
OPTIMIZATIONOF RESISTANCE SPOTWELDING PROCESS
USING TAGUCHI METHOD AND A NEURAL NETWORK

T
here has been a significant increase in the use of
high-strength steel sheet in the automobile industry
to permit reductions in thickness and thus in vehicle
weight.1 The substitution of high-strength steel

sheet for thicker plain carbon steels helps to lower weight
and meet federally-mandated improvements in fuel economy.
Resistance welding is widely used in mass production, in
which production runs with a consistent condition. The resis-
tance spot welding (RSW) process is especially used in the
automobile industry.2 However, high-strength steel sheet
has narrow welding current ranges in the RSW process.
Sometimes, this limited weldability is a consequence of the
interfacial failure of the weld nugget, producing an appar-
ently smaller fusion zone.3 The physical variables of the metal
may include not only the composition of the steels but also the
surface condition. Surface effects have been studied and found
to have noticeable effects on spot weldability.4 In summary, it
is not easy to obtain optimal parameters of the RSW process
on high-strength steel sheet.

Many parameters affect the RSW quality for high-strength
steel sheet, such as welding current, electrode force, welding
time, and so forth. The desired welding parameters are usually
determined based on experience or handbook values. How-
ever, it does not ensure that the selected welding parameters
result in optimal or near-optimal welding quality character-
istics for the particular welding system and environmental
conditions. The Taguchi method, a popular experimental de-
sign method applied in industry, can alleviate the dis-
advantages of full factorial design and approaches the
optimization of parameter design, although the number of
experiments is reduced.5 However, the Taguchi method has
certain limitations when used in practice. The optimal solu-
tions were only obtained within the specified level of control
factors. Once the parameter setting is determined, the range
of optimal solutions is constrained concurrently. The Taguchi
method is unable to find the real optimal values when the
specified parameters are continuous in nature because it only
addresses the discrete control factors. Neural network (NN)
technique with nonlinear function is capable of accurately
representing the complex relationship between inputs and
outputs.6–8 The trained neural model was also used to accu-
rately predict the response at given parameter settings. In
addition, Khaw et al.9 proved that benefits could be obtained
using the Taguchi concept for NN design. First, this method-
ology is the only known method for NN design that considers
robustness. It enhances the quality of the NN designed. Sec-
ond, the Taguchi method uses orthogonal arrays (OAs) to sys-
tematically design an NN. Subsequently, the design and
development time for NNs can be reduced tremendously. In
this study, an application involving combination of the Taguchi
method and an NN to determine optimal condition for improv-
ing the RSW process quality of high-strength steel sheet was
presented. The experimental procedure showed that the

Taguchi method not only provides systematic and efficient
methodology for the initial optimization of the RSW process
parameters but is also employed to find out the primary influ-
encing parameters such as welding current and the size of
electrode tip that affects tensile shear strength of specimen.
A proposed approach that combined the Taguchi method and
anNN then was used to resolve the limitations of applying the
said method only. This was done instead of the basic back-
propagation (BP) algorithm (gradient descent algorithm).
The Levenberg–Marquardt backpropagation (LMBP) algo-
rithm with high speed for convergence was adopted.
The NN package software MATLAB Neural Network Toolbox
(The MathWorks, Inc., Natick, MA) was used to develop the
required network. The experimental results were conducted
to verify the optimal welding parameter.

INITIAL OPTIMIZATION BY TAGUCHI METHOD

The high-strength steel sheet was used in this study; its chem-
ical composition is listed in Table 1. Plates 0.7 mm in thickness
were cut into strips of size 30 3100 mm. The resistance spot
welder (FANUC a8/4000is type) had been utilized for the
experiment. The schematic diagram of high-strength steel
sheet specimen for resistant spot welding is shown in Fig. 1.

Quality Characteristic and Parameters
of RSW Process
The study used tensile shear strength of specimens as the
quality characteristic in the process. A universal testing
machine (MTS 810, MTS Systems Corporation, Eden Prairie,
MN) had been used for this study to measure the welding
tensile shear strength of the RSW specimens. The speed was
set at 0.1 mm/s in the testing. Dr. Taguchi separated all the
influencing factors into two main groups, the control factors
and noise factors. Control factors are those that allow a man-
ufacturer to control during processing and the noise factors
are expensive or difficult to control.10 As learned from hand-
book and the practical experience in the production of auto-
body, the major welding parameters for the processing quality
of weldment include welding current, welding time, electrode
force, the size of electrode tip, and surface condition of speci-
mens in the RSW process. By making reference to the existing
parameter conditions in the production line, the range of
experimental parameter value has been initially framed as
below: welding current 6200–11,000 A, welding time 8–26
cycles, electrode force 1.8–3.3 kN, and the size of electrode
tip f3–f6 mm. The value of each welding process parameter
at the different levels is listed in Table 2. Surface condition of
the welding area was selected as the noise factor in this study.
The specimens at level 1 (N1), without any cleaning treat-
ment, may have been tarnished with dirt and/or grease. The
surface impurities were removed and the surface cleaned with
acetone at level 2 (N2). The initial conditions of production
operation currently were welding current at 7800 A, welding
time at eight cycles, electrode force at 1.8 kN, and the size of
electrode tip at f4 mm.
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OA Experiment
Taguchi had tabulated 18 basic OAs that are called standard
OAs.10 Four four-level control factors, in addition to one noise
factor, were considered in this investigation. The interaction
effect between the welding parameters was not considered.
Therefore, there are 12 degrees of freedom owing to the four
control factors. The degrees of freedom for the OA should be
greater than or at least equal to those for the process param-
eters. L16 (45) OA that has 15 degrees of freedom was
employed in this study. An experimental layout with an inner
array for control factors and an outer array for a two-level
noise factor (N1 and N2) is shown in Table 3. Four repetitions
(y1, y2, y3, and y4) for each trial are used with this experimen-
tal arrangement; y1 and y2 are N1 specimens (without clean-
ing); y3 and y4 are N2 specimens (cleaned with acetone). The
experimental results for the tensile shear strength using L16
OA are shown in Table 4.

Evaluation of Initial Optimal Condition
Taguchi has created a transformation of the repetition data to
another value, which is to say a measure of the variation
present. The transformation is the signal-to-noise ratio
(SNR).11 There are several SNRs available, depending on
the type characteristic being present, such as lower is better
(LB), nominal is best (NB), or higher is better (HB). The ten-
sile shear strength of the specimens as discussed earlier
belongs to the higher-is-better quality characteristic. The
SNRs, which condense the multiple data points within a trial,
depend on the three-characteristic LB, NB, and HB. The
equation for calculating the SNR for HB characteristic is:

SNR5 210log
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where n is the number of tests in a trial (number of repetitions
regardless of noise levels). The value of n is 4 in this study.
The SNRs corresponding to the tensile shear strength value of
each trial is shown in Table 4. The effect of each welding pro-
cess parameter on the SNR at different levels can be sepa-
rated out because the experimental design is orthogonal.
The description of the SNR for each level of the welding pro-
cess parameters is summarized in Table 5. Figure 2 shows
the SNR graph obtained from Table 5. Basically, the larger
the SNR, the better the quality characteristic (tensile shear
strength) for the specimens. The initial optimal conditions of
the RSW process parameter levels, A1B4C1D3, can be deter-
mined from Fig. 2.

Analysis of Variance
The purpose of the analysis of variance (ANOVA) is to inves-
tigate welding process parameters, which can significantly
affect the quality characteristics.12 The percent contribution
in the total sum of the squared deviations can be used to
evaluate the importance of the welding process parameter
change on these quality characteristics. When the contribu-
tion of a factor is small, as with factor D (welding time) in
Table 6, the sum of squares for that factor is combined with
the error. This process of disregarding the contribution of
a selected factor and subsequently adjusting the contributions
of the other factors is known as ‘‘pooling.’’11 The welding cur-
rent and the size of electrode tip were the significant welding

Table 1—Chemical composition of the material
used (wt%)

MATERIAL C Si Mn P S Fe

MJSC340D 0.062 0.48 0.95 0.013 0.004 Balance

Table 2—Control factors and its levels

FACTOR
PROCESS

PARAMETER LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

A The size

of electrode tip

f3 mm f4 mm f5 mm f6 mm

B Welding current 6200 A 7800 A 9400 A 11000 A

C Electrode force 1.8 kN 2.3 kN 2.8 kN 3.3 kN

D Welding time 8 cycles 14 cycles 20 cycles 26 cycles

Fig. 1: Schematic diagram of the specimens

Table 3—Summary of experimental layout
using an L16 OA

TRIAL NO.

NOISE FACTOR

CONTROL FACTOR N1 SPECIMENS N2 SPECIMENS

A B C D y1 y2 y3 y4

1 1 1 1 1 Measure data

2 1 2 2 2

3 1 3 3 3

. . . . .

15 4 3 2 4

16 4 4 1 3
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parameters in affecting the quality characteristic, with the
welding current being the most significant, as indicated by
Table 6.

Confirmation Test and Proper Regulation
The final step of the Taguchi method is to compare the esti-
mated value with the confirmative experimental value, using
the optimal level of the control factors to confirm with the
experimental reproducibility. The estimated SNR hopt using
the optimal level of the control factors, can be calculated as:

hopt 5 ĥ1 +
q

j51

ðhj2 ĥÞ ð2Þ

where ĥ is the total average of SNR of all the experimental
values, hj the mean SNR at the optimal level, and q the num-

ber of the control factors that significantly affect the quality
characteristic. Refering to Tables 4 and 5, estimated SNR hopt

is computed as:

hopt 5 11:2131 ð11:941211:213Þ1 ð12:252211:213Þ
5 12:98 ðdBÞ

The confidence interval (CI) is a maximum and minimum
value between which the true average should fall at some
stated percentage of confidence.11 The confidence limits of
the above estimation can be calculated taking into account
the following equation:

CI5
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where Fa;1;ve is the F ratio required for a 5 0.05 (with a confi-
dence of 95%), ve the degrees of freedom for pooled error, Vep

the pooled error variance, r the sample size for the confirma-
tion experiment, and neff the effective sample size.

neff 5
N

11DOFopt
ð4Þ

where N is the total number of trials and DOFopt the total
degrees of freedom associated with items used in the hopt esti-
mate. With a CI of 95% for the tensile shear strength, the
F0.005;1;6 5 5.99, and Vep 5 0.448, the sample size for the
confirmation experiment r is 2, N 5 16, DOFopt 5 9, and
the effective sample size neff 1.6. Thus, the CI is computed
to be 1.738 (dB). The experimental results (Table 7) confirm
that the initial optimizations of the RSW process parameters
(Af3mmB11,000AC1.8kND20cycles) were achieved.

Although the conformity of reproducibility for the experimen-
tal results has been confirmed with an average tensile shear
strength of specimens as high as up to 4.406 kN obtained,
however, a phenomenon of spark was taken place between

Table 4—Summary of experiment data*

TRIAL NO.

CONTROL FACTORS TENSILE SHEAR STRENGTH

A B C D AVERAGE (kN) SNR (dB)

1 1 1 1 1 3.317 10.41

2 1 2 2 2 4.098 12.25

3 1 3 3 3 4.105 12.26

4 1 4 4 4 4.392 12.85

5 2 1 2 3 3.299 10.35

6 2 2 1 4 3.758 11.49

7 2 3 4 1 3.950 11.91

8 2 4 3 2 3.855 11.70

9 3 1 3 4 2.622 8.36

10 3 2 4 3 3.735 11.44

11 3 3 1 2 4.168 12.39

12 3 4 2 1 4.083 12.22

13 4 1 4 2 2.318 7.29

14 4 2 3 1 3.572 11.05

15 4 3 2 4 3.637 11.21

16 4 4 1 3 4.139 12.24

*Total average of SNR for all trial ĥ is 11.213 (dB).

Table 5—SNR response table for the tensile
shear strength

FACTOR
PROCESS

PARAMETER LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

A The size

of electrode tip

11.941 11.363 11.101 10.449

B Welding current 9.102 11.558 11.942 12.252

C Electrode force 11.634 11.507 10.842 10.871

D Welding time 11.399 10.905 11.571 10.979

Fig. 2: SNR graph for the tensile shear strength
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the specimens and the electrode during the spot welding pro-
cess that leads to a severely shortened life cycle of electrode
and a collaterally affected joint quality of weldment for its
subsequent welding. With the ANOVA outcomes (Table 6)
referenced, a proper regulation of welding current is neces-
sary to cope with the foregoing defects. As learned from Fig. 2
(SNR graph), SNR thereof was slightly increased when weld-
ing current regulated from 7800 A to 11,000 A, that is, the
tensile shear strength of specimens was not heightened in big
magnitude. Therefore, the optimal conditions of parameters
obtained from the application of the Taguchi method remained
unchanged except the welding current was regulated from
11,000 A to 7800 A. Table 8 lists the results of experiment
after adjusting the parameters (Af3mmB7800AC1.8kND20cycles).

LEVENBERG–MARQUARDT BP ALGORITHM

NNs are to be used for modeling of complex manufacturing
processes, usually with regard to process and quality con-
trol.13,14 Several well-known supervised learning networks
use a BP NN. Funahashi15 proved that the BP NN may
approximately realize any continuous mapping. BP learning
employs a gradient-descent algorithm to minimize the mean
square error (MSE) between the target data and the predic-
tions of an NN. However, one of the major problems with
conventional BP algorithm (gradient-descent algorithm) is
the extended training time required. The techniques for accel-
erating convergence have fallen into two main categories:
heuristic methods and standard numerical optimization
methods such as the LMBP algorithm.16

The LMBP algorithm is similar to the quasi-Newton method,
in which a simplified form of the Hessian matrix (second

derivatives) is used. When the cost function has the form of
a sum of squares, then the Hessian matrix H can be approx-
imated as:

H 5 JTJ ð5Þ

And the gradient g can be computed as:

g5 JTe ð6Þ

where J is the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights and biases,
and e a vector of network errors. The Jacobian matrix can be
computed through a standard BP technique that is much less
complex than computing the Hessian matrix.17

An iteration of this algorithm can be written as:

XK11 5 XK 2 ½JTJ1mI�21JTe ð7Þ

when the scalar m is zero, this is just Gauss–Newton, using
the approximate Hessian matrix. When m is large, this
becomes gradient descent with a small step size.

The algorithm begins with m set to some small value (e.g., m5
0.01). If a step does not yield a smaller value for e, then the
step is repeated with m multiplied by some factor u . 1 (e.g.,
u 5 10). Eventually, e should be decreased since we would be
taking a small step in the direction of steepest descent. If

Table 8—Results of the Taguchi method with proper
regulation

TRIAL
NO.

TENSILE SHEAR STRENGTH

AVERAGE (kN)
N1 SPECIMENS N2 SPECIMENS

19 4.089 3.945 3.926 3.731 3.851�
N15 3:988
N25 3:713

�
20 3.878 4.041 3.585 3.611

Table 6—Results of ANOVA for the tensile shear strength

FACTOR
DEGREE OF
FREEDOM SUM OF SQUARE MEAN SQUARE F TEST

PURE SUM
OF SQUARE

PERCENT
CONTRIBUTION

A 3 4.599 1.533 3.42 3.25 9.54

B 3 24.748 8.249 18.40 23.40 68.61

C 3 2.071 0.690 1.54 0.73 2.13

D 3 1.248*

Error 3 1.442

Error(pooled) (6) (2.691) (0.448) 6.15 19.72

Total 15 34.109 34.229 100

*The factors are treated as pooled error.

Table 7—Results of the confirmation experiment

TRIAL
NO.

TENSILE SHEAR STRENGTH

CI (95%)
N1

SPECIMENS
N2

SPECIMENS
SNR
(dB)

AVERAGE
(kN)

17 4.562 4.505 4.335 4.209 12.861
4.406

12.98 ± 1.74

(dB)
18 4.426 4.343 4.626 4.243 12.875
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a step does produce a smaller value for e, then m is divided by u
for the next step, ensuring that the algorithm will approach
Gauss–Newton, which should provide faster convergence.16

The LMBP algorithm is the fastest algorithm that has been
tested for training multiplayer networks of moderate size,
even though it requires a matrix inversion at each iteration.
It requires two parameters, but the algorithm does not appear
to be sensitive to this selection.

TRAINING OF BP NETWORK

Multilayer feedforward NNs are commonly used for solving
difficult predictive modeling problems.18 They usually consist
of an input layer, one or more hidden layers, and one output
layer. The neurons in the hidden layers are computational
units that perform nonlinear mapping between inputs and
outputs. A feedforward NN was used in this study. It takes
a set of five input values (control factors A, B, C, D, and noise
factor) and predicts the value of one output (tensile shear

strength of the specimens). The transfer functions for all hid-
den neurons are tangent sigmoid functions and a linear func-
tion is used for the output neurons.19 Determining the
number of hidden neurons is critical in the design of NNs.
An overabundance of hidden neurons give too much flexibility
that usually leads to overfitting. On the other hand, too few
hidden neurons restrict the learning capability of a network
and degrade its approximation performance.18 A total of 64
input–output data patterns were partitioned into a training
set, a testing set, and a validating set. Functionally, 60% (38
patterns) were randomly selected for training the NN, while
the remaining 20% (13 patterns) were randomly selected for
testing and 20% (13 patterns) randomly selected for validat-
ing. An efficient algorithm, the Levenberg–Marquardt algo-
rithm, was used to improve classical BP learning in the
training process.17,19 The performance of each NN was mea-
sured with the MSE of the testing subset. Table 9 presents
nine options for the NN architecture. After comparing all
the data for the MSE value, the structures 5-4-1, 5-5-1, 5-7-1,
5-8-1, and 5-9-1 are the five best convergence criteria. The
structure 5-7-1 showed the least simulating error and was

Table 9—Options for different networks

ARCHITECTURE
(INPUT-HIDDEN
UNIT-OUTPUT)

MEAN SQUARE
ERROR FOR
TRAINING

RANK
OF MSE

SIMULATING ERROR,
% (COMPARE WITH
AVERAGE VALUE IN

TABLE 8)

N1
SPECIMENS

N2
SPECIMENS

5-2-1 0.1123

5-3-1 0.1083

5-4-1 0.0337 5 23.81 1.85

5-5-1 0.0282 4 20.98 6.19

5-6-1 0.2383

5-7-1 0.0147 2 3.50 20.54

5-8-1 0.0096 1 27.92 26.28

5-9-1 0.0194 3 24.93 2.36

5-10-1 0.0490

Fig. 3: The BP network topology of the RSW process Fig. 5: Results of simulating different electrode force

Fig. 4: Results of simulating different welding time
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therefore selected to obtain a better performance. The topol-
ogy of the network 5-7-1 with a m value of 0.001 and a u value
of 10 is shown in Fig. 3.

Simulation with a Well-Trained Network
The control factor D (welding time) is the insignificant weld-
ing parameters in affecting the quality characteristic as
shown in Table 6. First, the trained network 5-7-1 with
1.47% MSE was employed as the simulating function of the
insignificant parameters in this welding process. In Figs. 4–7,
the N1 specimens (without any cleaning treatment) had sim-
ulated with 0% cleanliness and the N2 specimens (cleaned
with acetone) had simulated with 100% cleanliness. Figure 4
shows the comparison of simulating results using the factor D
(other conditions Af3mmB7800AC1.8kN), from which it can be
seen that the tensile shear strength of specimens is best for
adjusting welding time to 15 cycles. Second, Fig. 5 shows the
comparison of simulating results using the factor C (other
conditions Af3mmB7800AD15cycles), from which it can be seen
that the tensile shear strength of specimens is best for setting
electrode force at 3.0 kN. Third, Fig. 6 shows the comparison
of simulating results using the factor A (other conditions

B7800AC3.0kND15cycles), from which it can be seen that the ten-
sile shear strength of specimens is best for setting the size of
the electrode tip at f3 mm. Finally, Fig. 7 shows the compar-
ison of simulating results using the factor B (other conditions
Af3mmC3.0kND15cycles), from which it can be seen that welding
current and average tensile shear strength are in direct ratio
until about 8200 A. The welding current of RSW process for
the initial condition is 7800 A. Therefore, the welding current
at 7800 A has been selected in this study.

Experimental Results of Proposed Approach
With combination of this Taguchi method and an NN, the
optimal welding conditions for tensile shear strength with
RSW process were electrode tip size at f3 mm, welding cur-
rent at 7800 A, electrode force at 3.0 kN, and welding time at
15 cycles. Table 10 shows the experimental results obtained
with above optimal welding parameters. Table 11 shows the
experimental results with the conditions of production opera-
tion currently (Af4mmB7800AC1.8kND8cycles). Comparison of
Table 8 with Table 11 shows that the increase in average ten-
sile shear strength from the initial conditions to the initial
optimal parameters (apply the Taguchi method only) is
0.309 kN. Comparison of Table 10 with Table 11 shows that
the increase in average tensile shear strength from the initial
conditions to the real optimal parameters (apply the Taguchi
method and NN) is 0.566 kN. The surface condition of speci-
mens for different parameters is shown in Fig. 8. In summary,
the quality of RSW process for high-strength steel sheet can
be efficiently improved with the proposed approach.

CONCLUSIONS

(1) The improvement of the average tensile shear strength
from initial conditions to the initial optimal parame-
ters (apply the Taguchi method only) is about 8.72%.
The improvement of the average tensile shear strength
from initial conditions to the real optimal parameters
(apply proposed approach) is about 15.98%.

(2) The proposed approach is relatively effective and easy
for engineers to apply to a range of other processes.
In addition, applying the proposed approach allows

Fig. 6: Results of simulating different size of the electrode tip

Fig. 7: Results of simulating different welding current

Table 10—Results of the proposed approach

TRIAL
NO.

TENSILE SHEAR STRENGTH

AVERAGE
(kN)N1 SPECIMENS N2 SPECIMENS

21 4.310 4.169 4.112 3.746
4.108

22 4.153 3.973 4.522 3.876

Table 11—Results of the initial conditions

TRIAL
NO.

TENSILE SHEAR STRENGTH

AVERAGE
(kN)N1 SPECIMENS N2 SPECIMENS

23 3.329 3.518 3.605 3.344 3.542

24 3.673 3.575 3.626 3.669
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engineers to directly use NN software to optimize the
parameters without any theoretical knowledge of neu-
ral computing.
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