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A UNIFIED APPROACH TO POWER CALCULATION AND SAMPLE SIZE
DETERMINATION FOR RANDOM REGRESSION MODELS

GWOWEN SHIEH

NATIONAL CHIAO TUNG UNIVERSITY

The underlying statistical models for multiple regression analysis are typically attributed to two
types of modeling: fixed and random. The procedures for calculating power and sample size under the
fixed regression models are well known. However, the literature on random regression models is limited
and has been confined to the case of all variables having a joint multivariate normal distribution. This
paper presents a unified approach to determining power and sample size for random regression models
with arbitrary distribution configurations for explanatory variables. Numerical examples are provided to
illustrate the usefulness of the proposed method and Monte Carlo simulation studies are also conducted
to assess the accuracy. The results show that the proposed method performs well for various model speci-
fications and explanatory variable distributions.
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1. Introduction

Multiple regression analysis is one of the widely used statistical methods. Conventionally,
there are two approaches to the statistical modeling of these regression applications. They are
referred to as fixed (conditional) and random (unconditional) models. In the context of regres-
sion analysis, it is quite common in the behavioral and social sciences to have studies in which
not only the values of response variables for each experimental unit are just available after the
observations are made, but also the levels of explanatory variables cannot be fixed in advance.
Therefore, the explanatory variables are also outcomes of the study under such circumstances. In
order to take account of this extra variability, the appropriate strategy is to consider the random
regression setting. On the other hand, the fixed regression model is suitable for studies in which
the configurations of the explanatory variables are preset by the researcher.

Sample size calculations and power analyses are often critical for researchers to address spe-
cific scientific hypotheses and confirm credible treatment effects. Thus, they should be an integral
part of the whole study. Accordingly, it is of practical importance to be able to perform these tasks
in a multiple regression setup. For fixed regression models, the procedures are well documented
in the literature. Regarding random regression models, Gatsonis and Sampson (1989) gave an ex-
cellent and thorough description of exact power and sample size calculations when the response
and explanatory variables have a joint multivariate normal distribution. Traditionally, the problem
is referred to as multiple correlation analysis and the parameter of interest is the squared multiple
correlation coefficient. In contrast, Algina and Olejnik (2000) presented results for determining
the sample size required for adequate estimation accuracy of the squared multiple correlation co-
efficient. Furthermore, related treatments can be found in Kelley and Maxwell (2003), Mendoza
and Stafford (2001), Shieh (2006) and Steiger and Fouladi (1992). It is important to note that
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the studies cited above for random regression models and multiple correlation analysis are ap-
plicable in the circumstance that the response and explanatory variables have a joint multivariate
normal distribution. However, there are many situations in which assuming normal distribution
for explanatory variables is inappropriate. For instance, consider the simple interaction model
in the formulation of Y = β0 + Xβ1 + Zβ2 + XZβ3 + ε. It is commonly assumed that the con-
tinuous measurements X and Z are normally distributed. However, the product of two normally
distributed variables (XZ) does not have a normal distribution. Therefore, the existing results for
power analysis of a multinormal situation do not apply in this application. In fact, Gatsonis and
Sampson (1989) noted that when the joint distribution of Y and all explanatory variables is non-
normal, it is doubtful that their power calculations give results that are accurate and reasonable.
Therefore, neglecting other configurations of explanatory variables is an obvious limitation of
available methods. A natural generalization to incorporate both normal and nonnormal explana-
tory variables should be essential to the existing approaches for performing power and sample
size calculations in practice. It should be observed that the prescribed simple interaction model is
directly connected to the moderated multiple regression formulation which has been pervasively
used for testing moderator effects in all areas of social sciences, see Aguinis, Beaty, Boik, and
Pierce (2005) for further details.

This paper aims to provide a unified approach to the determinations of power and sample
size for random regression models. The distinct feature of the proposed method is the accommo-
dation of arbitrary discrete and/or continuous distribution formulations for explanatory variables.
Therefore, the aforementioned multivariate normal setting can be viewed as a special case. For
related results and various extensions in hierarchical linear models and multivariate linear mod-
els, the interested reader is referred to Raudenbush and Liu (2000, 2001), Shieh (2003, 2005),
and the references therein. In fact, the suggested two-stage methodology can be viewed as an
extension of the results for the univariate case in Shieh (2005). The rest of the paper is organized
as follows. In Section 2, the important analytical details of the proposed method are described.
Numerical examples are provided in Section 3 to demonstrate the proposed power and sample
size calculations for several random regression formulations. Since the approach considered here
uses large sample approximations, simulation studies are conducted to assess its adequacy for
finite sample and robustness under various model specifications and distributions of explanatory
variables. Finally, Section 4 contains some final remarks.

2. The Proposed Method

To facilitate the illustration of the proposed method for random regression models, it is
instructive to review first the situation under the fixed regression models where the results would
be specific to the particular values of the explanatory variables that are observed or predetermined
by the researcher.

2.1. Review of Fixed Regression Models

Consider the standard multiple linear regression model with response variable Y and all the
levels of p explanatory variables X(1), . . . ,X(p) fixed a priori:

Y = Xβ + ε, (1)

where Y = (Y1, . . . , YN)T, Yi is the value of the response variable Y ; X = (1N,XD) where
1N is the N × 1 vector of all 1’s, XD = (X1, . . . ,XN)T is often called the design matrix,
Xi = (xi1, . . . , xip)T, xi1, . . . , xip are the known constants of the p explanatory variables for
i = 1, . . . ,N ; β = (β0, β1, . . . , βp)T where β0, β1, . . . , βp are unknown parameters; and ε =
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(ε1, . . . , εN)T where εi are iid N(0, σ 2) random variables. We are concerned with the general
linear hypothesis H0 : Lβ = θ versus H1 : Lβ �= θ , where L is an l × (p + 1) coefficient matrix of
rank l ≤ p + 1 and θ is an l × 1 vector of constants. It is well known that under the assumption
given in (1), the likelihood ratio test for H0 is based on

F = SSH/l

SSE/(N − p − 1)
, (2)

where SSH = (Lβ̂ − θ)T[L(XTX)−1LT]−1(Lβ̂ − θ), SSE = (Y − Xβ̂)T(Y − Xβ̂) and β̂ =
(XTX)−1XTY is an unbiased estimator of β , see Rencher (2000, Chaps. 7–8) for further de-
tails. Under the alternative hypothesis, F is distributed as F(l,N − p − 1, λ), the noncentral F

distribution with l and N − p − 1 degrees of freedom and noncentrality parameter

λ = (Lβ − θ)T[
L(XTX)−1LT]−1

(Lβ − θ)/σ 2. (3)

If the null hypothesis is true, then λ = 0 and F is distributed as F(l,N − p − 1), a central
or regular F distribution with l and N − p − 1 degrees of freedom. The test is carried out by
rejecting H0 if F > Fl,N−p−1,α , where Fl,N−p−1,α is the upper 100α percentage point of the
central F distribution F(l,N − p − 1).

To calculate power and sample size, it is assumed that there are m distinct configurations of
Xi for i = 1, . . . ,N , and they are denoted by Zj with the proportions wj , j = 1, . . . ,m (≤ N ).
Then, XTX can be expressed as XTX = N · �, where � = ∑m

j=1 wj Zj ZT
j . Accordingly, the

noncentrality parameter λ in (3) is rewritten as

λ = Nδ, (4)

where δ = (Lβ − θ)T[L�−1LT]−1(Lβ − θ)/σ 2 is the so-called effect size, see Cohen (1988).
Hence, given all model configurations and sample size N , the statistical power achieved for test-
ing hypothesis H0: Lβ = θ with specified significance level α against the alternative H1 : Lβ �= θ

is the probability

P
{
F(l,N − p − 1,Nδ) > Fl,N−p−1,α

}
, (5)

where δ is defined in (4). Furthermore, this power function can be utilized to calculate the sample
size needed in order to attain the specified power. However, it usually involves an iterative process
to find the solution because both F(l,N − p − 1,Nδ) and Fl,N−p−1,α depend on the sample
size N .

2.2. Random Regression Models

To extend the concept and interpretation of the aforementioned results, we assume that the
explanatory variables {X∗

i = x∗
i , i = 1, . . . ,N} in (1) have a probability function f (X∗

i ) with
finite moments. The form of f (X∗

i ) is assumed to be dependent on none of the unknown para-
meters β and σ 2. Thus, the notations of Xi and XD as observed values in the fixed regression
model are replaced by X∗

i and X∗
D = (X∗

1, . . . ,X∗
N)T as random variables hereinafter. Frequently,

the inferences are concerned mainly with the regression coefficients β1 = (β1, . . . , βp)T and the
corresponding coefficient matrix is written in the form of L = L1, where L1 = (0c,C), 0c is
the c × 1 null vector of all 0’s and C is a c × p coefficient matrix of rank c ≤ p. It follows
from the overall estimator β̂ given above that the prescribed estimator for β1 can be expressed
as β̂

∗
1 = (X∗T

C X∗
C)−1X∗T

C Y, where X∗
C = (IN − J/N)X∗

D is the centered form of X∗
D , IN is the
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identity matrix of dimension N and J is the N × N square matrix of all 1’s. In view of the extra
random nature of X∗

D , it is easily seen that

Cβ̂
∗
1|X∗

D ∼ Nc

(
Cβ1, σ

2C
(
X∗T

C X∗
C

)−1CT)
.

It therefore follows that the general linear hypothesis reduces to H0 : Cβ1 = θ versus H1 : Cβ1 �=
θ and the test statistic is of the form

F ∗ = SSH∗/c
SSE∗/(N − p − 1)

, (6)

SSH∗ = (Cβ̂
∗
1 − θ)T[C(X∗T

C X∗
C)−1CT]−1(Cβ̂

∗
1 − θ), SSE∗ = (Y − X∗β̂∗

)T(Y − X∗β̂∗
), X∗ =

(1N,X∗
D) and β̂

∗ = (X∗TX∗)−1X∗TY. Under random formulation, F ∗ has the conditional distri-
bution

F ∗|� ∼ F(c,N − p − 1,�), (7)

where the noncentrality parameter � = (Cβ1 − θ)T[C(X∗T
C X∗

C)−1CT]−1(Cβ1 − θ)/σ 2 is a ran-
dom variable and the exact distribution depends ultimately on the joint distribution of X∗

D . In
order to provide a generally useful and versatile solution without specifically confining to any
particular X∗

D , the asymptotic property of � is studied next.
Let μ and � denote the mean vector and covariance matrix of the random explanatory vari-

ables X∗
i = (X∗

i1, . . . ,X
∗
ip)T, respectively. It follows from the standard asymptotic result (Muir-

head, 1982, Cor. 1.2.18) that S∗ = (X∗T
C X∗

C)/(N − 1) has asymptotic normal distribution

(N − 1)1/2[vec(S∗) − vec(�)
] .∼ Np2

(
0p2,� − vec(�) · vec(�)T)

,

where vec(·) is a matrix operator which arranges the columns of a matrix into one long column,
� = E[(X∗

i − μ)(X∗
i − μ)T ⊗ (X∗

i − μ)(X∗
i − μ)T], E[·] denotes the expectation taken with

respect to the distribution of X∗
i , and ⊗ represents the Kronecker product. Using the identity

vec(ABC) = (CT ⊗ A) · vec(B), the noncentrality parameter � given in (7) can be expressed as
� = (N − 1)	, where

	 = [
(Cβ1 − θ)T ⊗ (Cβ1 − θ)T] · vec

[(
CS∗−1CT)−1]

/σ 2.

Let ∂	/∂ vec(S∗) denote the p2-dimensional column vector whose ith component is the deriv-
ative of 	 with respect to the ith element of vec(S∗). It can be shown by applying the algebraic
manipulation and matrix differentiation results that

∂	

∂ vec(S∗)
= {[

S∗−1CT(
CS∗−1CT)−1

(Cβ1 − θ)
] ⊗ [

S∗−1CT(
CS∗−1CT)−1

(Cβ1 − θ)
]}

/σ 2.

For operational ease, the derivative is computed ignoring the symmetry of S∗. Then, it can be
readily derived from the Cramer delta method that 	 has the following large-sample distribution

	 ∼· N(μ	,�	), (8)

where

μ	 = (Cβ1 − θ)T(
C�−1CT)−1

(Cβ1 − θ)/σ 2

and

�	 = (G ⊗ G)T�(G ⊗ G)/
{
(N − 1)σ 4} − μ2

	/(N − 1)
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with G = �−1CT(C�−1CT)−1(Cβ1 − θ). For C = Ip and θ = 0p , it leads to the useful results
that μ	 = βT

1 �β1/σ
2 and �	 = (β1 ⊗ β1)

T�(β1 ⊗ β1)/{(N − 1)σ 4} − μ2
	/(N − 1). Conse-

quently, the conditional distribution of F ∗|� with � = (N − 1)	, and asymptotic distribution
of 	 described in the last two equations specify fully the proposed approximate distribution
for test statistic F ∗. It is clear under the null hypothesis that the distribution of F ∗ remains as
F(c,N − p − 1) under both fixed and random settings as in the special case of the multinormal
distribution of Sampson (1974). Hence, the test is conducted by rejecting H0 if F ∗ > Fc,N−p−1,α .
However, the power function associated with the general linear hypothesis H0 : Cβ1 = θ versus
H1 : Cβ1 �= θ can be well approximated by synthesizing the results in (7) and (8) as

P {F ∗ > Fc,N−p−1,α} .=
∫ ∞

−∞
P

{
F

(
c,N − p − 1, (N − 1)	

)
> Fc,N−p−1,α

} · g(	)d	, (9)

where g(	) is the normal pdf of 	 defined in (8). The numerical computation of approximate
power requires the evaluations of central and noncentral F cdfs and the one-dimensional inte-
gration with respect to a normal pdf. Since all related functions are readily embedded in modern
statistical packages such as the SAS system, no substantial computing efforts are required.

For the purpose of sample size determination, the approximate power function defined in
(9) can be employed to calculate the sample size needed to test hypothesis H0 : Cβ1 = θ versus
H1 : Cβ1 �= θ in order to attain the specified power for the chosen significance level α, para-
meter values β and σ 2, and probability distribution f (X∗

i ). The necessary sample size can be
found through a simple iterative search. To reduce the computational effort in the search process,
the starting sample size can be selected from the following simplified examination. Consider
the even stronger asymptotic results for S∗ and SSE∗ that S∗ converges in probability to � and
SSE∗/{(N − p − 1)σ 2} converges in probability to 1. It follows from the application of Slut-
sky’s theorem that SSH∗/{(N − 1)σ 2} converges in distribution to the chi-square distribution
χ2(c,μ	), the noncentral chi-square distribution with c degrees of freedom and noncentrality
parameter μ	, where μ	 is defined in (8). More importantly, the distribution of the c · F ∗ sta-
tistic can be alternatively approximated by the distribution χ2(c, (N − 1)μ	). Therefore, the
corresponding approximate power function is P {χ2(c, (N − 1)μ	) > χ2

c,α}, where χ2
c,α is the

upper 100α percentage point of the central chi-square distribution χ2(c). Hence, the sample size,
say NCS, required to achieve the specified power level is a one-time direct inversion of a non-
central chi-square cdf. In general, the resulting sample size provides a close but smaller value
than the desired outcome according to the proposed mixture of the noncentral F cdf in (9). Note
that the probability P {F ∗ > Fc,N−p−1,α}, for fixed values of c, p, α and model parameters, is
increasing in sample size N . Hence, by starting with sample size NCS for N , it only requires a
small number of incremental searches in order to find the minimum sample size that attains the
nominal power.

It is noteworthy that the proposed approach avoids the need for a full specification of the
joint distributional form of X∗

i by only assuming the second- and fourth-order mixed central
moments of the underlying distribution. However, the calculations are fairly straightforward for
some well-known distributions and it may require more involved mathematical manipulations
(integration or summation) for complex and nonstandard situations. On the contrary, the mean of
X∗

i is immaterial to the distribution of S∗ and, more importantly, the suggested approximation.
Additionally, it should be noted that the effect size δ given in (4) plays an important role in
power and sample size determinations for fixed regression models. Owing to the proposed two-
stage distribution approximation to the F ∗ statistic described in (7) and (8), there is no simple
closed-form expression for the effect size in (9). However, it can be comprehended from the
mean value μ	 of the random noncentrality parameter 	. Therefore, the computed value of μ	

is viewed as a pseudo effect size.
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3. Numerical Examples

For illustrative purposes, we present in this section the power and sample size calculations
for a random simple regression model and the moderated multiple regression or interaction re-
gression model with two continuous predictor variables and their cross-product term.

First, the random simple regression (p = 1) of the form Y = β0 + Xβ1 + ε is investigated,
where ε has a normal distribution N(0, σ 2). Without loss of generality, both the intercept parame-
ter β0 and the variance σ 2 are taken to be 1. As suggested by a referee, we consider two classes
of distributions for the explanatory variable X, namely standardized gamma and standardized
Poisson distributions. Therefore, the mean and variance of X are identically μ = 0 and � = 1,
respectively. In order to investigate the finite-sample properties of the suggested procedure with
respect to various shapes of distributions, the gamma distributions with shape parameter 9, 4 and
1 and scale parameter 1, denoted by gamma(9,1), gamma(4,1) and gamma(1,1), and the Pois-
son distributions with mean 9, 4 and 1, denoted by Poisson(9), Poisson(4) and Poisson(1), are
considered. Note that the skewness and kurtosis of the gamma(a,1) distribution are 2/a1/2 and
3 + 6/a, respectively. Hence, the actual values of skewness and kurtosis for the three prescribed
gamma distributions are (0.67,3.67), (1,4.5) and (2,9), respectively. In the case of Poisson
distribution, the skewness and kurtosis of the Poisson(λ) distribution are 1/λ1/2 and 3 + 1/λ,
respectively. Thus, for the three Poisson distributions, the corresponding skewness and kurtosis
are (0.33,3.11), (0.5,3.25) and (1,4). For the test of slope coefficient (c = p = 1) H0 :β1 = 0
versus H1 :β1 �= 0, it follows from (9) that the sample size needed to obtain the power 1 − γ

at the significance level α = 0.05 is the minimum number N such that the approximate power
function

P {F ∗ > F1,N−2,α} .=
∫ ∞

−∞
P

{
F

(
1,N − 2, (N − 1)	

)
> F1,N−2,α

} · g(	)d	 ≥ 1 − γ, (10)

where 	
.∼ N(μ	,�	),μ	 = β2

1 ·�/σ 2 and �	 = β4
1 · (� − �2)/[(N − 1)σ 4]. For regression

coefficient β1 = 0.3, 0.4 and 0.5 and power level 1 − γ = 0.80, 0.90 and 0.95, the calculated
sample sizes of the proposed method are presented in Tables 1 and 2 for the standardized gamma
and standardized Poisson distributions of X, respectively. The results in the two tables reveal
the general relation that sample sizes increase with increasing power and kurtosis, and decrease
with increasing value of β1. To demonstrate the power computation, the precise achieved powers
associated with the derived sample sizes are recalculated with the proposed approximation given
in (10) for all cases. As expected, the resulting approximate powers are slightly larger than their
corresponding nominal power levels. Specifically, the calculated sample sizes of the proposed
method for gamma(9,1) distribution with β1 = 0.3 are 93, 124 and 152 for power 0.80, 0.90 and
0.95, respectively. The corresponding approximate powers are 0.8027, 0.9020 and 0.9500, and
almost identical to 0.80, 0.90 and 0.95, respectively.

The second model under consideration is the simple interaction model: Y = β0 + Xβ1 +
Zβ2 + XZβ3 + ε, where ε ∼ N(0,1). The two predictors (X,Z) are jointly normally distributed
with mean (0,0), variance (1,1) and correlation ρ. It is important to note that, although both
X and Z are normally distributed, the interaction term XZ is obviously not a normal random
variable. Therefore, the established methods for multinormal covariates are inappropriate for the
power and sample size calculations of this interaction regression model. In this case, it can be
shown that E[XZ] = ρ, E[X2Z] = E[XZ2] = 0 and V [XZ] = 1 + ρ2, see Aiken and West
(1991, Appendix A). Therefore, we have

� = E[H] =
⎡

⎣
1 ρ 0
ρ 1 0
0 0 1 + ρ2

⎤

⎦ , where H =
⎡

⎣
X2 XZ X(XZ − ρ)

XZ Z2 Z(XZ − ρ)

X(XZ − ρ) Z(XZ − ρ) (XZ − ρ)2

⎤

⎦ .
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Also, � can be expressed as

� =
⎡

⎣
�1 �2 �3
�2 �4 �5
�3 �5 �6

⎤

⎦ = E[H ⊗ H] = E

⎡

⎣
X2H XZH X(XZ − ρ)H
XZH Z2H Z(XZ − ρ)H

X(XZ − ρ)H Z(XZ − ρ)H (XZ − ρ)2H

⎤

⎦ ,

where

�1 =
⎡

⎣
3 3ρ 0

3ρ 1 + 2ρ2 0
0 0 3 + 7ρ2

⎤

⎦ , �2 =
⎡

⎣
3ρ 1 + 2ρ2 0

1 + 2ρ2 3ρ 0
0 0 7ρ + 3ρ3

⎤

⎦ ,

�3 =
⎡

⎣
0 0 3 + 7ρ2

0 0 7ρ + 3ρ3

3 + 7ρ2 7ρ + 3ρ3 0

⎤

⎦ , �4 =
⎡

⎣
1 + 2ρ2 3ρ 0

3ρ 3 0
0 0 3 + 7ρ2

⎤

⎦ ,

�5 =
⎡

⎣
0 0 7ρ + 3ρ3

0 0 3 + 7ρ2

7ρ + 3ρ3 3 + 7ρ2 0

⎤

⎦

and

�6 =
⎡

⎣
3 + 7ρ2 7ρ + 3ρ3 0

7ρ + 3ρ3 3 + 7ρ2 0
0 0 9 + 42ρ2 + 9ρ4

⎤

⎦ .

The evaluations of � for this interaction model are more involved than those in the second model.
The conditional distribution properties of Z given X and high-order moments of a standard nor-
mal distribution (E[X6] = 15 and E[X8] = 105) are required to carry out the calculations. For
illustration, the coefficient parameters are set as (β0, β1, β2, β3) = (1,0.1,0.3,0.25). Two hy-
pothesis tests are investigated in this numerical demonstration. They are the tests of overall ef-
fects (c = 3) and interaction effect (c = 1) with the null hypotheses H0 :β1 = β2 = β3 = 0 and
H0 :β3 = 0, respectively. In a similar fashion, the proposed approach is employed to perform the
sample size and the corresponding approximate power calculations for testing the specified hy-
pothesis with significance level α = 0.05 and nominal power (0.80, 0.90, 0.95). These numerical
results are presented in Table 3 for three different values of ρ = 0.3, 0.5 and 0.7.

It is important to note that the major analytical justification considered here applies large-
sample approximation to the distribution of the F ∗ statistic. In order to assess the finite-sample
accuracy of the proposed approach, simulation studies are conducted next. With given sample
size and model configuration, an estimate of the true power or simulated power is then com-
puted through simulation of 10,000 replicate data sets. For each replicate, N sets of explanatory
variables are generated from the selected distribution. These values in turn determine the mean
responses for generating N normal outcomes with the underlying regression model. Then the test
statistic is computed and the simulated power is the proportion of the 10,000 replicates whose
F ∗ test statistic values exceed the critical value Fc,N−p−1,α . The adequacy of the proposed sam-
ple size formula is determined by the difference (simulated power–approximate power) between
the simulated power and approximate power specified above. All calculations are performed us-
ing programs written with SAS/IML (SAS Institute, 2003). Detailed numerical results of the
simulation studies are reported in Tables 1–2 and 3 for the two models, respectively. For the
simple regression models, under the standardized gamma(9,1) predictor variable situation with
β1 = 0.3, the simulated powers are 0.8003, 0.9065 and 0.9550 for the three different power
levels = 0.80, 0.90 and 0.95, respectively. Thus, the differences or errors between simulated
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TABLE 3.
Calculated sample sizes, approximate powers and simulated powers of the proposed method for random multiple regres-
sion model Y = β0 + Xβ1 + Zβ2 + XZβ3 + ε (p = 3, α = 0.05) with standard normal error.

Test of overall effects (c = 3) Test of interaction effect (c = 1)

N Approximate Simulated Error N Approximate Simulated Error
power power power power

(i) ρ = 0.3
70 0.8029 0.8067 0.0038 127 0.8013 0.7970 −0.0043
91 0.9002 0.9032 0.0030 171 0.9010 0.8985 −0.0025

111 0.9502 0.9558 0.0056 212 0.9503 0.9494 −0.0009

(ii) ρ = 0.5
65 0.8049 0.8015 −0.0034 114 0.8012 0.7930 −0.0082
85 0.9017 0.9103 0.0086 154 0.9007 0.8933 −0.0074

104 0.9508 0.9557 0.0049 192 0.9505 0.9515 0.0010

(iii) ρ = 0.7
60 0.8067 0.8148 0.0081 99 0.8010 0.7982 −0.0028
79 0.9028 0.9144 0.0116 135 0.9015 0.9010 −0.0005
97 0.9511 0.9583 0.0072 169 0.9510 0.9535 0.0025

The values of μ	 associated with the two tests are (0.1861,0.0681), (0.2081,0.0781) and (0.2351,0.0931)

for the three correlation values ρ = 0.3, 0.5, and 0.7, respectively.

powers and approximate powers are 0.8003 − 0.8027 = −0.0024, 0.9065 − 0.9020 = 0.0045
and 0.9550 − 0.9500 = 0.0050, respectively. Similarly, all other results in Tables 1–3 are ob-
tained.

Examination of Table 1 shows that the absolute errors associated with the standardized
gamma(9,1) and gamma(4,1) predictor distributions do not exceed 0.01 for all combinations of
β1 and power levels. However, the results for the standardized gamma(1,1) distribution vary with
the value of β1 and power levels. Specifically, the cases associated with β1 = 0.3 are less sensitive
to the influence of the outsized skewness 2 and kurtosis 9 of the standardized gamma(1,1) distri-
bution than those for β1 = 0.4 and β1 = 0.5. Obviously, the errors 0.0103, 0.0144 and 0.0146 for
the three power levels of β1 = 0.5 are greater than 0.01. Hence, the accuracy of the large-sample
power approximation is not as satisfactory as other circumstances for strongly skewed gamma
distributions, especially for small samples. Nonetheless, the relative performance of the proposed
method for Poisson distributions in Table 2 is excellent even for the most skewed Poisson(1) dis-
tribution with comparatively small sample sizes.

With respect to the second model, the results in Table 3 suggest that there is a close agree-
ment between the simulated power and the approximate power because the absolute errors are
less than 0.01. The only exception is 0.0116 which is associated with the test of overall effects
for correlation ρ = 0.7. Overall, the accuracy of the proposed approach increases slightly with
the sample size, and varies marginally with the model configurations. According to these find-
ings, the performance of the proposed method appears to be excellent for the range of random
regression specifications considered here. It is important to note that, in the context of moderated
multiple regression, the test for the existence of moderator effect is examined by the significance
of regression coefficient β3 of the cross-product term in the simple interaction model. As noted
in the review by Aguinis et al. (2005), however, it has been widely recognized that moderated
multiple regression analyses have suffered low statistical power in detecting moderator effects.
Therefore, the proposed power formula can be employed to determine the minimum sample size
required for testing the hypothesis H0 :β3 = 0 with specified model configurations, significance
level, and nominal power.
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As pointed out by a referee, Anderson (1999) showed that the coefficients estimator within
the multivariate multiple regression framework has an asymptotic multinormal distribution when
the errors and predictors are mutually independently distributed, irrespective of whether they
are normal. Since the multiple regression model considered here is a special case of the multi-
variate multiple regression, the asymptotic normality property of the multiple regression coeffi-
cient estimator can readily be established. However, Anderson (1999) did not explicitly discuss
the distribution of the associated F statistic and power calculation. It is important to note that
the conditional distribution of the F ∗ statistic given in (6) is no longer necessarily an exact F

distribution. Nonetheless, the proposed large-sample approximation for the conditional normal
regression model given in (7–9) can be applied to the situation of nonnormal errors and pre-
dictors. To examine the robust issues of the proposed method against the extra complication of
nonnormal errors, we have conducted a numerical evaluation for the simple interaction model:
Y = β0 + Xβ1 + Zβ2 + XZβ3 + ε, where ε has a standardized uniform(0,1) or standardized
gamma(5,1) distribution. For ease of exposition, the parameter settings are the same as those
in Table 3, and the results are presented in Tables 4 and 5. The simulated Type I error rate and
power are compared with the nominal α = 0.05 and power level, respectively. Notably, all the
absolute errors between simulated α and nominal value 0.05 are less than 0.01. In addition, the
discrepancies between simulated powers and approximate powers calculated with the proposed
power function (9) are slightly larger than those in Table 3 with standard normal errors. How-
ever, the performance seems completely acceptable, given the many unknowns in study planning.
Therefore, the suggested procedures for conditional normal regression models with arbitrary dis-
tribution configurations for explanatory variables are not seriously affected by mild departures
from the normality assumption of errors.

4. Conclusions

Procedures for power and sample size determinations in fixed regression models have been
developed for years but none seems to have provided a comprehensive treatment or guideline
for the calculations of power and sample sizes in the framework of random regression mod-
els. Within the context of random regression models, the current results are mainly under the
situation of the normality assumption for explanatory variables. A natural generalization to in-
corporate other distributions of explanatory variables is essential to researchers for performing
power and sample size calculations in practice. This paper discusses a feasible solution to this
issue by providing both theoretical justification and numerical examination for the proposed uni-
fied approach. With this direct extension, one can perform power and sample size calculations
in multiple regression models with any discrete and/or continuous distributions of explanatory
variables. The remarkable performance for power and sample size calculations reveals that the
proposed method may find useful applications in subsequent random regression analysis. No-
tably, the suggested methodology is applicable for the prominent moderated multiple regression
models containing a continuous predictor and moderator.
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