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Global synchronization in lattices of coupled chaotic systems
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Based on the concept of matrix measures, we study global stability of synchronization in networks.
Our results apply to quite general connectivity topology. In addition, a rigorous lower bound on the
coupling strength for global synchronization of all oscillators is also obtained. Moreover, by merely
checking the structure of the vector field of the single oscillator, we shall be able to determine if the
system is globally synchronized. © 2007 American Institute of Physics. �DOI: 10.1063/1.2754668�

Lattices of coupled chaotic oscillators model many sys-
tems of interest in physics, biology, and engineering. In
particular, complete chaotic synchronization, all oscilla-
tors acquiring identical chaotic behavior, has received
much attention analytically. There are, in general, two
classes of results which give criteria for such synchroni-
zation. The first class of results linearizes around the syn-
chronous manifold, and then computes the Lyapunov
exponents/matrix measures or contraction factors of the
variational equations to get local or global synchroniza-
tion, respectively.1–3 The second class of results uses the
Lyapunov method by constructing a Lyapunov function
to give analytical criteria for local or global
synchronization.4–14 This paper gives yet another ap-
proach by utilizing the concept of matrix measures to get
global synchronization criteria. The coupling configura-
tion of the networks is quite general, which includes
asymmetric connections between nodes and/or some com-
petitive (gij�0, iÅ j) couplings between cells xi and xj,
and partial-state coupling with nonzero off-diagonal con-
nections. Moreover, by merely checking the structure of
the vector field of the single oscillator, we shall be able to
determine if the system is globally synchronized.

I. INTRODUCTION

During the past few decades the study of networks of
dynamical systems has attracted increasing attention.1–37 The
purpose to connect dynamical systems in networks is to get
them to solve problems cooperatively. For instance, such net-
works are needed for information processing in the brain.21

The simplest mode of the coordinated motion between dy-
namical systems is their complete synchronization when all
cells of the network acquire identical dynamical behavior.
Consequently, one asks questions such as: What are the con-
ditions for the stability of the synchronous state, especially
with respect to coupling strengths and coupling configura-
tions of the network? Typically, in networks of continuous
time oscillators, the synchronous solution becomes stable
when the coupling strength between oscillators exceeds a

critical value. In this context, a central problem is to find the
bounds on the coupling strength so that the stability of syn-
chronization is guaranteed.

General approaches to local synchronization of coupled
chaotic systems have been proposed, including the master
stability function �MSF�-based criteria1,16,32–35 originated by
Pecora and Carroll,1 and the matrix measures approach.2 The
former computes the Lyapunov exponent of the variational
equations, while the latter uses the concept of matrix mea-
sures to give criteria on the variation equations. Recently,
local synchronization in a complex network of asymmetri-
cally coupled units was also obtained18,25 via MSF-based cri-
teria.

Global synchronization of coupled chaotic systems was
also intensively studied. The methods include Lyapunov
function-based criteria with symmetrical connections4–8,10–14

or asymmetrical connections,9,13 and the partial contraction
approach.3 For Lyapunov-based criteria, the partial-state cou-
pling matrix, determining which state variables are coupled,
is assumed to have the form satisfying Eq. �2.4c� while the
partial contraction approach needs to verify the contraction
of the system, depending on the state variables and time t,
which is not a small task. In developing the theory of global
synchronization of coupled chaotic systems, one needs to
assume bounded dissipation of the coupled system; that is,
all solutions of the coupled system are, in some sense, even-
tually bounded. Such assumption plays the role of an a priori
estimate. However, in obtaining the theory of local synchro-
nization, one does not need to know bounded dissipation of
the coupled system. Thus, not surprisingly, the criteria in
getting local synchronization are composed of a term that
describes how chaotic the single system is and a term that
depends on how the configuration of the networks is formed.

The purpose of this paper is yet to give another approach
to study global synchronization of coupled chaotic systems.
Our coupling rules are allowed to be asymmetric and/or
some competitive �gij �0, i� j� couplings between cells xi

and x j, as long as the coupled system is bounded dissipative.
In addition, the partial-state coupling in our approach is al-
lowed to have the form satisfying �3.9a�. Moreover, by
merely checking the structure of the vector field of the single
oscillator, we shall be able to determine if the system is
globally synchronized. We also obtain a rigorous lower
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bound on the coupling strength for global synchronization of
all oscillators with coupling configuration satisfying �2.4a�
and �2.4b�. Finally, the concept of matrix measures is intro-
duced to obtain such global results.

We organize the paper as follows. Section II is to lay
down the foundation of our paper. The main results are con-
tained in Sec. III. Coupled Lorenz systems and coupled Duf-
fing systems are used as illustrations. We also compare our
results with those in Refs. 8 and 9.

II. BASIC FRAMEWORK AND PRELIMINARIES

In this paper, we will denote scalar variables in lower
case, matrices in bold-type upper case, and vectors �or
vector-valued functions� in bold-type lower case. We con-
sider an array of m cells, coupled linearly together, with each
cell being an n-dimensional system. The entire array is a
system of nm ordinary differential equations. In particular,
the state equations are

dxi

dt
= f�xi,t� + d · �

j=1

m

gijDxj, i = 1,2, . . . ,m , �2.1�

where xi�Rn, f :Rn�R→Rn, and D is an n�n real matrix.
Let

x = �x1

�
xm
�, xi = �xi,1

�
xi,n

�, and G = �gij�m�m. �2.2�

Then �2.1� can be written as

ẋ = � f�x1,t�
�

f�xm,t�
� + d�G � D�x ¬ F�x,t� + d�G � D�x ,

�2.3a�

where � denotes the Kronecker product and

f�xi,t� = � f1�xi,t�
�

fn�xi,t�
� . �2.3b�

We next impose conditions on coupling matrices G and D.
We assume that coupling matrix G satisfies the following:

�i� � = 0 is a simple eigenvalue of G
and e = �1,1, . . . ,1�1�m

T is its corresponding
eigenvector; �2.4a�

�ii� All nonzero eigenvalues of G have negative
real part. �2.4b�

We further assume that coupling matrix D is, without loss of
generality, of the form

D = 	Ik 0

0 0



n�n
. �2.4c�

The index k, 1�k�n, means that the first k components of
the individual system are coupled. If k�n, then the system is
said to be partial-state coupled. Otherwise, it is said to be
full-state coupled.

From time to time, we will refer to system �3� as the
coupled system �D ,G ,F�x , t��. To study synchronization of
such a system, we permute the state variables in the follow-
ing way:

x̃i = �x1,i

�
xm,i

� and x̃ = �x̃1

�
x̃n
� . �2.5�

Then Eq. �2.3a� can be written as

ẋ̃ = � f̃1�x̃,t�
�

f̃n�x̃,t�
� + d�D � G�x̃ ¬ F̃�x̃,t� + d�D � G�x̃ ,

�2.6a�

where

f̃i�x̃,t� = � f i�x1,t�
�

f i�xm,t�
� . �2.6b�

The purpose of such reformulation is twofold. First, a trans-
formation of coordinates of x̃ is to be applied to �2.6� so as to
decompose the synchronous manifold. Second, once the syn-
chronous manifold is decomposed, proving synchronization
of Eq. �2.3a� is then equivalent to showing that the origin is
asymptotically stable with respect to reduced system �3.3�.
From here on, we will treat ˜ as a function that takes x into
x̃, or xi into x̃i.

We next give the definition of the bounded dissipation of
a system.

Definition 2.1. �i� A system of n ordinary differential
equations is called bounded dissipative, provided that for any
r�0 and for any initial conditions x0 in Bn�r�, there exists a
time t*� t0 such that �x�t� � ��r for all t� t*. �ii� If, in addi-
tion, �r is independent of r, then the system is said to be
uniformly bounded dissipative with respect to �r.

To prove global synchronization of coupled chaotic sys-
tems, one needs to assume bounded dissipation, which plays
the role of an a priori estimate. Without such an a priori
estimate, as in the case of the Rössler system, global syn-
chronization is much more difficult to obtain. Only local syn-
chronization was reported numerically in literature �see, e.g.,
Ref. 5�. We remark that in certain cases of the Rössler sys-
tem, the trajectory of each oscillator grows unbounded, yet
approaches each other �see, e.g., Ref. 5�. An interesting ques-
tion in this direction is how bounded dissipation of the
coupled system is related to the uncoupled dynamics and its
connectivity topology. Not many general theorems have been
provided so far. In the case that G is diffusively coupled with
periodic boundary conditions or zero flux and D satisfies
�2.4c�, it was shown in Ref. 6 that bounded dissipation of the
single oscillator implies that of the coupled chaotic oscilla-
tors. Moreover, the absorbing domain of the coupled system
is a topological product of the absorbing domain of each
individual system.

In our derivation of synchronization of system �3�, we
need the concept of matrix measures. For completeness and
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ease of references, we also recall the following definition of
matrix measures and their properties �see e.g., Ref. 38�.

Definition 2.2. Let � · �i be an induced matrix norm on
Cn�n. The matrix measure of matrix A on Cn�n is defined to
be �i�A�= lim

	→0+
� I+	A�i−1/	.

Lemma 2.1. Let � · �k be an induced k norm on Rn�n,
where k=1,2 ,
. Then each of matrix measure �k�A�, k
=1,2 ,
, of matrix A= �aij� on Rn�n is, respectively,

�
�A� = max
i �aii + �

j�i


aij
� , �2.7a�

�1�A� = max
j �ajj + �

i�j


aij
� , �2.7b�

and

�2�A� = �max�AH + A�/2. �2.7c�

Here �max�A� is the maximum eigenvalue of A.
Theorem 2.1. (See, e.g., 3.5.32 of Ref. 38.) Consider the

differential equation ẋ�t�=A�t�x�t�+v�t�, t�0, where x�t�
�Rn, A�t��Rn�n, and A�t�,v�t� are piecewise continuous.
Let � · �i be a norm on Rn, and � · �i, �i denote, respectively,
the corresponding induced norm and matrix measure on
Rn�n. Then, whenever t� t0�0, we have

�x�t0��exp��
t0

t

− �i�− A�s��ds�
− �

t0

t

exp��
s

t

− �i�− A����d���v�s��ds

� �x�t��

� �x�t0��exp��
t0

t

�i�A�s��ds�
+ �

t0

t

exp��
s

t

�i�A����d���v�s��ds . �2.8�

To conclude this section, we define global synchroniza-
tion as follows.

Definition 2.3. �i� System �3� is said to be globally syn-
chronized if for any given initial values x0 there exists a d
=dx0

such that system �3� is synchronized for the initial con-
ditions x0. Here dx0

is a constant depending on x0. �ii� Sys-
tem �3� is said to be uniformly, globally synchronized if there
exists a d=d1 such that system �3� is synchronized for all
initial values x0.

III. MAIN RESULTS

To study synchronization of �3�, we first make a coordi-
nate change to decompose the synchronous subspace. Let A
be an m�m matrix of the form

A =�
1 − 1 0 ¯ 0

0 � � � �
� � � � 0

0 ¯ 0 1 − 1

1 ¯ ¯ 1 1
�

m�m

¬ 	C

eT 
 , �3.1a�

where e is given as in �2.4a�. It is then easy to see that CCT

is invertible and that

A−1 = 	CT�CCT�−1

e

m

 . �3.1b�

Setting

E = In � A , �3.1c�

we see that

E�D � G�E−1 = �In � A��D � G��In � A−1�

= D � AGA−1

= D � 	CGCT�CCT�−1 0

* 0

¬ D � 	Ḡ 0

* 0

 .

�3.1d�

We remark, via �3.1d�, that ��G�− �0�=��Ḡ�, where ��A� is
the spectrum of matrix A. Multiplying E to both sides of Eq.
�2.6a�, we get

ẏ̃ ¬ Eẋ̃ = EF̃�x̃,t� + dE�D � G�E−1ỹ

= EF̃�E−1ỹ,t� + d	D � 	Ḡ 0

* 0


ỹ . �3.2�

Let

ỹ = �ỹ1

�
ỹn
� .

Then

ỹi =�
x1,i − x2,i

�
xm−1,i − xm,i

� j=1

m
xj,i

� .

Setting

ỹi = � ȳi

�
j=1

m

xj,i� and ȳ = �ȳ1

�
ȳn
� ,

we have that the dynamics of ȳ is satisfied by the following
equation:

ẏ̄ = d�D � Ḡ�ȳ + F̄�ȳ,t� . �3.3�

Here F̄ is obtained from EF̃�E−1ỹ , t� accordingly.
The task of obtaining global synchronization of system

�3� is now reduced to showing that the origin is globally and
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asymptotically stable with respect to system �3.3�. To this
end, the space ȳ is broken into two parts: ȳc, the coupled
space, and ȳu, the uncoupled space,

ȳ = 	ȳc

ȳu

 and F̄�ȳ,t� = 	F̄c�ȳ,t�

F̄u�ȳ,t�

 , �3.4�

respectively. Here

ȳc = �ȳ1

�
ȳk
� and ȳu = �ȳk+1

�
ȳn

� .

The dynamics on the coupled space with respect to the linear

part is under the influence of Ḡ, which is asymptotically
stable. The dynamics of the nonlinear part on coupled space
can then be controlled by choosing a large coupling strength.
As a matter of fact, it is easier to obtain synchronization of
coupled chaotic systems with a larger coupled space. On the

other hand, the uncoupled space has no stable matrix Ḡ to

play with. Thus, its corresponding vector field F̄u�ȳ , t� must
have a certain structure to make the trajectory stay closer to
the origin as time progresses, as we shall explain later.

Now, assume that F̄c�ȳ , t� satisfies a dual-Lipschitz con-
dition with a dual-Lipschitz constant b1. That is,

�F̄c�ȳ,t�� � b1�ȳ� �3.5a�

whenever ȳ in the ball B�m−1�n���, and for all time t. Since
the estimate in the right-hand side of �3.5a� depends on the
whole space ȳ, condition �3.5a� is a mild assumption pro-
vided that the coupled system is bounded dissipative. Write

F̄u�ȳ , t� as

F̄u�ȳ,t� = U�t�ȳu + �F̄u�ȳ,t� − U�t�ȳu� ¬ U�t�ȳu + R̄u�ȳ,t� .

�3.5b�

Assume that U�t� is a block diagonal matrix of the form
U�t�= diag �U1�t� , . . . ,Ul�t��, where U j�t�, j=1, . . . , l, are
matrices of size �m−1�kj � �m−1�kj. Here � j=1

l kj =n−k, and
kj �N. We assume further that the following holds:

�i� The matrix measures�i�U j�t�� are less than

− 
 for all t and all j, where 
 � 0; �3.5c�

�ii� Let

R̄u�ȳ,t� = �Ru1�ȳ,t�
�

Rul�ȳ,t�
� .

Then Ruj�ȳ , t�, j=1, . . . , l satisfy a strong dual-
Lipschitz condition with a strong dual-Lipschitz con-
stant b2. Specifically, let

ȳu = �ȳu1

�
ȳul

� ,

written in accordance with the block structure of
U�t�. Then we assume that

�Ruj�ȳ,t�� � b2��
ȳc

ȳu1

�
ȳuj−1

�� �3.5d�

whenever ȳ in the ball B�m−1�n���, and for all j
=1, . . . , l and all time t.

Specifically, we break the vector field F̄u into �time-

dependent� linear part U�t�ȳu and nonlinear part R̄u�ȳ , t�. We
will further break U�t� into certain block diagonal forms if
necessary. Note that form �3.5b� can always be achieved

since the remaining term R̄u still depends on the whole space
ȳ. To take control of the dynamics on the linear part, we
assume that the matrix measure of each diagonal block U j�t�
is negative. As to contain corresponding dynamics on the
nonlinear part, we assume that �3.5d� holds. Note that though
the nonlinear terms Ruj�ȳ , t� could possibly depend on the
whole space, their norm estimates are required to depend
only on the coupled space and uncoupled subspaces with
their indexes proceeding j. In this setup, the nonlinear dy-
namics on uncoupled space can be iteratively controlled by
choosing a large coupling strength. We also remark that if
�3.5c� and �3.5d� are satisfied for l, the number of diagonal
blocks, being one, then we do not need to further break U�t�.
Such further breaking is needed only if �3.5c� and �3.5d� are
not satisfied. The proof in the following theorem gives ex-
actly how the above strategy can be realized.

Theorem 3.1. Let G and D be given as in (2.4). Assume

that F̄ satisfies (3.5a), (3.5b), (3.5c), and (3.5d), and system
(3.3) is uniformly bounded dissipative with respect to �. Let

�1=max�� j 
� j �Re���Ḡ���. If

d �
cb1

− �1 + 	
	1 + 	b2




2
l/2

¬ dc, �3.6�

where 	�0 and c is some constant depending on G and 	,
then limt→
ȳ�t�=0.

Proof. Since system �3.3� is uniformly bounded dissipa-
tive with respect to �, without loss of generality, we may
assume that �ȳ�t� � �� for all time t� t0. Using �3.5b�, we
write �3.3� as

	 ẏ̄c

ẏ̄u


 = 	d�Ik � Ḡ� 0

0 U�t�

	ȳc

ȳu

 + 	 F̄c�ȳ,t�

R̄u�ȳ,t�

 . �3.7a�

Applying the variation of constant formula to �3.7a� on ȳc,
we get

ȳc�t� = e�t−t0�d�Ik�Ḡ�ȳc�t0� + �
t0

t

e�t−s�d�Ik�Ḡ�F̄c�ȳ�s�,s�ds .

Let �1=max�� j 
� j �Re���G�− �0���. Then

�etd�Ik�Ḡ�� � cetd� �3.7b�

for �=�1+	 and some constant c. Here 0�	�−�1. Thus,

033111-4 Juang, Li, and Liang Chaos 17, 033111 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Thu, 01 May 2014 00:08:38



�ȳc�t�� � ce�t−t0�d��ȳc�t0�� + cb1�
t0

t

ed�t−s���ȳ�s��ds

� ce�t−t0�d�� +
�

d

cb1


�

¬ ce�t−t0�d�� +

�

d
c0.

Let ��1. We see that

�ȳc�t�� �
�

d
c0� , �3.8a�

whenever t� t0,1 for some t0,1�0. We then apply Theorem
2.1 on ȳu1, and the resulting inequality is

�ȳu1�t�� � �ȳu1�t0,1��exp��
t0,1

t

�i�U1�s��ds�
+ �

t0,1

t

exp��
s

t

�i�U1����d���Ru1�ȳ�s�,s��ds .

It then follows from �3.5c�, �3.5d�, and �3.8a� that

�ȳu1�t�� � �e−
�t−t0,1� +
�

d

b2



c0� �

�

d

b2



c0�2

¬

�

d
c1�2,

�3.8b�

whenever t� t1,1 for some t1,1� t0,1. Inductively, we get

�ȳuj�t�� �
�

d
	b2



��

i=0

j−1

ci
2
� j+1

¬

�

d
cj�

j+1, j = 2, . . . ,l ,

�3.8c�

whenever t� tj,1��tj−1,1�. Letting tl,1= t1 and summing up
�3.8a�, �3.8b�, and �3.8c�, we get

�ȳ�t�� =��
j=1

l

�ȳuj�t��2 + �ȳc�t��2

�
�

d
	1 + 	b2




2
l/2cb1


�

�l+1

¬ h� ,

whenever t� t1. Choosing d� �1+ �b2 /
�2�l/2�cb1 / 
�
�l+1�,
we see that the contraction factor h is strictly less than 1, and
�ȳ�t�� contracts as time progresses. To complete the proof of
the theorem, we note that ��1 can be made arbitrary close
to 1. Consequently, if d� �1+ �b2 /
�2�l/2�cb1 / 
�
, then h can
still be made to be less than 1. �

Remark 3.1. �i� In case that Ḡ is symmetric, then c and
	 can be chosen to be one and zero, respectively. �ii� b1 and
b2 could possibly depend on �. �iii� If system �3.3� is only
bounded dissipative, then the estimate in �3.6� is still valid.
However, in this case, b1 and b2 depend not only on � but
also on x0.

Corollary 3.1. Suppose F̄ and G are given as in Theo-
rem 3.1. Let

D = 	D̄k�k 0

0 0



n�n

, where Re���D̄�� � 0. �3.9a�

Assume, in addition, that either ��G� or ��D̄� has no com-
plex eigenvalue.

Then assertions in Theorem 3.1 still hold true, except dc

needs to be replaced by

dc =
cb1


�
min�Re���D̄���
	1 + 	b2




2
l/2

. �3.9b�

Proof. The assumption on D is to ensure that �3.7b� is
still valid. Other parts of the proof are similar to those in
Theorem 3.1 and are thus omitted. �

We next turn our attention to finding conditions on the
nonlinearities f i�u , t�, i=1, . . . ,n, u�Rn, so that assumptions
�3.5a�, �3.5b�, �3.5c�, and �3.5d� are satisfied. To this end, we
need the following notations: Let x̃i and x̃ be given as in
�2.5�. Define

�x̃i�− = � x1,i

�
xm−1,i

�, and �x̃�− = ��x̃1�−

�
�x̃n�−� . �3.10�

We then break F̃ as given in �2.6a� into two parts so that the
breaking is inconsistent with ȳ in �3.4�. Specifically, we shall
write

F̃�x̃,t� = 	F̃c�x̃,t�

F̃u�x̃,t�

 . �3.11�

We are now in the position to state the following proposi-
tions.

Proposition 3.1. Suppose that f i�x , t�, i=1,2 , . . . ,k sat-
isfy a Lipschitz condition in Bn�� /2� with a Lipschitz con-
stant b1. That is,


f i�u,t� − f i�v,t�
 �
b1

k
�u − v�, i = 1,2, . . . ,k , �3.12�

for all u, v in Bn�� /2�, and all time t. Then �3.5a� holds true.
Proof. Note that

EF̃�x̃,t� = �Af̃1�x̃,t�
�

Af̃n�x̃,t�
� ,

where A is given as in �3.1a�, and so

�Af̃i�x̃,t��− = � f i�x1,t� − f i�x2,t�
�

f i�xm−1,t� − f i�xm,t�
�, i = 1,2, . . . ,n .

�3.13�

Since

F̄c�ȳ,t� = ��Af̃1�x̃,t��−

�

�Af̃k�x̃,t��−
� ,

we conclude that �3.5a� holds. �

From the above proposition, we see that the nonlineari-
ties on the corresponding coupled space are only assumed to
be Lipchitz. The following proposition is very useful in the
sense that by checking how each component f i of the non-
linearity f is formed, one would then be able to conclude
whether �3.5c� and �3.5d� are satisfied.
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Proposition 3.2. Let u= �u1 , . . . ,un�T and v
= �v1 , . . . ,vn�T be vectors in Bn�� /2�. Let wp=�i=0

p ki, p
=1, . . . , l, where k0=k, the dimension of coupled space, and
k1 , . . . ,kl and l are given as in �3.5c�. Write fwp−1+i�u , t�
− fwp−1+i�v , t�, i=1, . . . ,kp, as

fwp−1+i�u,t� − fwp−1+i�v,t�

= �
j=1

kp

qwp−1+i,wp−1+j�u,v,t��uwp−1+j − vwp−1+j�

+ rwp−1+i�u,v,t� . �3.14a�

We further assume that the following are true:
�i� For

p = 1, . . . ,l, let Qu,v,p = �qwp−1+i,wp−1+j�u,v,t�� , �3.14b�

where 1� i , j�kp. Then �*�Vp��−
 for all p, u, v, in
Bn�� /2� and all time t, where *=1,2 , 
 ;

�ii� Let rp= �rwp−1+1�u ,v , t� , . . . ,rwp
�u ,v , t��T. We have

that

�rp� � b2�� u1 − v1

�
uwp−1

− vwp−1

�� �3.14c�

for all p, u, v in Bn�� /2� and all time t. Then (3.5c) and
(3.5d) hold true for *=1,2 ,
.

Proof. Since ri�u ,v , t� depend on the whole space,
f i�u , t�− f i�v , t� can always be written as the form in �3.14a�.
Using �3.13� and �3.14a�, we have that the matrices Up�t� in

the linear part of F̄u�ȳ , t� take the form

Up�t� = �
w=1

m−1

Qxw,xw+1,p�t� � Dw, �3.15�

where xw are given as in �2.2�, and

�Dw�ij = �1 i = j = w ,

0 otherwise,
1 � i, j � m − 1.

It then follows from �2.7a�, �2.7b�, and �3.15� that
�*�Up�t���−
 for *=1 or 
. For *=2, we have that

�
w=1

m−1

��Qxw,xw+1,p�t� + �Qxw,xw+1,p�t��T�

= ���
w=1

m−1

�Qxw,xw+1,p�t� � Dw + �Qxw,xw+1,p�t��T
� Dw��

= ��Up�t� + Up
T�t�� ,

where ��A� is the spectrum of A. We remark that the first
equality above can be verified by the definition of eigenval-
ues due to the structure of Up�t�. It then follows from �2.7c�
that �2�Up�t���−
. The remainder of the proof is similar to
that of Proposition 3.1, and is thus omitted. �

Remark 3.2. The upshot of Proposition 3.2 is that, by
only checking the “structure” of the vector field f of the
single oscillator, one should be able to determine if our main
result can be applied. To be precise, we begin with saving
notations by setting f as f= f�x , t�= �f1�x , t� , . . . , fn�x , t��T. We

then check the form of the difference of the “uncoupled” part
of dynamics. That is, we write f i�u , t�− f i�v , t� in the form of
�3.14a� with i=k+1, . . . ,n. If �3.14b� and �3.14c� can be sat-
isfied, then l=1 gets the job done. Otherwise, we further
break the uncoupled states into a set of smaller pieces to see
if the resulting �3.14b� and �3.14c� are satisfied.

We are now ready to state the main theorems of the
paper.

Theorem 3.2. Assume that system (3) is (resp., uni-
formly) bounded dissipative. Let coupling matrices G and D
satisfy (2.4) and the nonlinearities f i�x , t�, i=1,2 , . . . ,n, sat-
isfy (3.12) and (3.14). Suppose d is greater than dc, as given
in (3.6). Then system (3) is (resp., uniformly) globally syn-
chronized.

Proof. The proof is a direct consequence of Propositions
3.1 and 3.2, and Theorem 3.1. �

Remark 3.3. From here on, we will refer to the assump-
tions in Theorem 3.2 as synchronization hypotheses.

Theorem 3.3. Coupled system �D ,G ,F�x , t��, given as
in Corollary 3.1, is also (resp., uniformly) globally synchro-
nized provided that its coupled system is (resp., uniformly)
bounded dissipative and that d is greater than dc. Here dc is
given in (3.9b).

IV. APPLICATIONS

To see the effectiveness of our main results, we consider
two examples in this section. These are coupled Lorenz
equations,8,26 and coupled Duffing oscillators.37

�i� We shall begin with Lorenz equations. Let x
= �x1 ,x2 ,x3�T,

f�x,t� = f�x� = ���x2 − x1�,rx1 − x2 − x1x3,− bx3 + x1x2�T

¬�f1�x�, f2�x�, f3�x��T.

Here �=10, r=28, and b=8/3. In the following cases �a�–
�d�, G denotes the diffusive coupling with zero flux and D is,
respectively,

�1 0 0

0 0 0

0 0 0
�, �0 0 0

0 1 0

0 0 0
�, �0 0 0

0 0 0

0 0 1
� , and �0 0 0

0 1 1

0 0 1
� .

For the first three cases, it was shown in Ref. 6 that all such
coupled systems �D ,G ,F�x�� have the topological product of
an absorbing domain

B = �x1
2 + x2

2 + �x3 − r − ��2 �
b2�r + ��2

4�b − 1�
¬ �� . �4.1�

Hence, in each case, we will concentrate on the illustration of
how our main results may or may not be applied.
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�a� Let

D = D1 = �1 0 0

0 0 0

0 0 0
� .

For “coupled” nonlinearity f1, we get that


f1�u� − f1�v�
 = �
�u2 − v2� − �u1 − v1�
 � �2��u − v� .

Hence, condition �3.5a� is satisfied. For “uncoupled”
nonlinearities f2 and f3, we see that

f2�u� − f2�v� = �− u2 − u1u3 + ru1� − �− v2 − v1v3 + rv1�

= �− �u2 − v2� − u1�u3 − v3��

+ �r − v3��u1 − v1� �4.2a�

and

f3�u� − f3�v� = �u1u2 − bu3� − �v1v2 − bv3�

= �u1�u2 − v2� − b�u3 − v3��

+ v2�u1 − v1� . �4.2b�

Writing �4.2a� and �4.2b� in the vector form, we get

	 f2�u� − f2�v�
f3�u� − f3�v�


 = 	 − 1 − u1�t�
u1�t� − b


	u2 − v2

u3 − v3



+ 	�r − v3��u1 − v1�
v2�u1 − v1�



¬Qu,v,1�t�	u2 − v2

u3 − v3

 + r1. �4.2c�

Clearly, �2�Qu,v,1�t��=max�−1,−b�=−1�0, and �r1 �
� ��+��� · 
u1−v1
, where its estimate depends only on
coupled space. Hence, conditions �3.14b� and �3.14c�
are satisfied.

�b� Let

D = D2 = �0 0 0

0 1 0

0 0 0
� .

As in the case �a�, the “coupled” nonlinearity f2 is
clearly Lipschitz on the absorbing domain. The differ-
ence of “uncoupled” nonlinearities f1 and f3 are given
as follows:

f1�u� − f1�v� = �− ��u1 − v1�� + ��u2 − v2�,

f3�u� − f3�v� = �− b�u3 − v3�� + u1�u2 − v2�

+ v2�u1 − v1� .

If l=1 is chosen, then �3.14c� is violated. For in the
case, the norm estimate in the right-hand side of
�3.14c� can only depend on u2−v2. Now, if we choose
l=2 and pick the space of the first diagonal block being
the one associated with the nonlinearity f1, then
Qu,v,1= �−�� and r1=��u2−v2�. Consequently, �3.14b�
and �3.14c� are satisfied. Moreover, we have Qu,v,2

= �−b� and r2=u1�u2−v2�+v2�u1−v1�, which depends

only on the coupled space and the first uncoupled
space. Thus, r2 satisfies �3.14c�.

�c� For illustration, we also consider

D = D3 = �0 0 0

0 0 0

0 0 1
� .

In this case, the uncoupled nonlinearities of f1 and f2

both contain the terms x2 and x1. The only feasible
choice to break the uncoupled space is not to do any
breaking. Consequently,

Qu,v,1 = 	 − � �

r − u3�t� − 1

 .

For such Qu,v,1, its matrix measure cannot stay nega-
tive for all time. An indicated �see, e.g., Ref. 26�, syn-
chronization fails for this type of partial coupling.

�d� Let

D = D4 = �0 0 0

0 1 1

0 0 1
� .

To apply Theorem 3.3, we first note that for

D = D5 = �0 0 0

0 1 0

0 0 1
� ,

the corresponding coupled system �D5 ,G ,F�x�� is in-
deed globally synchronized, and hence, so is the sys-
tem �D4 ,G ,F�x��. Note that bounded dissipation of the
system �D4 ,G ,F�x�� can be verified similarly as in
Ref. 26.

�e� The works that are most related to ours are those in
Refs. 8 and 9. While their estimates for dc seem to be
sharper than ours, which we shall illustrate in case �f�,
their connectivity topology requires that off-diagonal
entries be non-negative. We only assume our connec-
tivity topology satisfies �2.4a� and �2.4b�. Consider, for
instance, the following matrix:

G =�
− 1 2 0 − 1

− 1 − 1 0 2

2 − 1 − 3 2

0 0 3 − 3
� .

Such G has some negative off-diagonal entries and sat-
isfies �2.4a� and �2.4b�. In fact, the eigenvalues of G
are 0, −1±�5i, and −6. Clearly, applying our results,
we see immediately that the coupled system
�Di ,G ,F�x��, i=1,2 ,4 is globally synchronized. Nu-
merical results �see Fig. 1� indeed confirm synchroni-
zation of such connectivity topology. We remark that
by constructing the Lyapunov function as given in Ref.
26, one would be able to show bounded dissipation of
the coupled system with this particular connectivity to-
pology.
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�f� In this part, we shall compute the lower bound for glo-
bal synchronization for case �a� by using our method,
those obtained in Ref. 8, and MSF, respectively. To

compute dc, given in �3.6�, we note that Ḡ
=CGCT�CCT�−1=C�CTC�CT�CCT�−1 =CCT. Since Ḡ
is symmetric, c and 	, given as in �3.7b�, can be chosen
to be 1 and 0, respectively. Consequently,

dc =
�2��1 + � + 2��� + �2

4 sin2	 �

2n

 . �4.3�

Here 4 sin2�� /2n�= 
�1
. Applying Theorem 3.3, we
see that the coupled system �D ,G ,F�x�� is uniformly,
globally synchronized provided that the coupling
strength d is greater than dc. For n=4, dc�1189. In

Ref. 8, the bound d̄c for threshold of uniformly global
synchronization is

d̄c = �
a

8
n2 if n is even

a

8
�n2 − 1� if n is odd.

Here a= �b�b+1��r+��2 /16�b−1��−�. For n=4, d̄c

�1039, which is slightly better than dc.

Using the MSF criteria, we numerically �see Fig. 2�
compute the maximum Lyapunov exponent of the variational
equations with respect to the parameter �. We have, in this
example, that if

� = d�1 � − 7.778, �4.4�

then its maximum Lyapunov exponent is negative. Here �1

=−4 sin2�� /8� is the largest nonzero eigenvalue of G.
Hence, if d�−7.778/�1�13.3, then local synchronization
of the coupled system �D ,G ,F�x�� can be realized.

�ii� Another formulation not considered in Refs. 7 and 8
is the Duffing oscillators. Specifically, the individual system
considered is defined by

ẋ1 = − �x1 − x2
3 + a cos wt , �4.5a�

ẋ2 = x1, �4.5b�

where � and a are positive constants. Letting x= �x1 ,x2�T, we
have

f�x,t� = �f1�x,t�, f2�x�� = �− �x1 − x2
3 + a cos wt,x1� .

�4.6a�

Assume coupling matrices D and G are, respectively,

D�c� = 	1 c

0 0

 �4.6b�

and

G�	,r� =�
− 2	 	 − r 0 ¯ 0 	 + r

	 + r − 2	 	 − r � 0

0 � � � � �
� � � � � 0

0 � � − 2	 	 − r

	 − r 0 ¯ 0 	 + r − 2	

� , �4.6c�

where 	�0 and r are scalar diffusive and gradient coupling
parameters, respectively. Note that

f2�u� − f2�v� = 0�u2 − v2� + �u1 − v1� ,

and so the matrix measure of the corresponding Qu,v,1 is
zero. To apply our theorem, we need to make the following
coordinate change.

Letting y2=x2 and y1=qx1+ px2, we see that �4.5a� and
�4.5b� become

ẏ1 = 	 p

q
− �
y1 + p	� −

p

q

y2 − qy2

3 + qa cos wt ¬ f̄1�y� ,

�4.7a�

ẏ2 =
− p

q
y2 +

1

q
y1 ¬ f̄2�y� , �4.7b�

and the corresponding coupled system �3.2� becomes

FIG. 1. �Color online� The difference of each component of two coupled
oscillators in case �e�.

FIG. 2. �Color� The vertical axis denotes the maximum Lyapunov exponent
of the variational equations, while the horizontal axis represents �=d�.
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ẏ̃1 = 	 p

q
− �
ỹ1 + p	� −

p

q

ỹ2 − qỹ2

3 + g�t�

+ d�qc − p�G�	,r�ỹ2 + dG�	,r�ỹ1, �4.8a�

ẏ̃2 = −
q

p
ỹ2 +

1

q
ỹ1, �4.8b�

where ỹ2
3= �y1,2

3 , . . . ,ym,2
3 �T and g�t�=a cos�wt� �1, . . . ,1�T. In

the following, we choose �p ,q� to be �1,c−1/d� as c�0,
and to be �−1,−1/d� as c=0, respectively. Then, in the case
of c�0, Eq. �4.8� becomes

ẏ̃1 = dG�	,r�ỹ1 + 	c − � −
1

d

ỹ1 + 	� − c +

1

d

ỹ2 − ỹ2

3

+ g�t� + G�	,r�ỹ2

¬dG�	,r�ỹ1 + F̃c�ỹ,t� ,

ẏ̃2 = −
1

c −
1

d

ỹ2 + ỹ1.

The purpose of the coordinate transformation is twofold.
First is to make the dynamics of the linear part on the un-
coupled space stable. In this case, the coefficient of ỹ2 be-
comes negative when d�2/c. Second is to make sure the
parameters in the nonlinear part of coupled space contain no
bad influence of d, coupling strength. Otherwise, we may not
be able to control its corresponding dynamics by choosing d
large.

It is then easy to check that assumptions for Theorem 3.1
are all satisfied, and similar arguments can be followed for
the case of c=0. Finally, in the Appendix, we will show that
if 4� /4+�m2�c�0, 	�0, and r�R, then the coupled sys-
tem �D�c� ,G�	 ,r� ,F�x , t�� is bounded dissipative. Thus, we
can summarize the results as follows.

Theorem 4.1. Let f, D�c�, and G�	 ,r� be given as in
�4.6a�, �4.6b�, and �4.6c�, respectively. Let 0�c�4� /4
+�2m. Then, the coupled system �D�c� ,G�	 ,r� ,F�x , t�� is
globally synchronized provided that d is chosen sufficiently
large.

Proof. It remains only to verify that G�	 ,r� satisfies as-
sumptions �2.4a� and �2.4b�. Indeed G�	 ,r� is a circulant
matrix �see, e.g., Ref. 39�; the eigenvalues �k of G�	 ,r� are

�k = − 2		1 − cos
2k�

n

 − i2r sin

2k�

n
, k = 0, . . . ,m − 1.

�

Remark 4.1. �i� It was shown in Ref. 23 that there are
positive constants d0 and c0 such that for d�d0, c�c0, the
system �D�c� ,G�	 ,0� ,F� given in �4.7� is synchronized. Our
results also work for the case that c0 is zero or small, or
G�	 ,r�, r�0. �ii� It was shown in Ref. 15 that there are
positive constants d0 and c0 such that for d�d0, c�c0, the
system �D�c� ,G ,F� is synchronized. Here −G is a positive
definite matrix.

V. CONCLUSION

We have developed a theory to prove global synchroni-
zation in lattices of coupled chaotic systems. The results can
be applied to quite general connectivity topology. In fact, it
needs only to satisfy �2.4�. In addition, a rigorous lower
bound on the coupling strength to acquire global synchroni-
zation of the coupled system is obtained. Moreover, by
merely checking the structure of the vector field of a single
oscillator and verifying bounded dissipation of the coupled
system, we shall be able to determine if the coupled system
is synchronized or not. We conclude this paper by mention-
ing some possible future work. First, it is of great interest to
extend our method to study the real world topology. Second,
it is certainly worthwhile to study how bounded dissipation
of the coupled system is related to the uncoupled dynamics
and its connectivity topology. Third, it is interesting to study
�global� synchronization of coupled systems, which lacks
bounded dissipation, such as the Rössler system.
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APPENDIX: BOUNDED DISSIPATION

In this Appendix, we prove bounded dissipation of the
systems considered in Sec. IV�ii�. Setting x̃2

3

= �x1,2
3 , . . . ,xm,2

3 �T and g�t�=a cos �wt� �1, . . . ,1�T, we see that
�2.6� becomes

ẋ̃1 = − �x̃1 − x̃2
3 + g�t� + dcG�	,r�x̃2 + dG�	,r�x̃1, �A1a�

ẋ̃2 = x̃1. �A1b�

We consider the following scalar-valued function as the
Lyapunov function of the coupled system
�D�c� ,G�	 ,r� ,F�x , t��:

U�x̃1, x̃2� =
1

2
�x̃1, x̃1� + �

i=1

m
xi,2

4

4
+ c�x̃2, x̃1� . �A2�

Taking the time derivative of U along solutions of the
coupled system �D�c� ,G�	 ,r� ,F�x , t��, we have

dU

dt
= �x̃1, ẋ̃1� + �

i=1

m

xi,2
3 xi,1 + c�x̃1, x̃1� + c�x̃2, ẋ̃1�

= �c − ���x̃1, x̃1� − c��x̃2, x̃1� − c�x̃2, x̃2
3� + �x̃1

+ cx̃2,g�t�� + d�x̃1,G�	,r�x̃1� + 2dc�x̃1,G�	,r�x̃2�

+ dc2�x̃2,G�	,r�x̃2�

= �c − ���x̃1, x̃1� − c��x̃2, x̃1� − c�x̃2, x̃2
3� + �x̃1

+ cx̃2,g�t�� + d�x̃1, x̃2�		1 c

c c2 
 � G�	,r�
	x̃1

x̃2



� �c − ���x̃1, x̃1� − c��x̃2, x̃1� − c�x̃2, x̃2
3�
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+ �x̃1 + cx̃2,g�t�� .

Note that the last inequality holds true since

		1 c

c c2 
 � G�	,r�
 + 		1 c

c c2 
 � G�	,r�
T

= 	1 c

c c2 
 � �G�	,r� + G�	,r�T� ,

and G�	 ,r�+G�	 ,r�T is a nonpositive definite matrix. On the
other hand, since

�x̃2, x̃2
3� = �

i=1

m

x2,i
4 �

1

m
	�

i=1

m

xi,2
2 
2

�
1

m
�x̃2�2

4,

we have

dU

dt
� �c − ���x̃1�2

2 + c��x̃2�2�x̃1�2 −
c

m
�x̃2�2

4

+ �ma��x̃1�2 + c�x̃2�2�

¬u��x̃2�1,�x̃2�2� .

We are now in a position to show bounded dissipation of the
coupled system �D�c� ,G�	 ,r� ,F�x , t��.

Proposition A.1.

�i� If c satisfies the inequality

0 � c � min� 4�

4 + �2m
,�� =

4�

4 + �2m
, �A3�

then there exists a constant c0 so that dU /dt�0 for
�x̃2�1

2+ �x̃2�2
2�c0;

�ii� If c=0, then the first assertion of the proposition still
holds true.

Proof. Suppose �x̃2�2�1. Then

u��x̃1�2,�x̃2�2� � �c − ���x̃1�2
2 + c��x̃2�2�x̃1�2 −

c

m
�x̃2�2

2

+ �ma��x̃1�2 + c�x̃2�2�

¬ ū��x̃1�2,�x̃2�2� .

It then follows from �A3� that the level curve of ū is a
bounded closed curve. We shall call such an ellipse-like
curve an elliptic in the plane. Thus, there exists a c1 so that
dU /dt�0 whenever �x̃2�1

2+ �x̃2�2
2�c1 and �x̃2�2�1. Let

�x̃2�2�1 and �x̃2�1
2+ �x̃2�2

2�c2. Here c2 is a constant to be
determined. Then

u��x̃1�2,�x̃2�2� � �c − ���x̃1�2
2 + �c� + �ma��x̃1�2 + �mac

¬ h��x̃1�2� .

Since h��x̃1�2� is a parabola-like curve, which is open down-
ward, there exists a c3�1 such that h��x̃1�2��0 whenever
�x̃1�2�c3. Thus, if c2�c3

2+1, then u��x̃1�2 , �x̃2�2��0 when-
ever �x̃2�2�1 and �x̃1�2

2+ �x̃2�2
2�c2. Picking c0=max�c1 ,c2�,

we have that the assertion of the proposition holds true. �

Proposition A.2. Assume �A3� holds true. Then
limr→
U�x̃1 , x̃2�=
, where r=��x̃1�2+ �x̃2�2.

Proof. From Eq. �A2�, we have that

U�x̃1, x̃2� =
1

2
�x̃1�2 + �

i=1

m
xi,2

4

4
+ c�x̃2, x̃1�

�
1

2
�x̃1�2 +

1

4m
�x̃2�4 − c�x̃2� · �x̃1� .

Let �1/4m�b1
2�c2. Then suppose �x̃2 � �b1. We have

U�x̃1, x̃2� �
1
2 �x̃1�2 + c2�x̃2�2 − c�x̃2��x̃1� ¬ h1��x̃1�,�x̃2�� ,

since the level curve of h1��x̃1 � , �x̃2 � � is elliptic-like in the
plane. Thus, for any given M �0, there exists a d1�0 such
that U�x̃1 , x̃2��M whenever �x̃1�2+ �x̃2�2�d1

2 and �x̃2 � �b1.
Let �x̃2 � �b1. Then

U�x̃1, x̃2� �
1
2 �x̃1�2 − cb1�x̃1� ¬ h2��x̃1�,�x̃2�� ,

since h2��x̃1 � , �x̃2 � � is a parabola-like curve, which is open
upward in the plane. Thus, for any given M �0, there exists
a d2�0 such that U�x̃1 , x̃2��M whenever �x̃1�2+ �x̃2�2�d2

2

and �x̃2 � �b1. Picking �=max�d1 ,d2�, we have that
U�x̃1 , x̃2��M for all �x̃1�2+ �x̃2�2��2. Thus, the assertion of
the proposition holds true. �

Theorem A.1. The coupled system
�D�c� ,G�	 ,r� ,F�x , t�� is bounded dissipative if condition
�A3� holds true.

Proof. The proof is a direct consequence of Propositions
A.1 and A.2. �
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