comes for the party n and the rest of the systems.� Since all

of the expectation values of the operators Ĉnk,j
�f� for the pure

four-level tripartite GHZ state are greater than zero, i.e.,

Cnk,j,GHZ4�3

�f� =1/4, the correlation condition Ĉnk,j
�f� �0 is then

necessary for the state.
Therefore, through a linear combination of all of the cor-

relator operators proposed above

ĈGHZ4�3
= 


n=1

3



j=1

9



k=0

3

�1.5Ĉnk,j
�z� + Ĉnk,j

�f� � , �44�

the following witness operator detects genuine multipartite
entanglement for states close to �GHZ4�3�:

WGHZ4�3
= �GHZ4�3

1 − ĈGHZ4�3
, �45�

where �GHZ4�3
=40.5. We take an approach similar to the

ones used in the previous proofs for EWs to prove that the
above witness operator detects genuine multipartite entangle-
ment. In order to show that if an experimental output state �
satisfies Tr�WGHZ4�3

���0, the state � also satisfies
Tr�WGHZ4�3

p ���0, first, we deduce that

WGHZ4�3

p =
1

4
1 − �GHZ4�3��GHZ4�3� , �46�

by the method proposed in Ref. �12�. Further, through the
relation WGHZ4�3

−36WGHZ4�3

p 
0 for the proposed witness
operator, we then conclude that WGHZ4�3

can be used to de-
tect truly multipartite entanglement.

Furthermore, when a state mixes with white noise the
proposed EW is very robust and it detects genuine multipar-
tite entanglement if pnoise�0.4. Thus, two local measurement
settings are sufficient to detect genuine four-level tripartite
entanglement around a pure four-level tripartite GHZ state.

III. BI FOR ARBITRARY HIGH-DIMENSIONAL
BIPARTITE SYSTEMS

In order to derive a BI, we will begin with specifications
of correlation conditions for quantum correlation of a two-
qudit entangled state. Then, we will proceed to verify that
any local hidden variable theory cannot reproduce the corre-
lations embedded in the entangled state. This approach is
opposite to the one presented in Ref. �9�.

First, to specify the quantum correlation embedded in the
two-qudit entangled state

��d� =
1
�d



l=0

d−1

�l�1z � �l�2z, �47�

we describe the wave function in the following eigenbasis of

some observable V̂k
�q�:

�l�kq =
1
�d



m=0

d−1

exp�i
2
m

d
�l + nk

�q��
�m�kz, �48�

for k ,q=1,2, where n1
�1�=0, n2

�1�=1/4, n1
�2�=1/2, and n2

�2�=

−1/4 correspond to four different LMSs Mij = �V̂1
�i� , V̂2

�j�� for
i , j=1,2. From our knowledge of the four different represen-
tations of the state ��d�, we give four sets of correlators of
quantum correlation

Cm
�12� = P�v1

�1� = �− m�mod d,v2
�2� = m�

− P�v1
�1� = �1 − m�mod d,v2

�2� = m� , �49�

Cm
�21� = P�v1

�2� = �d − m − 1�mod d,v2
�1� = m�

− P�v1
�2� = �− m�mod d,v2

�1� = m� , �50�

Cm
�qq� = P�v1

�q� = �− m�mod d,v2
�q� = m�

− P�v1
�q� = �d − m − 1�mod d,v2

�q� = m� �51�

for m=0,1 , . . . ,d−1 and q=1,2. The superscripts �ij�, �i�,
and �j� indicate that some LMS Mij has been selected. For
the pure state ��d� under Mij, the correlator Cm

�ij� can be
evaluated analytically �9� and is given by

Cm,�d

�ij� =
1

2d3 �csc2�
/4d� − csc2�3
/4d�� , �52�

where csc�h� is the cosecant of h. Since Cm,�d

�ij� �0 for all m’s
with any finite value of d, we ensure that there are correla-
tions between outcomes of measurements performed on the
state ��d� under four different LMSs. The proof of this state-
ment is similar to that for proposition 2. Hence the correla-
tion conditions

Cm
�ij� � 0 �53�

are necessary for the pure two-qudit entangled state ��d�.
Thus, we take the summation of all Cm

�ij� ’s

Cd = C�11� + C�12� + C�21� + C�22�, �54�

where C�ij�=
m=0
d−1 Cm

�ij�, as an identification of the state ��d�.
We can evaluate the summation of all Cm

�ij�’s for the state
��d�, and then we have

Cd,�d
=

2

d2 �csc2�
/4d� − csc2�3
/4d�� . �55�

One can find that Cd,�d
is an increasing function of d. For

instance, if d=3, one has C3,�3
�2.87293. In the limit of

large d, we obtain limd→�Cd,�d
= �16/3
�2�2.88202.

We proceed to consider the maximum value of Cd for
local hidden variable theories which is denoted by Cd,LHV.
The following proof is based on deterministic local models
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which are specified by fixing the outcome of all measure-
ments. This consideration is general since any probabilistic
model can be converted into a deterministic one �20�. Sub-
stituting a fixed set �ṽ1

�1� , ṽ2
�1� , ṽ1

�2� , ṽ2
�2�� into

Cm
�ij� = P�v1

�i� = �m
�ij�,v2

�2� = m� − P�v1
�i� = �m

�ij�,v2
�j� = m� ,

where �m
�ij� and �m

�ij� denote the values involved in Eqs.
�50�–�52�, then we have the result

Cm,LHV
�ij� = ���m

�ij�, ṽ1
�i����m, ṽ2

�j�� − ���m
�ij�, ṽ1

�i����m, ṽ2
�j�� ,

�56�

where ��x ,y� denotes the Kronecker delta symbol. Accord-
ingly, Cd for local hidden variable theories turns into

Cd,LHV = �„�ṽ1
�1� + ṽ2

�1��mod d,0… − �„− �ṽ1
�1� + ṽ2

�1��mod d,1…

+ ��ṽ1
�1� + ṽ2

�2��mod d,0 − �„�ṽ1
�1� + ṽ2

�2��mod d,1…

+ �„�ṽ1
�2� + ṽ2

�2��mod d,0… − �„− �ṽ1
�2�

+ ṽ2
�2��mod d,1… + �„− �ṽ1

�2� + ṽ2
�1��mod d,1…

− �„�ṽ1
�2� + ṽ2

�1��mod d,0… . �57�

There are three nonvanishing terms at most among the four
positive � functions and there exist four cases for it, for
example, one is that if �(�ṽ1

�1�+ ṽ2
�1��mod d ,0)=�(�ṽ1

�1�

+ ṽ2
�2��mod d ,0)=�(�ṽ1

�2�+ ṽ2
�2��mod d ,0�=1 is assigned, we

obtain ṽ2
�1�= ṽ2

�2� and then deduce that �(−�ṽ1
�2�

+ ṽ2
�1��mod d ,1)=0. We also know that there must exist one

nonvanishing negative � function and three vanishing nega-
tive ones in the Cd,LHV under the same condition. In the
example, the case is �(�ṽ1

�2�+ ṽ2
�1��mod d ,0)=1. With these

facts, we conclude that Cd,LHV�2. One can check other three
cases for the four positive � functions, and then they always
result in the same bound. Thus, we realize that Cd,�d
�Cd,LHV and the quantum correlations are stronger than the
ones predicted by the local hidden variable theories.

For d=2, the proposed inequality C2,LHV�2 can be ex-
pressed explicitly in the form

C̃�11� + C̃�12� + C̃�22� − C̃�21� � 2, �58�

where C̃�ij�=
k=0
1 �−1�k�(�ṽ1

�i�+ ṽ2
�j��mod d ,k), and then we

obtain the result which is known as the CHSH inequality
after the discovery of Clauser, Horne, Shimony, and Holt �8�.
On the other hand, from the quantum-mechanical point of
view, we have a violation of the CHSH inequality by C2,�2
=2�2.

A surprising feature of the inequality is that the total num-
ber of detection events required for analyses by each of the
presented correlation functions C�ij� is only 2d, which is
much smaller than the result O�d2� shown in Ref. �16�. This
implies that the proposed correlation functions contain only
the dominant terms to identify correlations. However, the

proposed BI is nontight from a geometric point of view �21�.
Since the number of linear independent generators contained
in the hyperplane Cd,LHV=2 is only 4d �19� which is smaller
than 4d�d−1� involved in the condition of tightness �21�, the
BI is nontight.

Furthermore, if an experimental output state suffered from
white noise and turned into a mixed one with the form

� =
pnoise

d2 1 + �1 − pnoise���d���d� ,

the value of Cd for the state � becomes Cd,�= �1
− pnoise�Cd,�d

. If the criterion Cd,��2, i.e.,

pnoise � 1 −
2

Cd,�d

�59�

is imposed on the system, one ensures that the mixed state
still exhibits quantum correlations in outcomes of measure-
ments. For instance, to maintain the quantum correlation for
the limit of large d, the system must have pnoise�0.30604.

On the other hand, it is worth comparing the noise toler-
ance of Cd with the one of the following EW:

W�d

p =
1

d
1 − ��d���d� . �60�

Let the noise fraction be the form pnoise=1−�, where � is a
positive parameter. Then satisfying the condition of entangle-
ment Tr�W�d

p ���0 implies that ��1/ �d+1�. Therefore, in
the case where d→�, any state with pnoise�1 is detected as
an entangled one. Hence, there is a significant difference
between the noise tolerance of Cd and the one of W�d

p in the
limit of large d.

IV. SUMMARY

Through the necessary condition of quantum correlation
we develop a systematic approach to derive correlator opera-
tors for BIs and EWs. The d-level bipartite BI is strongly
resistant to noise and can be tested with fewer analyses of
measurement outcomes. The proposed EWs for the general-
ized GHZ, four-qubit singlet, and four-level tripartite GHZ
states are robust to noise and require fewer experimental ef-
forts to be realized. Therefore, the correlation conditions for
quantum correlation involved in the approach to construct
correlator operators utilized in EWs and BIs can be consid-
ered as a connection between them. The generality of the
approach widely cover several �different� tasks of entangle-
ment detections and pave the way for further studies on en-
tangled qudits.
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