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New Table-Switching and Data-Multiplexing Schemes of
Rate-Compatible Punctured Convolutional Codes for

Unequal Error Protection
Chung-Hsuan Wang

Abstract— In this letter, rate-compatible punctured convolu-
tional (RCPC) codes are further investigated for the application
to unequal error protection (UEP). Besides the rate-compatible
restriction, we show that puncturing tables should be switched in
a special way called soft-switching to guarantee the designed UEP
performance. A new data-multiplexing scheme is also proposed
for RCPC codes which can achieve similar UEP performance as
the conventional scheme but requires no extra zero-padding for
frame termination to improve the system throughput.

Index Terms— Punctured convolutional codes, rate-compatible
criterion, unequal error protection.

I. INTRODUCTION

PUNCTURED convolutional codes were first introduced in
[1] by periodically deleting some coded bits of ordinary

convolutional codes. Later in [2], the puncturing process was
further regulated by a rate-compatible criterion to guarantee
smooth transition between different rates. Owing to flexible
choices of rates and ease for decoding all children1 codes by a
single decoder of their parent code, rate-compatible punctured
convolutional (RCPC) codes have been extensively employed
for the application to unequal error protection (UEP) [2]-[5].

However, we observe that RCPC codes may fail to achieve
the designed performance if the puncturing tables are not
switched in a proper way. A new way for table-switching,
called soft-switching, is presented here which guarantees that
distances of the codewords accross the switching boundaries
of puncturing tables can be effectively lower-bounded to avoid
the unpredictable performance degradation. In addition, RCPC
codes are usually equipped with a data multiplexing scheme
[2] which can minimize the potential distance loss of RCPC
codes but at the expense of extra tail bits for frame termina-
tion. In this letter, we demonstrate that for RCPC codes the
same distance loss can be obtained no matter the puncturing
tables are switched in a forward or backward order by soft-
switching. Based on such a result, a new multiplexing scheme
is proposed which can achieve similar UEP performance as
the conventional one but requires no additional overheads to
improve system throughput.
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1For convenience, the original convolutional code to be punctured is called

the parent code and the resulting punctured code is called the child code.

II. SOFT-SWITCHING AND THE NEW MULTIPLEXING

SCHEME FOR UEP

Consider W groups of source data Sl’s, each of the required
bit error rate (BER) Pb,l; assume Pb,1 ≥ Pb,2 ≥ · · · ≥
Pb,W without loss of generality. To provide UEP for Sl’s by
puncturing, an (n, k) parent code C is first chosen together
with proper puncturing tables A(l)’s of period p satisfying the
rate-compatible criterion, i.e.,

if au,v(i) = 1, then au,v(j) = 1,
∀ 0 ≤ u < n, 0 ≤ v < p, 1 ≤ i < j ≤ W

(1)

where au,v(l) denotes the (u,v)th entry of A(l), to generate
a family of children codes Ĉl’s, each of free distance df (Ĉl)
to satisfy Pb,l. Then A(l) is switched for puncturing as Sl is
fed to the encoder of C. In this way, Sl can be protected by
Ĉl ∀ l, thus fulfilling the desire for UEP.

Suppose A(l) is switched for puncturing during the interval
[t̂l, t̃l]. An intuitive way for table-switching, called hard-
switching, is to initiate a new puncturing process by A(l) at
time t̂l. Denote by ci,t the coded bit of the ith output stream
of the encoder of C at time t ∀ 0 ≤ i < n. By hard-switching,
ci,t is processed as the following, ∀ t ∈ [t̂l, t̃l]:{
ci,t is allowed for transmission, if ai,(t−t̂l) mod p(l)=1
ci,t is deleted from the encoder outputs, if ai,(t−t̂l) mod p(l)=0.

(2)

For the case of p | (t̃l − t̂l + 1) ∀ l, which is a common but
implicit assumption in the previous researches about RCPC
codes for UEP, the potential distance loss due to dynamic
switching can be effectively alleviated by the rate-compatible
criterion. However, for the other case of p � | (t̃l − t̂l + 1),
we observe that hard-switching may result in unpredictable
codeword distance even though the puncturing tables are rate-
compatible. For example, consider a (2,1) parent code with
the following rate-compatible puncturing tables of p = 5:

A(1) =

(
0 0 0 1 1
1 0 1 1 1

)
and A(2) =

(
0 0 1 1 1
1 0 1 1 1

)
. (3)

For a codeword c = (c0,0c1,0, c0,1c1,1, · · · , c0,9c1,9) = (10,
00, 10, 11, 11, 10, 00, 10, 11, 11), the resulting sequences
after puncturing by either A(1) or A(2) alone are

cA(1) = (×0,××,×0, 11, 11,×0,××,×0, 11, 11)
and

cA(2) = (×0,××, 10, 11, 11,×0,××, 10, 11, 11)

with Hamming weights d(cA(1))=8 and d(cA(2))=10, where
bits marked by × are deleted. Suppose c is punctured by A(1)
and A(2) in [0, 4] and [5, 9] respectively such that p | (t̃l −
t̂l + 1) for l = 1, 2. By (2), the punctured codeword is

cA(1)|A(2) = (×0,××,×0, 11, 11,×0,××, 10, 11, 11)

with d(cA(1)|A(2)) = 9. Therefore, we can have d(cA(1)) ≤
d(cA(1)|A(2)) ≤ d(cA(2)) as assured by the rate-compatible
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Fig. 1. Multiplexing schemes for UEP.

criterion. However, if c is punctured by A(1) in [0, 2] and
then switched to A(2) in [3, 9] such that p � | (t̃l − t̂l + 1) for
l = 1, 22, the codeword after puncturing by (2) turns to be

cA(1)|A(2) = (×0,××,×0,×1,××, 10, 00, 10,×1,××)
with d(cA(1)|A(2))=4.In this case, we have d(cA(1)|A(2))<d(cA(1));
the rate-compatibility originally designed to guarantee the
UEP performance is now destroyed by hard-switching.

To avoid such an unexpected distance loss due to hard-
switching, we propose a new switching scheme called soft-
switching which processes ci,t’s by{

ci,t is allowed for transmission, if ai,t mod p(l)=1
ci,t is deleted from the encoder outputs, if ai,t mod p(l)=0

(4)

as A(l) is used for puncturing in [t̂l, t̃l]. By soft-switching,
as presented in Appendix, we can show that all codewords
across the switching boundary between A(i) and A(j) ∀ 1 ≤
i, j ≤ W will have a distance min(df (Ĉi), df (Ĉj)) at least,
no matter whether p | (t̃l− t̂l +1) or p � | (t̃l− t̂l +1); the UEP
performance assured by the rate-compatibility can hence been
achieved successfully. Revisit the above example. If c is now
punctured by A(1) and A(2) in [0, 2] and [3, 9] respectively
by (4), we have

cA(1)|A(2) = (×0,××,×0, 11, 11,×0,××, 10, 11, 11)

and d(cA(1)|A(2)) = 9 which implies d(cA(1))≤ d(cA(1)|A(2))≤
d(cA(2)). Such an observation also indicates that around the
boundary of rate change the bits in the A(1)-phase will
receive more protection than those encoded by the pure Ĉ1

while the bits in the A(2)-phase will suffer a little BER loss
compared with those protected by the pure Ĉ2. In general,
at the expense of some BER compromise between the bits
near the transition boundary, soft-switching can successfully
guarantee the designed performance of RCPC codes for UEP.

In addition, as RCPC codes are used for UEP, Sl’s are
recommanded to be grouped into super frames before en-
coding as the conventional multiplexing scheme in Fig. 1
[2]. In this scheme, Sl is followed by Sl+1 ∀ 1 ≤ l < W
such that for the adjacent children codes the minimum loss
of free distance guaranteed by the rate-compatible criterion,
i.e., df (Ĉl+1) − df (Ĉl) ∀ 1 ≤ l < W , can be achieved, but
extra zero bits are inserted at the end of every super frame to
avoid the abrupt switching from A(W ) to A(1). However,
as revealed in Appendix, we also show that the distance
between any two codewords will still be lower bounded by
min(df (Ĉi), df (Ĉj)) no matter the puncturing tables are

2In this case, the maximum distance loss due to hard-switching is presented.
For other choices of t̂1 and t̂2, a better distance can be obtained. However,
soft-switching can still result in a larger distance than hard-switching.
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Fig. 2. Average BER of source bits in different positions within a
super frame at signal-to-noise ratio 5 dB. (The solid lines denote the
designed BERs of the children codes.)

switched either from A(i) to A(j) or from A(j) to A(i)
∀ 1 ≤ i, j ≤ W . Suppose Sl’s are multiplexed by the new
proposed scheme in Fig. 1, where no extra bits are required
for frame termination but Sl’s are multiplexed in a reverse
order for alternate super frames. Accordingly, the puncturing
tables are restricted to switch either from A(l) to A(l + 1) or
from A(l + 1) to A(l) ∀ 1 ≤ l < W ; the same amount of
distance loss as the conventional scheme can thus be obtained
during the transition phase between the adjacent tables. In
general, for a parent code of constraint length K and a super
frame of L bits, the new multiplexing scheme can improve the
system throughput by a factor of L+K−1

L , since K-1 zero bits
are required in the conventional scheme for frame termination
[2].

III. SIMULATION RESULTS

In this section, simulation results are presented to verify
performance of soft-switching and the new proposed multi-
plexing scheme. Coded bits are assumed with binary phase-
shift keying modulation for transmission over additive white
Gaussian noise channels. Consider the best rate-1/2 parent
code with generator matrix [D4 +D+1, D4 +D3 +D2 +1]
of constraint length 5 searched in [3] which is punctured by
the tables in (3) to provide 2-level UEP. Suppose S1 and S2

are of 8 and 7 bits, respectively, per super frame such that
p � |8 and p � |7. The effect of BER compromise mentioned
in Section II can be observed from the BER curves in Fig.
2. As expected, soft-switching can provide smooth transition
between rates. By hard-switching, the first two bits in A(2)-
phase however suffer an unacceptable loss of BER compared
with the designed performance.

Furthermore, based on the discussion in Section II, the
higher the switching rate is, the more gain of soft-switching
over hard-switching is expected. Consider super frames of
various lengths containing S1: 8 ∗ l bits and S2: 7 ∗ l bits
for l = 1,2,3,4,6,7,8,9,11,22,44,111 (with p � | 8 ∗ l and p � |
7 ∗ l ∀ l), respectively; the shorter the super frame is, the
higher the switching rate is. By employing the above RCPC
codes, the average BERs of S1 and S2 for different lengths,
i.e., different switching rates, are depicted in Fig. 3. From
the simulation results, soft-switching is observed to fulfil the
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Fig. 3. Average BER of S1 and S2 for super frames of various lengths
at signal-to-noise ratio 5 dB. (The upper and lower solid lines denote
the designed BERs of S1 and S2, respectively.)
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Fig. 4. Average BER of source bits in different positions within
a super frame for different multiplexing schemes at signal-to-noise
ratio 2 dB; for the new proposed scheme, the plotted BER of the ith
source bit is averaged with respect the ith bit and the (33-i)-th bit
in alternate super frames ∀ 1 ≤ i ≤ 32. (The solid lines denote the
designed BERs of the children codes.)

designed BERs for both of S1 and S2, while hard-switching
results in an unacceptable loss of BER for S2 for the case of
high switching rate.

In addition, the same parent code with the following rate-
compatible tables [3]:(

1 1 1 1
0 1 0 0

)
,

(
1 1 1 1
0 1 0 1

)
,

(
1 1 1 1
1 1 0 1

)
,

(
1 1 1 1
1 1 1 1

)

are simulated together with both of the multiplexing schemes
for comparison. Suppose there are four groups of data S1,
S2, S3, S4, each containing 8 bits per super frame. In this
case, four extra all-zero bits are appended at the end of every
frame for the conventional scheme. Observed from Fig. 4, the
new scheme can provide almost the same UEP performance
as the conventional one, which is consistent with the analysis
in Section II.

APPENDIX

Consider an (n, k) parent code C which is punctured by
W rate-compatible tables A(l)’s of period p to generate a

family of children codes Ĉl’s, each of free distance df (Ĉl),
with df (Ĉl) ≤ df (Ĉl+1) ∀ 1 ≤ l < W . Suppose φ
arbitrary tables A(l1), A(l2), · · · , A(lφ) with 1≤ li ≤W are
successively switched for puncturing during [t̂i, t̃i] ∀ 1 ≤ i ≤
φ, respectively. By soft-switching, we would like to show that
all codewords across the switching boundaries between A(l1),
A(l2), · · · , A(lφ) will have a distance min1≤i≤φ df (Ĉli) at
least, hence achieving the UEP performance assured by the
rate-compatibility no matter whether p | (t̃i − t̂i + 1) or p � |
(t̃i − t̂i + 1) ∀ i.

Consider any non-zero punctured sequence cA(l1)|A(l2)|···|A(lφ)

across the boundaries between A(li)’s, which is obtained
by puncturing a codeword c = (cu,t ∀ 0 ≤ u < n, t) of
C. Denote by d(cA(l1)|A(l2)|···|A(lφ)) the Hamming weight of
cA(l1)|A(l2)|···|A(lφ). By soft-switching, we have

d(cA(l1)|A(l2)|···|A(lφ)) =

φ∑
i=1

t̃i∑
t=t̂i

n−1∑
u=0

au,t mod p(li)·1(cu,t) (A-1)

where au,v(l) denotes the (u,v)th entry of A(l) ∀ u, v, l, and
1(x) is defined as the function with 1(x) = 1 if x �= 0
and 1(x) = 0 if x = 0. Let m = arg mini df (Ĉli), i.e., lm
= min1≤i≤φ li. Since C is successively punctured by A(l1),
A(l2), · · · , A(lφ), the whole time interval can be divided
into the subsequent non-overlapping subintervals [t̂i, t̃i] ∀ 1 ≤
i ≤ φ. Suppose c is now punctured by A(lm) alone; by soft-
switching, the corresponding weight after puncturing can be
expressed as

d(cA(lm)) =
∑

t

n−1∑
u=0

au,t mod p(lm) · 1(cu,t)

=

φ∑
i=1

t̃i∑
t=t̂i

n−1∑
u=0

au,t mod p(lm) · 1(cu,t). (A-2)

By (A-1), (A-2), and the rate-compatible restriction: au,v(li)−
au,v(lm) ≥ 0 ∀ u, v, i, we have

d(cA(l1)|A(l2)|···|A(lφ)) − d(cA(lm))

=
∑φ

i=1

∑t̃i

t=t̂i

∑n−1
u=0(au,t mod p(li) − au,t mod p(lm)) · 1(cu,t) ≥ 0.

(A-3)
Moreover, by definition, we also have

df (Ĉlm) = min
∀cA(lm) �=0

d(cA(lm)) (A-4)

where 0 denotes the all-zero codeword. By (A-3) and (A-4),
it implies
d(cA(l1)|A(l2)|···|A(lφ)) ≥ d(cA(lm)) ≥ min∀cA(lm) �=0 d(cA(lm))

= df (Ĉlm) = min1≤i≤φ df (Ĉli).
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