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Abstract—This paper is concentrated on a perturbed vehicle
control system whose gain margin (GM) and phase margin (PM)
are analyzed and for which a novel controller design method
satisfying the given specifications on GM, PM, and sensitivity is
developed. The approach is applied to the plants with uncertain
parameters that vary in intervals. Based on the parameter space
method and robust stability criteria, gain and phase boundary
curves are generated from the characteristic polynomial of the
system with which a gain–phase tester is included in series to
perform system stability analysis and controller design. The main
concern in the controller design is to find a region in the controller
coefficient plane so that the performance of the uncertain system
satisfies given specifications. The proposed method is applied to an
example of a bus system. Simulation results are given for illustra-
tion to show the system performances on GM and PM, and the
desired controller meeting the specified conditions in frequency
domain for the perturbed system is derived.

Index Terms—Gain margin (GM) and phase margin (PM),
parameter space method, robust control, sensitivity.

I. INTRODUCTION

GAIN MARGIN (GM) and phase margin (PM) are im-
portant specifications in the frequency domain for the

analysis and design of practical control systems and have served
as important measures of robustness analysis, which is always
of primary concern. This is because the models used are usually
imprecise, and the parameters of all physical systems vary with
the operating conditions and time. They are usually obtained
numerically or graphically by the use of system frequency re-
sponse like Bode plots. Studying for controller design to satisfy
GM, PM, or sensitivity conditions was proposed by several
articles, such as in [1]–[6]. There are also many design methods
used in determining the parameters to meet different objectives
[7]–[9]. Designing a controller for a fixed and exact control
plant is not usually practical in the natural environments. Due
to the simplified models or the factors resulting from the chang-
ing environments, the uncertainties in system parameters can
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always occur. Uncertain parameters in a linear control system
can be robustly analyzed by the parameter plane method or the
parameter space method [10]–[17]. A simple way of checking
the stability of perturbed interval polynomials by Kharitonov-
based robustness analysis methods is to guarantee if all the
polynomials have the roots in the left-half plane [18]. The
perturbed parameters will result in root clusters, within which
the roots of the perturbed polynomials will be located. Usually,
a change in a physical quantity typically appears in more than
one coefficient of the characteristic equation. Robust Gamma-
stability analysis for a perturbed vehicle plant was also studied
[19]. The methods of analyzing the GM–PM of a linear control
system with adjustable parameters have been developed [20]–
[22]. Strictly speaking, the majority of the research mentioned
above is not concentrated on the controller design for perturbed
systems. Sensitivity functions are usually used as a design
specification to indicate the robustness of a system. In [4] and
[6], Yaniv and Nagurka proposed a robust controller design
method satisfying GM, PM, and sensitivity constraints on the
perturbed systems, not with the system parameters in uncertain
continuous intervals, but with the system uncertainties in the
finite discrete set of gains and pole locations.

In this paper, GM and PM performances are defined for a
perturbed system with uncertain continuous interval parameters
and shown here graphically in 2-D and 3-D in the system
parameter space. By the use of the parameter space method
and robustness stability criteria, stability boundary curves cor-
responding to specific GM and PM constraints are generated.
Owing to the complexity of the controller design for perturbed
control systems, it is not an easy job to find out a qualified
controller together with the system plant with uncertain interval
parameters so that the whole closed system at every point in the
perturbed system parameter region satisfies all the three speci-
fications of GM, PM, and sensitivity. The main concern in the
controller design is to find a controller region in the controller
coefficient plane so that the performance of the whole system
with uncertain parameters inside a perturbed space satisfies
the given specifications. The desired controller will be deter-
mined graphically from a figure in which a qualified controller
coefficient area is to be found out. With the help of stability
boundary curves in the controller coefficient space, the objec-
tive of designing a suitable controller meeting the specified
requirements is achieved.

This paper is organized as follows. The basic robust stability
concept for the topic is formulated in Section II. In Section III,
sensitivity functions are to be defined, and constant-sensitivity
loci will be generated. Section IV presents stability boundary
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Fig. 1. Perturbed vehicle control system with uncertain parameter q.

analysis. GM and PM analysis is described, and the controller
design algorithm is proposed. In Section V, a linearized bus
model that is taken as an example with perturbed parameters
is presented to analyze the GM and PM performances and to
design a qualified controller. Simulation results are provided in
this section. Finally, conclusions are given in Section VI.

II. BASIC ROBUST STABILITY CONCEPT

Boundary curves are to be constructed to separate the pa-
rameter space into stable and unstable regions. At the interior
points of a stable region in the parameter space, the roots of the
characteristic equation of the closed system lie in the left-half
part in the s-plane, but the unstable region contains the points
at which the system has unstable roots.

Consider a linear control feedback system illustrated in
Fig. 1. The closed-loop feedback system has the transfer
function given by

H(s, q) =
C(s)G(s, q)

1 + C(s)G(s, q)
(1)

where C(s) is a controller with constant coefficients, and
G(s, q) is a plant with a perturbed parameter vector q =
[q1, q2, . . . , qn] ∈ R. R is a set of allowable parameter domain
space. Each qi varies independently within the interval with
qi ∈ [q−i ; q+i ], i = 1, 2, . . . , n.

The characteristic polynomial is

P (s, q) =
n∑

i=0

di(q)si = d0(q) + d1(q)s+ · · · + dn(q)sn.

(2)

It has been shown that, for real continuous coefficient func-
tions di(q) of the characteristic equation, a necessary and suffi-
cient condition for robust stability is as follows. 1) There exists
q = qo ∈ R such that P (s, q) is stable. 2) P (s, q) does not have
any roots on the imaginary axis for any q ∈ R [19]. It is easily
tested by checking the stability of the characteristic polynomial
P (s, qo) for an arbitrary q0 ∈ R. If no such qo exists, the system
is unstable. The condition 2) is satisfied if and only if the
equation P (s, q) = 0 neither has a real root at s = 0, i.e.,

d0(q) �= 0 (3)

nor an imaginary pair of roots at s = ±jω for all q ∈ R. Let
Rjω be the set of all real q such that the polynomial P (s, q)

Fig. 2. Perturbed vehicle control system in series with a gain–phase tester
ke−jθ .

has roots on the imaginary axis

Rjω = {q : P (jω, q) = 0 for ω ≥ 0} . (4)

The condition 2) also means that Rjω does not intersect the
parameter domain space R.

The curve formed by the points q in Rjω in the q-space is
the stability boundary curve. The perturbed vehicle system is
stable at the points in the q-space on one side of the stable
boundary curve and unstable at the points on the other side.

III. SENSITIVITY

Since, in physical systems, all the elements may change their
properties with time and environment, the considerations about
the changes of the characteristics of the closed control systems
with respect to system parameter variations are always of big
concern for a system designer. Consider the closed control
system in (1) in which its controllerC(s) is replaced byC(s, c),
where c = [c0, c1, . . . , cm], and ci is a controller coefficient
to be designed for i = 0, 1, 2, . . . ,m. The transfer function is
given by

H(s, q, c) =
C(s, c)G(s, q)

1 + C(s, c)G(s, q)
. (5)

With a specific q, H(s, q, c) is replaced by H(s, c).The sensi-
tivity function SH(s,c)

ci with respect to the controller coefficient
ci is defined as

SH(s,c)
ci

=
dH(s, c)/H(s, c)

dci/ci
(6)

where i = 0, 1, 2, . . . ,m. Given a different constant s0, the
solutions of the equality |SH(jω)

ci |s=jω| = s0 for a controller
coefficient c give constant-sensitivity loci in the c-space. The
controller coefficient c will be determined based on sensitivity
specifications corresponding to one of those loci. A system
being very insensitive to parameter variations is considered to
be a good control system.

IV. STABILITY BOUNDARY ANALYSIS

Consider a gain–phase tester ke−jθ to be included in series
with the original control system, as in Fig. 2, and its transfer
function is given by

H(s, q, c,K, θ) =
Ke−jθC(s, c)G(s, q)

1 +Ke−jθC(s, c)G(s, q)
. (7)
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The closed-loop characteristic polynomial is P (s, q, c,
k, θ), and

P (s, q, c, k, θ) = the numerator of
[
1 + ke−jθC(s, c)G(s, q)

]

=
n∑

i=0

di(q, c, k, θ)si

= d0(q, c, k, θ) + d1(q, c, k, θ)s

+ · · · + dn(q, c, k, θ)sn. (8)

By the use of the parameter space method and robust sta-
bility criteria, system stability performance on GM and PM is
analyzed by generating the gain and phase boundary curves.
For perturbed control systems in which the parameters of the
characteristic polynomial lie within the given intervals, the
minimum of all the GM values of the system at the points inside
the entire perturbed region in the system parameter plane is
defined to be the GM of the system. The PM of the system is
defined in the same way.

A. Parameter Space Method

The parameter space method is a good analytical technique
to perform system analysis in the selected system parameter
plane for a control system which is described by the char-
acteristic polynomial equation of which the roots generate
stability boundary curves in the parameter plane. The char-
acteristic polynomial on the jω-axis P (jω, q, c, k, θ) may be
written into the real part U(ω, q, c, k, θ) and the imaginary
part V (ω, q, c, k, θ)

P (ω, q, c, k, θ) = U(ω, q, c, k, θ) + jV (ω, q, c, k, θ) = 0 (9)

where

U(ω, q, c, k, θ) = r0(q, c, k, θ) + r1(q, c, k, θ)ω

+ r2(q, c, k, θ)ω2 + · · · + rn(q, c, k, θ)ωn (10)

and

V (ω, q, c, k, θ) = i0(q, c, k, θ) + i1(q, c, k, θ)ω

+ i2(q, c, k, θ)ω2 + · · · + in(q, c, k, θ)ωn. (11)

The equations

{
U(ω, q, c, k, θ) = 0
V (ω, q, c, k, θ) = 0 (12)

can be solved analytically or numerically for q or c. Gain and
phase boundary curves are generated both in q-space from the
solutions q for GM and PM analysis and in c-space from the
solutions c for the controller design under specified conditions.

In the analysis of GM and PM, a fixed controller is used to
analyze the system performance, and (9)–(12) do not depend
on c. The GM and PM of the perturbed vehicle system will
be analyzed geometrically in two and three dimensions from
stability boundary curves.

In controller design, (12) can be solved for c with specific
ω, k, θ, and q in a similar way. Gain and phase boundary curves
are developed in the c-space according to different gain k and
θ, respectively.

B. GM Analysis

Let θ = 0◦ and c be a specific controller coefficient in (12),
and solve (12) for q. A gain boundary curve is generated in
q-space from the solutions q by varying ω for every k. By
varying k, the curve is approaching to the parameter region R
gradually and finally intersects with R. A specific gain k (in
decibels) corresponding to the boundary curve, which is tangent
to the perturbed regionR, is defined as the GM of the perturbed
control system. It is also the minimal GM of the system within
the entire region R. The GM of the control system at a point on
one side of a specific gain boundary curve is greater than that at
a point on the boundary curve. However, it is less at the points
on the other side.

C. PM Analysis

Given k = 1 and a specific c, repeat the process as previously.
Phase boundary curves are developed under the PM specifica-
tion in a similar way. They are generated in q-space from the
solutions q by varying ω for every θ. The PM of the control
system is defined as the phase value θ associated with the phase
boundary curve which is tangent to the perturbed region R. It
is the minimal PM for the whole system with the parameters
inside R too. The PM of the control system at a point on one
side of a specific phase boundary curve is greater than that at
a point on the boundary curve. However, it is less at a point on
the other side.

D. Controller Design

The controller design is based on gain–phase boundary
curves that are drawn in c-space from the locations of the roots
of (12) with respect to different k and θ, and the constant-
sensitivity loci that are drawn based on the solutions of the
|SH(jω)

ci |s=jω| = s0 for the controller coefficient c in c-space
with respect to the given sensitivity constant s0. The desired
coefficients are determined under the constraints of specified
GM, PM, and sensitivity. Systems with high stability and low
sensitivity are desired.

Based on the discussions mentioned above, the design
algorithm is as follows.

Step 1) Set up user-defined specifications on GM, PM, and
sensitivity.

Step 2) For every system parameter q at the vertices of
the perturbed system parameter region in q-plane,
draw the gain boundary curves corresponding to the
specified GM and 0 dB in c-plane by solving (12).

Step 3) For every q at the vertices of the perturbed system
parameter region in q-plane, draw the phase bound-
ary curves corresponding to the specified PM and 0◦

in c-plane by solving (12).
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Step 4) Sketch the sensitivity constant loci from the so-
lutions of the equality |SH(jω)

ci |s=jω| = s0 for c,
given s0.

Step 5) Determine a gain region in c-space with the help of
the gain boundary curves as in Step 2) so that the
controller with the coefficients in that region satisfies
the specified GM constraints.

Step 6) Determine a phase region in c-space with the help of
the phase boundary curves as in Step 3) so that the
controller with the coefficients in that region satisfies
the specified PM constraints.

Step 7) Find out the common region of the determined gain
and phase ones as in Steps 5) and 6). The controller
with the coefficients in that region is the desired one
satisfying the specified GM and PM conditions.

Step 8) Choose a point in c-space on a specified sensitivity
constant locus which passes through the common re-
gion as in Step 7). Then, the controller coefficient at
that point satisfies all the three specified constraints
of GM, PM, and sensitivity. If no such sensitivity
locus exists, tradeoff has to be made among the three
specified conditions.

V. EXAMPLE AND SIMULATION RESULTS

In this simulation, a Daimler Benz 0305 bus [19] is adopted.
Its linearized system, with actuator input δ = steering angle
rate, and output y = displacement of front antenna, has the
following transfer function:

G(s, q1, q2)=
609.8q21q2s

2 + 388 600q1s+ 48 280q21
s3 (q21q

2
2s

2 + 1077q1q2s+ 16.8q1q2 + 270 000)
(13)

where the parameter q1 = ν is the bus velocity, and the other
parameter q2 = m/u, where m is the mass of the bus (tons),
and u is the road friction coefficient (0.5 for a wet road and 1
for a dry road).

q1 ∈
[
12 m · s−1, 20 m · s−1

]
q2 ∈ [24 tons, 32 tons] . (14)

A. GM and PM Analysis

The controller used is taken as given by

C(s) =
2344s2 + 10 938s+ 9375
s3 + 50s2 + 1250s+ 15 625

(15)

and was determined by Muench [19].
Case 1—2-D GM/PM Analysis in q1–q2 Plane: Consider

the system parameter q = [q1, q2] with an uncertain parameter
region R, as in Fig. 3, for studying GM/PM performances.

The R-parameter region is given as
{

12 ≤ q1 ≤ 20
24 ≤ q2 ≤ 32 (16)

and the closed-loop characteristic polynomial is given as in
(8). By substituting s = jω into the numerator of the above

Fig. 3. Parameter domain region in q1–q2 plane.

polynomials and by lengthy computation, the coefficients of the
real-part polynomial U(ω, q, k, θ) with a specific c in (10) are

r0 = 4.5262 × 108q21k cos(θ)

r1 =
(
3.6431 × 109q1 + 5.2808 × 108q21

)
× k sin(θ)

r2 =
(
−4.2505 × 109q1 − 5 716 875q21q2 − 1.1316 × 108q21

)
× k cos(θ)

r3 = −
(
6 669 992.4q21q2 + 9.1087 × 108q1

)
k sin(θ)

r4 =16 828 125q1q2 + 21 000q21q2 + 3375 × 105

+ 1429 371.2kq21q2 cos(θ)

r5 =0

r6 = −1250q21q
2
2 − 16.8q21q2 − 53 850q1q2 − 270 000

r7 =0

r8 = q21q
2
2 . (17)

In (11), the coefficients of the imaginary-part polynomial
V (ω, q, k, θ) are

i0 = −4.5262 × 108kq21 sin(θ)

i1 = (3.6431 × 109q1 + 5.2808 × 108kq21 cos(θ)

i2 =
(
4.2505 × 109q1 + 5716 875q21q2 + 1.1316 × 108q21

)
× k sin(θ)

i3 = −262 500q21q2 − 4 218 750 000 − 6 669 992.4

× kq21q2k cos(θ) − 9.1087 × 108kq1 cos(θ)

i4 = −1 429 371.2kq21q2 sin(θ)

i5 = 15 625q21q
2
2 + 840q21q2 + 1346 250q1q2 + 135 × 105

i6 = 0

i7 = −50q21q
2
2 − 1077q1q2. (18)

We solve (12) for q by varying k and θ, and the stable bound-
ary representation curves for GM and PM are shown in Figs. 4
and 5 in the q1–q2 plane, respectively. We are only interested in
positive solutions q1 > 0 and q2 > 0 for practical reasons. The
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Fig. 4. Gain boundary curves by varying k with GM = −4.3 dB.

Fig. 5. Phase boundary curves by varying θ with PM = 19.336◦.

GM of the perturbed control system with the domain region R
is −4.3 dB, and its PM is 19.336◦, as shown in Figs. 4 and 5,
respectively. In general, the specifications on the stability ro-
bustness point of view are GM ≥ 3 dB and PM ≥ 30◦, which
the system with the original controller (15) does not satisfy.
A new controller is designed in the following section, and its
performance is improved significantly.

The gain boundary curves associated with different gains, as
shown in Fig. 4, reveal that the GM of the control system at a
point on one side of a specific gain boundary curve is greater
than that at a point on the curve. However, it is less at a point
on the other side.

Similarly in Fig. 5, the phase boundary curves show that the
PM of the control system at a point on one side of a specific
phase boundary curve is greater than that at a point on the
curve. However, it is less at a point on the other side. At the
point A ((q1, q2) = (20, 32)) in both figures, the system has
the minimal GM and PM of all the points within the entire
R region.

Fig. 6. Three-dimensional perturbed parameter space Q with three uncertain
parameters m, ν, and u.

Fig. 7. Gain boundary curves in 3-D by varying k with GM = −4.3 dB.

Case 2—3-D GM/PM Analysis in m− ν − u Space: Select
q = [q1, q2, q3] = [m, ν, u] in the block diagram of the closed
system in Fig. 2. The perturbed parameter spaceQ, as in Fig. 6,
is as follows:




24 ≤ m/u ≤ 32

12 ≤ ν ≤ 20

0.5 ≤ u ≤ 1.

(19)

The gain and phase boundary curves in the m− ν − u
parameter space are generated from the solutions for q to (10).
Those curves corresponding to different k and θ by varying the
frequency ω are shown in Figs. 7 and 8. A specific gain k (in
decibels) corresponding to a boundary curve, which is tangent
to the perturbed region Q at a point on the edge EF of Q, is
defined as the GM of the system. It is also the minimal GM
of the perturbed control system within Q. Its PM is defined in
the same way. The system with uncertain parameters within the
Q-space has GM = −4.3 dB and PM = 19.336◦.
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Fig. 8. Phase boundary curves in 3-D with PM = 19.336◦.

B. Controller Design

The system parameter q = [q1, q2] withinR is considered for
the controller design.

Assume the controller to be designed is given as

C(s) =
c2s

2 + c1s+ c0
s3 + 50s2 + 1250s+ 15 625

(20)

where c0, c1, and c2 are the controller coefficients to be
designed under the user-specified constraints, and the system
parameter domain is within the region R, as in Fig. 3. Equation
(15) is a special case of (20) with c0 = 9375, c1 = 10 938, and
c2 = 2344.
Specification 1—A Controller Design for GM ≥ 3 dB and

PM ≥ 30◦: The design problem of interest is to find all the
controller coefficients c0, c1, and c2 that satisfy the user-
specified conditions of GM and PM. According to the design
steps, a coefficient region in c-space is to be found out by the
use of gain and phase boundary curves that are associated with
different k and θ.

By solving (12), the coefficients of the real part of the
characteristic polynomial U(ω, q, c, k, θ) in (10) are

r0 = 48 280c0q21k cos(θ)

r1 =
(
388 600c0q1 + 48 280c1q21

)
× k sin(θ)

r2 = −
(
388 600c1q1 + 609.8c0q21q2 + 48 280c2q21

)
k cos(θ)

r3 = −
(
609.8c1q21q2 + 388 600c2q1

)
k sin(θ)

r4 = 16 828 125q1q2 + 21 000q21q2

+ 3375 × 105 + 609.8q21q2c2k cos(θ)

r5 = 0

r6 = −1250q21q
2
2 − 16.8q21q2 − 53 850q1q2 − 270 000

r7 = 0

r8 = q21q
2
2 . (21)

Fig. 9. Controller coefficient region for GM ≥ 3 dB and PM ≥ 30◦, as
indicated in the shaded area in c0–c1 plane with c2 = 2344.

The coefficients of the imaginary part of the polynomial
V (ω, q, c, k, θ) in (11) are

i0 = −48 280c0q21k sin(θ)

i1 =
(
388 600c0q1 + 48 280c1q21

)
k cos(θ)

i2 =
(
388 600c1q1 + 609.8c0q21q2 + 48 280c2q21

)
k sin(θ)

i3 = −262 500q21q2 − 4 218 750 000 − 609.8c1q21q2k cos(θ)

− 388 600c2q1k cos(θ)

i4 = −609.8c2q21q2k sin(θ)

i5 =15 625q21q
2
2 + 840q21q2 + 1346 250q1q2 + 135 × 105

i6 =0

i7 = −50q21q
2
2 − 1077q1q2

i8 =0 (22)

where q = (q1, q2) is a specific point within R, and we solve
(12) for c.

Two controller coefficients of c0, c1, and c2 are chosen as
adjustable parameters, and the other one is fixed for this design.
A shaded area is determined by gain and phase boundary curves
from the solutions for (c0, c1) pairs with c2 = 2344 under GM
and PM specifications given as above in the c0–c1 plane, as
shown in Fig. 9.

For the vertices A, B, C, and D ofR, as in Fig. 3, the stability
boundary curves are plotted to determine the qualified shaded
area. Two gain boundary curves are obtained that are associated
with k = 0 dB and 3 dB, given θ = 0◦ for each vertex. In
a similar way, two phase boundary ones are also generated
corresponding to θ = 0◦ and θ = 30◦ with k = 1.

Let c0 = 9375. Select c1 and c2 as adjustable coefficients.
Gain and phase stability curves are generated in the same way
in c1–c2 plane, and the shaded region within which c1 and c2
satisfy the specified constraints is found, as shown in Fig. 10.

In Figs. 9 and 10, the desired controller coefficients can
be chosen according to the specified GM, PM, and sensitivity
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Fig. 10. Controller coefficient region for GM ≥ 3 dB and PM ≥ 30◦, as
indicated in the shaded area in c1–c2 plane with c0 = 9375.

TABLE I
GM AND PM OF THE SYSTEM WITH c2 = 2344

TABLE II
GM AND PM OF THE SYSTEM WITH c0 = 9375

constraints. The controller coefficient is selected from the above
shaded region so that the whole system has the desired stability
and sensitivity. With the designed controller, Tables I and II
show the GM and PM of the system operating at several points
within the region R. The Bode plots of magnitude and phase
are provided in Figs. 11 and 12.

Fig. 11. Bode plots of magnitude and phase with c0 = 180.7, c1 = 18.83,
and c2 = 2344 at four vertices of the perturbed region R.

Fig. 12. Bode plots of magnitude and phase with c0 = 9375, c1 = 410, and
c2 = 6000 at four vertices of the perturbed region R.

Specification 2—Constant-Sensitivity Loci: Compute
S

H(s,c)
ci for i = 0, 1, 2 by substituting (5) and (20) into (6) as

follows:

SH(s,c)
c0

=
c0Dc(s)DG(s)

Nc(s, c) (Dc(s)DG(s) +Nc(s, c)NG(s))
(23)

sH(s,c)
c1

=
sc1Dc(s)DG(s)

Nc(s, c) (Dc(s)DG(s) +Nc(s, c)NG(s))
(24)

and

sH(s,c)
c2

=
s2c2Dc(s)DG(s)

Nc(s, c) (Dc(s)DG(s) +Nc(s, c)NG(s))
. (25)

Let c2 = 2344. The constant-sensitivity loci in Fig. 13 are
plotted in c0–c1 plane from the solutions to the equality
|SH(jω)

ci |s=jω| = s01, where s01 is a specified sensitivity con-
stant, and i = 0, 1. Gain and phase boundary curves in Fig. 11
are plotted with the system operating at the point A in the
region R. If the specified sensitivity locus passes through the
shaded area, as in Fig. 9, a point on the locus is chosen, and
the controller at this location in c0–c1 plane is desired.
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Fig. 13. Chosen controller at the point Q1 with c0 = 180.7, c1 = 18.83, and
c2 = 2344 based on the control system at the vertex A (20, 32) of the perturbed
parameter region R.

Fig. 14. Chosen controller at the point Q2 with c0 = 9375, c1 = 410, and
c2 = 6000 based on the control system at the vertex B (20, 24) of the perturbed
parameter region R.

The point Q1 on the sensitivity locus with the constraint
|SH(jω)

c0 |s=jω| = |SH(jω)
c1 |s=jω| = 0.001 is chosen for the con-

troller with c0 = 180.7, c1 = 18.83, and c2 = 2344. The sys-
tem at the point A in R has GM = 4.13 dB and PM = 37.1◦.
Its performance on stability has been improved.

Let c0 = 9375. The solutions to the equality
|SH(jω)

ci |s=jω| = s12, where i = 1, 2, give a plot of the
constant-sensitivity loci in the c1–c2 plane, as shown in Fig. 14.
Choose the pointQ2 in Fig. 14 with c1 = 410 and c2 = 6000 on
the sensitivity locus |SH(jω)

c1 |s=jω| = |SH(jω)
c2 |s=jω| = 10−7,

and the system operating at the point B inR has GM = 6.08 dB
and PM = 31◦.

VI. CONCLUSION

This paper introduces a new method of performance analysis
and controller design by a frequency-domain approach for

a perturbed control system. Based on the parameter space
method and robust stability criteria, the performances of a
perturbed vehicle control system are analyzed in graphical
portrayals and shown in 2-D and 3-D plots. With the help
of gain and phase boundary curves resulting from the roots
of the system characteristic polynomial equation, the GM and
PM have been obtained. In controller design, a methodology
is proposed for portraying regions in a selected controller
coefficient plane so that the designed controller meets the
specified requirements on GM, PM, and sensitivity. Simulation
results demonstrate that the objectives have been achieved as
desired.
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