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Abstract—In this letter, a polycrystalline silicon thin–film tran-
sistor consisting of silicon–oxide–nitride–oxide–silicon (SONOS)
stack gate dielectric and nanowire (NW) channels was investi-
gated for the applications of transistor and nonvolatile mem-
ory. The proposed device, which is named as NW SONOS-TFT,
has superior electrical characteristics of transistor, including a
higher drain current, a smaller threshold voltage (Vth), and a
steeper subthreshold slope. Moreover, the NW SONOS-TFT also
can exhibit high program/erase efficiency under adequate bias
operation. The duality of both transistor and memory device for
the NW SONOS-TFT can be attributed to the trigate structure
and channel corner effect.

Index Terms—Nanowire (NW), nonvolatile memory, polysilicon
(poly-Si), silicon–oxide–nitride–oxide–silicon (SONOS), thin-film
transistor (TFT).

I. INTRODUCTION

POLYSILICON thin-film transistors (poly-Si TFTs) have
attracted much attention for use in active-matrix liquid-

crystal-displays since they can be integrated with peripheral
driving circuits because of their high field effect mobility
and driving current [1]. Systems-on-panels (SOP), which are
integrated with such functional devices on an LCD panel as
a controller [2] and memory [3], have been proposed in the
development of display technology development to make dis-
plays more compact and reliable and to reduce their cost. Since
SOP technology is primarily used for portable electronics, low-
power consumption is basically required to ensure long battery
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life. It is well known that the nonvolatile memory is widely
utilized for data storage in portable electronics systems due
to its properties of low-power consumption and nonvolatil-
ity. Unlike the conventional nonvolatile floating gate memory,
silicon–oxide–nitride–oxide–silicon (SONOS)-type memory
has become a promising candidate for SOP application because
it is fully compatible with poly-Si TFTs process. However,
SONOS-type nonvolatile memory still raises several issues
concerning performance and reliability, such as insufficient
programming/erasing (P/E) efficiency, poor endurance, and
short retention time [4]. Recently, various approaches have
been proposed for the improvement of the performance and
reliability of SONOS using dielectric engineering [5], [6]. In
addition, SONOS-type poly-Si TFT, which is fabricated by
the sequential lateral solidified (SLS) method, has also been
reported to improve the P/E efficiency by field-enhanced tun-
neling in Si protrusion regions [7]. However, the uniformity of
the Si protrusions recrystallized by SLS is still a problem.

Based on our previous study [8], the poly-Si TFT with
nanowire (NW) channels can provide good gate control due to
its trigate structure. Besides, the nonvolatile nanocrystal mem-
ory with a narrow channel width structure has been demon-
strated to improve the P/E efficiency [9]. Thus, in this letter,
the poly-Si TFT combined with nonvolatile SONOS memory
and NW channels, which is named as NW SONOS-TFT, is
proposed to obtain superior electrical performance for transistor
and higher P/E efficiency for memory device.

II. EXPERIMENT

In this letter, the SONOS-TFT with ten strips of 65-nm NW
channel was proposed. The standard device with a single chan-
nel structure with W = 1 µm (STD) was also fabricated for
comparison. The detailed fabrication procedures are described
as follows. At first, undoped amorphous silicon (a-Si) with
thickness of 50 nm was deposited on oxidized silicon wafers by
low-pressure chemical vapor deposition (LPCVD) at 550 ◦C.
Then, the deposited a-Si layer was recrystallized by solid-
phase crystallization at 600 ◦C for 24 h in a N2 ambient. After
the active region patterning by electron beam lithography, the
25-nm-thick ONO multilayer gate dielectric of the bottom
oxide (5 nm) / silicon nitride (10 nm) / top oxide (10 nm) was
deposited by LPCVD. Subsequently, a 150-nm-thick in situ n+

doped poly-Si layer was deposited and transferred to a gate
electrode. After source/drain (S/D) formation by self-aligned
phosphorous implantation, a 200-nm oxide passivation layer
was deposited, and contact holes were patterned. Finally, Al
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Fig. 1. Comparison of typical ID–VG characteristics of the standard and the
NW SONOS-TFTs. The inset exhibits the TEM of a single NW channel of NW
SONOS-TFT.

metallization was performed, and the devices were sintered at
400 ◦C in nitrogen ambient for 30 min.

III. RESULTS AND DISCUSSION

Fig. 1 presents the typical normalized ID–VG curves of the
standard and the proposed NW SONOS-TFTs. The inset shows
the transmission electron microscopy (TEM) photography of a
single NW channel. It is clearly seen that the NW channel is
surrounded by the control gate to form the trigate structure, and
the physical channel width of NW SONOS-TFT is confirmed to
be 65 nm. The threshold voltage in this letter is determined at
ID/(W/L) = 10 nA for VD = 0.1 V. The transfer characteris-
tic reveals that the NW device outperforms the standard device,
with higher drain current, smaller threshold voltage (Vth), and
steeper subthreshold swing. Since the effective channel width is
increased, and the control of the channel region is enhanced by
the trigate structure, the drain current and Vth can be improved
in NW SONOS-TFT. Furthermore, the current at the corner
region turns on earlier than that at the surface of the channel
because of the larger electrical field [10], and the additional
corner current can increase the drain current as the number
of corners increases. Hence, the enhancement in electrical
performance of the NW SONOS-TFT can be attributed mainly
to the good gate control by the trigate structure and the corner
effect.

In addition, the SONOS-TFTs can also be used as nonvolatile
memory devices at adequate gate voltage operation. However,
the reset state Vth of memory differs from the Vth for the
transistor due to gate injection into the ONO layer during an
erasing operation. The reset state Vth is determined by the
charge balance between the gate injection and the detrapping
out of the ONO layer. Thus, the SONOS-TFT is not inter-
changeable for the two modes at the same time. In this letter,

Fig. 2. Programming and erasing characteristics of memory devices for NW
and standard structures.

Fig. 3. Simulation results of the electrical fields with a gate bias of 14 V for
the standard device and NW device at center and corner regions.

due to the fact that tunneling current is mainly dominated by
Fowler–Nordheim (FN) tunneling, as the thickness of tunnel-
ing oxide is thicker than 5 nm [11], the SONOS-TFTs are
programmed and erased by FN tunneling mechanism. Fig. 2
shows the programming and erasing characteristics of the NW
and standard devices. Clearly, the memory device with multiple
NW channels has greater P/E efficiency and memory window
shift. For the standard device, the results also indicate that
the memory windows are saturated as the programming time
increases and the threshold voltage shift is very small even at a
gate voltage of −14 V.

The distribution of an electrical field across the stacked gate
dielectric was numerically simulated at a gate bias of 14 V using
an ISE-TCAD simulator for the standard and NW devices to
examine the improvement in the memory characteristics. As
shown in Fig. 3, at the corners of the NW channel, the elec-
trical field across the tunneling oxide is much larger than that
across the blocking oxide. The P/E activity is thus facilitated
between the tunneling oxide and channel rather than between
the blocking oxide and the gate. Comparatively, electrical fields
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Fig. 4. (a) Endurance and (b) retention characteristic of the NW SONOS-
TFT. Memory window remains 1.5 V after 104 P/E cycles and 1 V after 106 s
at 85 ◦C.

are uniformly across all oxide layers for the standard TFT
device. This will lead the threshold voltage shift of the standard
device to be easily saturated during the programming operation
as soon as the equilibrium of electron flows is achieved through
the paths from channel to the storage layer and from the storage
layer to gate electrode. The injection of electrons from the
gate to the storage layer during the erasing operation causes
inefficient erasing and a lower threshold voltage shift in the
standard device. Also, the inefficient erasing activity similarly
appears at the center region of the NW channel. Therefore, the
pronounced enhancement of P/E efficiency for the NW device is
attributed to the large number of corners, where large electrical
field is induced by the corner effect.

Fig. 4(a) shows the endurance characteristic of the NW
device with a programming bias of 18 V for 1 ms and an
erasing bias of −18 V for 1 s. Indeed, the memory window
is degraded by interface-trap generation and tunneling oxide
degradation as the number of P/E cycles increases. However,
the NW device can still maintain a 1.5-V memory window after
106 P/E cycles. The memory window is sufficiently large for the
practical usability. Fig. 4(b) presents the retention characteristic
of the NW device. The devices are programmed after 104 P/E
cycles and then measured at 85 ◦C. The result indicates that the
memory window is still kept about 1 V after 106 s at 85 ◦C.

IV. CONCLUSION

This letter demonstrates the feasibility of a novel poly-Si
TFT that functions as both transistor and nonvolatile SONOS
memory. The experimental results show that the NW SONOS-
TFT has the better electrical characteristics because of its trigate
structure and additional corner current that is induced by corner
effect. In addition, the proposed device exhibits memory char-
acteristics as an adequate gate bias is applied. The simulation
of electrical field results verified that the enhancement in P/E
efficiency of the NW SONOS-TFT is attributable mostly to
the large number of corners and the corner effect. In addition,
good endurance and retention are also obtained in this device.
The fabrication of SONOS-TFTs with NW channels is quite
easy and involves no additional processes. Such a SONOS-TFT
is thereby very promising for use in the future SOP display
applications.
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