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Abstract

Let u and v be any two distinct nodes of an undirected graph G, which is k-connected. For 1 ≤ w ≤ k, a w-container
C(u, v) of a k-connected graph G is a set of w-disjoint paths joining u and v. A w-container C(u, v) of G is a w∗-container if it
contains all the nodes of G. A graph G is w∗-connected if there exists a w∗-container between any two distinct nodes. A bipartite
graph G is w∗-laceable if there exists a w∗-container between any two nodes from different parts of G. Let G0 = (V0, E0) and
G1 = (V1, E1) be two disjoint graphs with |V0| = |V1|. Let E = {(v, φ(v)) | v ∈ V0, φ(v) ∈ V1, and φ : V0 → V1 is a
bijection}. Let G = G0 ⊕ G1 = (V0 ∪ V1, E0 ∪ E1 ∪ E). The set of n-dimensional hypercube-like graph H ′

n is defined recursively
as (a) H ′

1 = {K2}, K2 = complete graph with two nodes, and (b) if G0 and G1 are in H ′
n , then G = G0 ⊕ G1 is in H ′

n+1. Let
B′

n = {G ∈ H ′
n and G is bipartite} and N ′

n = H ′
n \ B′

n . In this paper, we show that every graph in B′
n is w∗-laceable for every w,

1 ≤ w ≤ n. It is shown that a constructed N ′
n-graph H can not be 4∗-connected. In addition, we show that every graph in N ′

n is
w∗-connected for every w, 1 ≤ w ≤ 3.
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1. Introduction

1.1. Definitions

For graph definitions and notations we follow [4]. G = (V, E) is a graph if V is a finite set and E is a subset
of {(u, v) | (u, v) is an unordered pair of V }. We say that V is the node set and E is the edge set. We use n(G) to
denote |V |. Two nodes u and v are adjacent if (u, v) is an edge of G. For a node u, NG(u) denotes the neighbourhood
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of u which is the set {v | (u, v) ∈ E}. For any node u of V , we denote the degree of u by degG(u) = |NG(u)|. A
graph G is k-regular if degG(u) = k for every node u in G. A path P between nodes v1 and vk is a sequence of
adjacent nodes, 〈v1, v2, . . . , vk〉, in which the nodes v1, v2, . . . , vk are distinct except that possibly v1 = vk . We use
P−1 to denote the path 〈vk, vk−1, . . . , v1〉. The length of P , l(P), is the number of edges in P . We also write the
path P as 〈v1, v2, . . . , vi , Q, v j , v j+1, . . . , vk〉, where Q is the path 〈vi , vi+1, . . . , v j 〉. Hence, it is possible to write
a path as 〈v1, v2, Q, v2, v3, . . . , vk〉 if l(Q) = 0. Let I (P) = V (P) − {v1, vk} be the set of the internal nodes of P .
A set of paths {P1, P2, . . . , Pk} are internally node-disjoint (abbreviated as disjoint) if I (Pi ) ∩ I (Pj ) = ∅ for any
i 6= j . A path is a hamiltonian path if it contains all nodes of G. A graph G is hamiltonian connected if there exists
a hamiltonian path joining any two distinct nodes of G [18]. A cycle is a path with at least three nodes such that the
first node is the same as the last one. A hamiltonian cycle of G is a cycle that traverses every node of G. A graph is
hamiltonian if it has a hamiltonian cycle. A graph G is bipartite if its node set can be partitioned into two subsets V1
and V2 such that every edge connects nodes between V1 and V2. A bipartite graph G is hamiltonian laceable if there
is a hamiltonian path of G joining any two nodes from distinct bipartition [20]. A bipartite graph G is k-edge fault
hamiltonian laceable if G − F is hamiltonian laceable for any edge subset F of G with |F | ≤ k.

A graph G is k-connected if there exists a set of k internally disjoint paths {P1, P2, . . . , Pk} between any two
distinct nodes u and v. A subset S of V (G) is a cut set if G − S is disconnected. A w-container of G between two
distinct nodes u and v is a set of w internally disjoint paths between u and v. The concepts of a container and of
a wide distance were proposed by Hsu [12] to evaluate the performance of communication for an interconnection
network. The connectivity of G, κ(G), is the minimum number of nodes whose removal leaves the remaining graph
disconnected or trivial. Hence, a graph G is k-connected if κ(G) ≥ k. It follows from Menger’s Theorem [17] that
there is a w-container for w ≤ k between any two distinct nodes of G if G is k-connected.

1.2. w∗-connected graphs and w∗-laceable graphs

In this paper, we are interested in a specific type of container. We say that a w-container C(u, v) is a w∗-container
if every node of G is on some path in C(u, v). A graph G is said to be w∗-connected if there exists a w∗-container
between any two distinct nodes u and v. Obviously, we have the following remarks:

Remark 1. (1.a) a graph G is 1∗-connected if and only if it is hamiltonian connected [18], (1.b) a graph G is 2∗-
connected if it is hamiltonian, and (1.c) an 1∗-connected graph except K1 and K2 is 2∗-connected.

Using our definition of a w∗-connected graph, the globally 3∗-connected graphs proposed by Albert et al. [3] are 3-
regular 3∗-connected graphs. Assume that the graph G is w∗-connected where w ≤ κ(G). The spanning connectivity
of a graph G, κ∗(G), is the largest integer k such that G is i∗-connected for every i , 1 ≤ i ≤ k. A graph G is
super spanning connected if κ∗(G) = κ(G). In such case, the number κ∗(G) = κ(G) is called the super spanning
connectivity of G. In [13,16,15,21], some families of graphs are proved to be super spanning connected.

Let G be a bipartite graph with bipartition V1 and V2 such that |V1| ≥ |V2|. Suppose that there exists a w∗-container
C(u, v) = {P1, P2, . . . , Pw} in G joining u to v with u, v ∈ V1. Obviously, the number of nodes in Pi is 2ti + 1 for
some integer ti . There are ti − 1 nodes of Pi in V1 other than u and v, and ti nodes of Pi in V2. As a consequence,
|V1| =

∑w
i=1(ti − 1) + 2 and |V2| =

∑w
i=1 ti . Therefore, any bipartite graph G with κ(G) ≥ 3 is not w∗-connected

for any w, 3 ≤ w ≤ κ(G).
For this reason, a bipartite graph is said to be w∗-laceable if there exists a w∗-container between any two nodes

from different partite sets for some w, 1 ≤ w ≤ κ(G). Obviously, any bipartite w∗-laceable graph with w ≥ 2 has the
equal size of bipartition. We have the following remarks:

Remark 2. (2.a) an 1∗-laceable graph is also known as hamiltonian laceable graph [20], (2.b) a graph G is 2∗-
laceable if and only if it is hamiltonian, and (2.c) an 1∗-laceable graph except K1 and K2 are 2∗-laceable.

The spanning laceability of a bipartite graph G, κ∗L (G), is the largest integer k such that G is i∗-laceable for every
i , 1 ≤ i ≤ k. A graph G is super spanning laceable if the number κ∗L (G) = κ(G). Recently, Chang et al. [5] proved
that the n-dimensional hypercube Qn is superspanning laceable for every positive integer n. It was proved in [15] that
the n-dimensional star graph Sn is superspanning laceable if and only if n 6= 3.
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1.3. Hypercube-like graphs H ′
n

Graph containers do exist in engineering design information and telecommunication networks or in biological
and neural systems ([2,12] and its references). The study of w-container, w-wide distance, and their w∗-versions
play a pivotal role in the design and the implementation of parallel routing and efficient information transmission in
large-scale networking systems. In bioinformatics and neuroinformatics, the existence as well as the structure of a
w∗-container signifies the cascade effect in the signal transduction system and the reaction in a metabolic pathway.

Among all interconnection networks proposed in the literature, the hypercube Qn is one of the most popular
topologies [5,14]. However, the hypercube does not have the smallest diameter for its resources. Various networks
are proposed by twisting some pairs of links in hypercubes [1,8,10,11]. Because of the lack of the unified perspective
on these variants, results of one topology are hard to be extended to others. To make a unified study of these variants,
Vaidya et al. introduced the class of hypercube-like graphs [22]. We denote there graphs as H ′-graphs. The class of
H ′-graphs, consisting of simple, connected, and undirected graphs, contains most of the hypercube variants.

Let G0 = (V0, E0) and G1 = (V1, E1) be two disjoint graphs with the same number of nodes. A 1–1 connection
between G0 and G1 is defined as an edge set E = {(v, φ(v)) | v ∈ V0, φ(v) ∈ V1, and φ : V0 → V1 is a bijection}.
We use G0 ⊕ G1 to denote G = (V0 ∪ V1, E0 ∪ E1 ∪ E). The operation “⊕” may generate different graphs depending
on the bijection φ. There are some studies on the operation “⊕” [6,7]. Let G = G0 ⊕ G1 and let x be any node in G.
We use x̄ to denote the unique node matched under φ.

Now, we can define the set of n-dimensional H ′-graph, H ′
n , as follows:

(1) H ′

1 = {K2}, where K2 is the complete graph with two nodes.
(2) Assume that G0, G1 ∈ H ′

n . Then G = G0 ⊕ G1 is a graph in H ′

n+1.

Note that some n-dimensional H ′-graphs are bipartite. We can define the set of bipartite n-dimensional H ′-graph,
B ′

n , as follows:

(1) B ′

1 = {K2}, where K2 is the complete graph defined on {a, b} with bipartition V0 = {a} and V1 = {b}.
(2) For i = 0, 1, let Gi be a graph in B ′

n with bipartition V i
0 and V i

1 . Let φ be a bijection between V 0
0 ∪ V 0

1 and
V 1

0 ∪ V 1
1 such that φ(v) ∈ V 1

1−i if v ∈ V 0
i . Then G = G0 ⊕ G1 is a graph in B ′

n+1.

Every graph in H ′
n is an n-regular graph with 2n nodes, and every graph in B ′

n contains 2n−1 nodes in each
bipartition. We use N ′

n to denote the set of non-bipartite graphs in H ′
n . Clearly, we have Qn ∈ B ′

n .
Let G be a graph in H ′

n+1. Then G = G0 ⊕ G1 with both G0 and G1 in H ′
n . Let u be a node in V (G). Then u is a

node in V (Gi ) for some i = 0, 1. We use ū to denote the node in V (G1−i ) matched under φ. So u = v̄ if ū = v.
In the following section, we give some basic properties about H ′

n-graphs. In Section 3, we prove that every graph in
B ′

n is super spanning laceable. In Section 4, we show that every graph in N ′
n is w∗-connected for every w, 1 ≤ w ≤ 3,

for n ≥ 3. We also construct an N ′
n-graph H and show that H can not be 4∗-connected. In the final section, we give

our concluding remark.

2. Preliminaries

Lemma 1. Assume that G is graph in N ′
n . Then n ≥ 3.

Theorem 1 ([19]). Let n ≥ 3. Every graph in N ′
n is hamiltonian connected and hamiltonian.

Theorem 2 ([19]). Every graph in B ′
n is hamiltonian laceable and every graph in B ′

n is hamiltonian if n ≥ 2.

Theorem 3 ([19]). Let n ≥ 2. Suppose that G is a graph in B ′
n with bipartition V0 and V1. Suppose that u1 and u2

are two distinct nodes in Vi and that v1 and v2 are two distinct nodes in V1−i with i ∈ {0, 1}. Then there are two
disjoint paths P1 and P2 of G such that (1) P1 joins u1 to v1, (2) P2 joins u2 to v2, and (3) P1 ∪ P2 spans G.

Theorem 4. Let G be a graph in B ′
n with bipartition V0 and V1 for n ≥ 2. Suppose that z is a node in Vi and that u

and v are two distinct nodes in V1−i with i ∈ {0, 1}. Then there is a hamiltonian path of G − {z} joining u to v.
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Fig. 1. Illustration for Theorem 4.

Proof. We prove this statement by induction on n. Since Q2 is the only graph in B ′

2, it is easy to check that this
statement holds for n = 2. Thus, we assume that G = G0 ⊕ G1 in B ′

n with n ≥ 3. We have Gi ∈ B ′

n−1 for i = 0, 1.
Let V i

0 and V i
1 be the bipartition of Gi for i = 0, 1. Without loss of generality, we assume that V 0

0 ∪ V 1
0 and V 0

1 ∪ V 1
1

form the bipartition of G. Let z be any node in V 0
1 ∪ V 1

1 , and let u and v be any two distinct nodes in V 0
0 ∪ V 1

0 . We
need to show that there is a hamiltonian path of G − {z} joining u to v. Without loss of generality, we assume that
z ∈ V 0

1 . We have the following cases:
Case 1: u ∈ V 0

0 and v ∈ V 0
0 . By induction, there is a hamiltonian path Q in G0 − {z} joining u to v. Without loss

of generality, we write Q as 〈u, x, R, v〉. Since u ∈ V 0
0 , x ∈ V 0

1 . By Theorem 2, there is a hamiltonian path W of G1

joining the node ū ∈ V 1
1 to the node x̄ ∈ V 1

0 . Then 〈u, ū, W, x̄, x, R, v〉 is the hamiltonian path of G − {z} joining u
to v. See Fig. 1(a) for an illustration.

Case 2: u ∈ V 0
0 and v ∈ V 1

0 . Since n ≥ 3, |V 0
0 | = 2n−1

≥ 2. We can choose a node x in V 0
0 − {u}. By induction,

there is a hamiltonian path Q in G0 − {z} joining u to x . Since x ∈ V 0
0 , x̄ ∈ V 1

1 . By Theorem 2, there is a hamiltonian
path W of G1 joining x̄ to v. Then 〈u, Q, x, x̄, W, v〉 is the hamiltonian path of G − {z} joining u to v. See Fig. 1(b)
for an illustration.

Case 3: u ∈ V 1
0 and v ∈ V 1

0 . We can choose a node x in V 1
1 . By Theorem 2, there is a hamiltonian

path W in G1 joining u to x . Without loss of generality, we write W as 〈u, W1, y, v, W2, x〉. Since v ∈ V 1
0 ,

y ∈ V 1
1 . By induction, there is a hamiltonian path Q in G0 − {z} joining the node ȳ ∈ V 0

0 to the node
x̄ ∈ V 0

0 . Then 〈u, W1, y, ȳ, Q, x̄, x, W −1
2 , v〉 is the hamiltonian path of G − {z} joining u to v. See Fig. 1(c) for

an illustration. �

3. Every B′
n-graph is super spanning laceable

Let n be any positive integer. To prove that every graph in B ′
n is w∗-laceable for every w, 1 ≤ w ≤ n, we

need the concept of spanning fan. We note that there is another Menger-type Theorem. Let u be a node of G and
S = {v1, v2, . . . , vk} be a subset of V (G) not including u. An (u, S)-fan is a set of disjoint paths {P1, P2, . . . , Pk} of
G such that Pi joins u and vi [9]. It is proved that a graph G is k-connected if and only if there exists an (u, S)-fan
between any node u and any k-subset S of V (G) such that u /∈ S. With this observation, we define a spanning fan is a
fan that spans G. Naturally, we can study κ∗

f an(G) as the largest integer k such that there exists a spanning (u, S)-fan
between any node u and any k-node subset S with u /∈ S. However, we defer such a study for the following reasons:

First, let S be a cut set of a graph G. Let u be any node of V (G) − S. It is easy to see that there is no spanning
(u, S)-fan in G. Thus, κ∗

f an(G) < κ(G) if G is not a complete graph.
Second, let G be a bipartite graph with bipartition V0 and V1 and |V0| = |V1|. Let u be a vertex in Vi ,

S = {v1, v2, . . . , vk} be a subset of G not containing u, and k ≤ κ(G). Suppose that |S ∩ V1−i | = r . Without
loss of generality, we assume that {v1, v2, . . . , vr } ⊂ V1−i . Let {P1, P2, . . . , Pk} be any spanning (u, S)-fan of G.
Then l(Pj ) is odd if j ≤ r , and l(Pj ) is even if r < j ≤ k. Let l(Pj ) = 2t j + 1 if j ≤ r and l(Pj ) = 2t j if j > r . For
j ≤ r , there are t j −1 nodes of Pj in Vi other than u and there are t j nodes of Pj in V1−i . For j > r , there are t j nodes
of Pj in Vi other than u and there are t j nodes of Pj in V1−i . Thus, |Vi | = 1 − r +

∑k
j=1 t j and |V1−i | =

∑k
j=1 t j .

Since |Vi | = |V1−i |, r = 1. Thus, r = 1 is a fact requirement as we study the spanning fan of bipartite graphs with
equal size of bipartition.

Theorem 5. Let n and k be any two positive integer with k ≤ n. Let G be a graph in B ′
n with bipartition V0 and

V1. There exists a spanning (u, S)-fan in G for any node u in Vi and any node subset S with |S| ≤ n such that
|S ∩ V1−i | = 1 with i ∈ {0, 1}.
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Fig. 2. Illustration for Case 1 of Theorem 5.

Proof. We prove this statement by induction on n. Let G = G0 ⊕ G1 in B ′
n such that V i

0 and V i
1 be the bipartition

of Gi for every i = 0, 1. Without loss of generality, we assume that V 0
0 ∪ V 1

0 and V 0
1 ∪ V 1

1 form the bipartition of
G. Let u be any node in V 0

0 ∪ V 1
0 and S = {v1, v2, . . . , vk} be any node subset in G − {u} with v1 being the unique

node in (V 0
1 ∪ V 1

1 ) ∩ S. Without loss of generality, we assume that u ∈ V 0
0 . By Theorem 2, this statement holds for

k = 1. Thus, we assume that k = 2 and n ≥ 2. By Theorem 2, there is a hamiltonian path P of G joining v1 to v2.
Without loss of generality, we write P as 〈v1, P1, u, P2, v2〉. Then {P1, P2} forms the spanning (u, S)-fan of G. Thus,
this statement holds for k = 2. Moreover, this statement holds for n = 2. We assume that 3 ≤ k ≤ n. Suppose that
this statement holds for B ′

n−1, and Gi ∈ B ′

n−1 for i = 0 and 1. Without loss of generality, we assume that u ∈ G0.
Let T = S − {v1}. We have the following cases:

Case 1: |T ∩ V 0
0 | = |T |. Then vi ∈ V 0

0 for every i , 2 ≤ i ≤ k.
Case 1.1: v1 ∈ V 0

1 . Let H = S −{vk}. Obviously, H ⊂ G0, |H ∩ V 0
1 | = 1, and |H | = k −1. By induction, there is

a spanning (u, H)-fan {P1, P2, . . . , Pk−1} of G0. Without loss of generality, we assume that Pi is joining u to vi for
every i , 1 ≤ i ≤ k − 1.

Suppose that vk ∈ V (P1). Without loss of generality, we write P1 as 〈u, Q1, vk, x, Q2, v1〉. Since vk ∈ V 0
0 , x ∈ V 0

1 .
(Note that x = v1 if l(Q2) = 0.) By Theorem 2, there is a hamiltonian path R of G1 joining node ū ∈ V 1

1 to node
x̄ ∈ V 1

0 . We set W1 = 〈u, ū, R, x̄, x, Q2, v1〉, Wi = Pi for every i , 2 ≤ i ≤ k − 1, and Wk = 〈u, Q1, vk〉. Then
{W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 2(a) for an illustration where k = 6.

Suppose that vk ∈ V (Pi ) for some 2 ≤ i ≤ k − 1. Without loss of generality, we assume that vk ∈ V (Pk−1) and
we write Pk−1 as 〈u, Q1, vk, x, Q2, vk−1〉. Since vk ∈ V 0

0 , x ∈ V 0
1 . By Theorem 2, there is a hamiltonian path R of

G1 joining node ū ∈ V 1
1 to node x̄ ∈ V 1

0 . We set Wi = Pi for every i ∈ 〈k − 2〉, Wk−1 = 〈u, ū, R, x̄, x, Q2, vk−1〉,
and Wk = 〈u, Q1, vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 2(b) for an illustration where
k = 6.

Case 1.2: v1 ∈ V 1
1 . We choose a node x in V 0

1 . Let H = (T ∪ {x}) − {vk}. So H ⊂ G0, |H ∩ V 0
1 | = 1, and

|H | = k − 1. By induction, there is a spanning (u, H)-fan {P1, P2, . . . , Pk−1} of G0. Without loss of generality, we
assume that P1 is joining u to x and Pi is joining u to vi for every 2 ≤ i ≤ k − 1. We have ū ∈ V 1

1 and x̄ ∈ V 1
0 .

Case 1.2.1: vk ∈ V (P1). Without loss of generality, we write P1 as 〈u, Q1, y, vk, Q2, x〉. Since vk ∈ V 0
0 , y ∈ V 0

1
and ȳ ∈ V 1

0 .
Suppose that v1 6= ū. By Theorem 3, there are two disjoint paths R1 and R2 in G1 such that (1) R1 joins ȳ to v1,

(2) R2 joins ū to x̄ , and (3) R1 ∪ R2 spans G1. We set W1 = 〈u, Q1, y, ȳ, R1, v1〉, Wi = Pi for every 2 ≤ i ≤ k − 1,
and Wk = 〈u, ū, R2, x̄, x, Q−1

2 , vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 2(c) for an
illustration where k = 6.

Suppose that v1 = ū. By Theorem 4, there is a hamiltonian path R of G1 − {v1} joining ȳ to x̄ . We set
W1 = 〈u, ū = v1〉, Wi = Pi for every 2 ≤ i ≤ k − 1, and Wk = 〈u, Q1, y, ȳ, R, x̄, x, Q−1

2 , vk〉. Then
{W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 2(d) for an illustration where k = 6.

Case 1.2.2: vk ∈ V (Pi ) for some 2 ≤ i ≤ k − 1. Without loss of generality, we assume that vk ∈ V (Pk−1) and we
write Pk−1 as 〈u, Q1, vk, y, Q2, vk−1〉. Since vk ∈ V 0

0 , y ∈ V 0
1 and ȳ ∈ V 1

0 .
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Fig. 3. Illustration for Case 2 of Theorem 5.

Fig. 4. Illustration for Case 3 of Theorem 5.

Suppose that v1 6= ū. By Theorem 3, there are two disjoint paths R1 and R2 in G1 such that (1) R1 joins x̄ to v1,
(2) R2 joins ū to ȳ, and (3) R1 ∪ R2 spans G1. We set W1 = 〈u, P1, x, x̄, R1, v1〉, Wi = Pi for every 2 ≤ i ≤ k − 2,
Wk−1 = 〈u, ū, R2, ȳ, y, Q2, vk−1〉, and Wk = 〈u, Q1, vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G.
See Fig. 2(e) for an illustration where k = 6.

Suppose that v1 = ū. By Theorem 4, there is a hamiltonian path R of G1 − {v1} joining x̄ to ȳ. We set
W1 = 〈u, ū = v1〉, Wi = Pi for every 2 ≤ i ≤ k −2, Wk−1 = 〈u, P1, x, x̄, R, ȳ, y, Q2, vk−1〉, and Wk = 〈u, Q1, vk〉.
Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 2(f) for an illustration where k = 6.

Case 2: |T ∩ V 1
0 | = 1. Without loss of generality, we assume that vk ∈ V 1

0 . We have ū ∈ V 1
1 .

Case 2.1: v1 ∈ V 0
1 . Let H = S −{vk}. Obviously, H ⊂ G0, |H ∩ V 0

1 | = 1, and |H | = k −1. By induction, there is
a spanning (u, H)-fan {P1, P2, . . . , Pk−1} of G0. Without loss of generality, we assume that Pi is joining u to vi for
every 1 ≤ i ≤ k − 1. By Theorem 2, there is a hamiltonian path R of G1 joining ū to vk . We set Pk = 〈u, ū, R, vk〉.
Then {P1, P2, . . . , Pk} is the spanning (u, S)-fan of G. See Fig. 3(a) for an illustration where k = 6.

Case 2.2: v1 ∈ V 1
1 . By Theorem 2, there is a hamiltonian path R of G1 joining v1 to vk . Without loss of generality,

we write R as 〈v1, R1, ū, x, R2, vk〉. (Note that v1 = ū if l(R1) = 0 and x = vk if l(R2) = 0.) Since ū ∈ V 1
1 , x ∈ V 1

0
and x̄ ∈ V 0

1 . Let H = (T ∪ {x̄}) − {vk}. Obviously, H ⊂ G0, |H ∩ V 0
1 | = 1, and |H | = k − 1. By induction, there

is a spanning (u, H)-fan {P1, P2, . . . , Pk−1} of G0. Without loss of generality, we assume that P1 is joining u to x̄
and Pi is joining u to vi for every 2 ≤ i ≤ k − 1. We set W1 = 〈u, ū, R−1

1 , v1〉, Wi = Pi for every 2 ≤ i ≤ k − 1,
and Wk = 〈u, P1, x̄, x, R2, vk〉. Then {W1, W2, . . . , Wk} is the (u, S)-fan of G. See Fig. 3(b) for an illustration where
k = 6. Case 3: |T ∩ V 1

0 | = 2. Without loss of generality, we assume that {vk−1, vk} ⊂ V 1
0 . We have |V 0

0 | ≥ n ≥ k.
We can choose a node x in V 0

0 − {u, v2, v3, . . . , vk−2}. Obviously, {x̄, ū} ⊂ V 1
1 with x̄ 6= ū. By Theorem 3, there are

two disjoint paths R1 and R2 in G1 such that (1) R1 joins x̄ to vk−1, (2) R2 joins ū to vk , and (3) R1 ∪ R2 spans G1.
Case 3.1: v1 ∈ V 0

1 . Let H = (S ∪ {x}) − {vk−1, vk}. Obviously, H ⊂ G0, |H ∩ V 0
1 | = 1, and |H | = k − 1.

By induction, there is a spanning (u, H)-fan {P1, P2, . . . , Pk−1} of G0. Without loss of generality, we assume that Pi
is joining u to vi for every 1 ≤ i ≤ k − 2 and Pk−1 is joining u to x . We set Wi = Pi for every 1 ≤ i ≤ k − 2,
Wk−1 = 〈u, Pk−1, x, x̄, R1, vk−1〉, and Wk = 〈u, ū, R2, vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G.
See Fig. 4(a) for an illustration where k = 6.

Case 3.2: v1 ∈ V 1
1 and v1 ∈ V (R1). Without loss of generality, we write R1 as 〈x̄, Q1, v1, y, Q2, vk−1〉. Since

v1 ∈ V 1
1 , y ∈ V 1

0 and ȳ ∈ V 0
1 . Let H = (T ∪ {x, ȳ}) − {vk−1, vk}. Obviously, H ⊂ G0, |H ∩ V 0

1 | = 1, and
|H | = k − 1. By induction, there is a spanning (u, H)-fan {P1, P2, . . . , Pk−1} of G0. Without loss of generality,
we assume that P1 is joining u to x , Pi is joining u to vi for every i ∈ 〈k − 2〉, and Pk−1 is joining u to ȳ.
We set W1 = 〈u, P1, x, x̄, Q1, v1〉, Wi = Pi for every 2 ≤ i ≤ k − 2, Wk−1 = 〈u, Pk−1, ȳ, y, Q2, vk−1〉, and
Wk = 〈u, ū, R2, vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 4(b) for an illustration where
k = 6.

Case 3.3: v1 ∈ V 1
1 and v1 ∈ V (R2). Without loss of generality, we write R2 as 〈ū, Q1, v1, y, Q2, vk〉. Since

v1 ∈ V 1
1 , y ∈ V 1

0 and ȳ ∈ V 0
1 . Let H = (T ∪{x, ȳ})−{vk−1, vk}. Obviously, H ⊂ G0, |H ∩V 0

1 | = 1, and |H | = k−1.
By induction, there is a spanning (u, H)-fan {P1, P2, . . . , Pk−1} of G0. Without loss of generality, we assume that P1
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Fig. 5. Illustration for Case 4 of Theorem 5.

is joining u to x , Pi is joining u to vi for every 2 ≤ i ≤ k − 2, and Pk−1 is joining u to ȳ. We set W1 = 〈u, ū, Q1, v1〉,
Wi = Pi for every 2 ≤ i ≤ k − 2, Wk−1 = 〈u, P1, x, x̄, R1, vk−1〉, and Wk = 〈u, Pk−1, ȳ, y, Q2, vk〉. Then
{W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 4(c) for an illustration where k = 6.

Case 4: |T ∩ V 1
0 | ≥ 3 and |T ∩ V 0

0 | ≥ 1. We have n ≥ k = |S| ≥ 5. Without loss of generality, we assume that
A = T ∩ V 0

0 = {v2, v3, . . . , vt } and B = T ∩ V 1
0 = {vt+1, vt+2, . . . , vk} for some 2 ≤ t ≤ k − 3. Since t ≤ k − 3 and

k ≤ n, |A| = t −1 ≤ n −4 and |B| ≤ n −2. Since n ≥ 5, (n −1)|A|+|B| ≤ (n −1)(n −4)+ (n −2) < 2n−2
= |V 1

0 |.
Thus, we can choose a node x in V 1

0 − B such that v̄i /∈ NG1(x) for every 2 ≤ i ≤ t . Since 2 ≤ t ≤ k − 3 and
k ≤ n, k − t + 1 ≤ n − 1. Let H = B ∪ {ū}. Obviously, H ⊂ G1, |H ∩ V 1

1 | = 1, and |H | = k − t + 1. By
induction, there is a spanning (x, H)-fan {P1, P2, . . . , Pk−t+1} of G1. Without loss of generality, we assume that P1
is joining x to ū and Pi is joining x to vt+i−1 for every 2 ≤ i ≤ k − t +1. Moreover, we write P1 = 〈x, x1, R1, ū〉 and
Pi = 〈x, xi , Ri , vt+i−1〉 for every 2 ≤ i ≤ k − t + 1. Since x ∈ V 1

0 , xi ∈ V 1
1 and x̄i ∈ V 0

0 for every 1 ≤ i ≤ k − t + 1.
We set C = {x̄2, x̄3, . . . , x̄k−t }.

Case 4.1: v1 ∈ V 0
1 . Let H ′

= A ∪ C ∪ {v1}. Obviously, H ′
⊂ G0, |H ′

∩ V 0
1 | = 1, and |H ′

| = k − 1. By
induction, there is a spanning (u, H ′)-fan {Q1, Q2, . . . , Qk−1} of G0. Without loss of generality, we assume that
Qi is joining u to vi for every 1 ≤ i ≤ t and Q j is joining u to x̄ j−t+2 for every t + 1 ≤ j ≤ k − 1. We set
Wi = 〈u, Qi , vi 〉 for every 1 ≤ i ≤ t , W j = 〈u, Q j , x̄i−t+2, xi−t+2, Ri−t+2, v j 〉 for every t + 1 ≤ j ≤ k − 1,
and Wk = 〈u, ū, P−1

1 , x, Pk−t+1, vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 5(a) for an
illustration where k = 6 and t = 3.

Case 4.2: v1 ∈ V 1
1 and v1 ∈ V (P1). Without loss of generality, we write P1 as 〈x, Z1, y, v1, Z2, ū〉. Since v1 ∈ V 1

1 ,
y ∈ V 1

0 and ȳ ∈ V 0
1 . Let H ′

= A ∪ C ∩ {ȳ}. Obviously, H ′
⊂ G0, |H ′

∩ V 0
1 | = 1, and |H ′

| = k − 1. By induction,
there is a spanning (u, H ′)-fan {Q1, Q2, . . . , Qk−1} of G0. Without loss of generality, we assume that Q1 is joining
u to ȳ, Qi is joining u to vi for every 2 ≤ i ≤ t , and Q j is joining u to x̄ j−t+2 for every t + 1 ≤ j ≤ k − 1. We
set W1 = 〈u, ū, Z−1

2 , v1〉, Wi = 〈u, Qi , vi 〉 for every 2 ≤ i ≤ t , W j = 〈u, Q j , x̄i−t+2, xi−t+2, Ri−t+2, v j 〉 for every
t + 1 ≤ j ≤ k − 1, and Wk = 〈u, Q1, ȳ, y, Z−1

1 , x, Pk−t+1, vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan
of G. See Fig. 5(b) for an illustration where k = 6 and t = 3.

Case 4.3: v1 ∈ V 1
1 and v1 ∈ V (Pi ) for some 2 ≤ i ≤ k − t + 1. Without loss of generality, we assume

that v1 ∈ V (Pk−t+1) and we write Pk−t+1 as 〈x, Z1, v1, y, Z2, vk〉. Since v1 ∈ V 1
1 , y ∈ V 1

0 and ȳ ∈ V 0
1 . Let

H ′
= A ∪ C ∪ {ȳ}. Obviously, H ′

⊂ G0, |H ′
∩ V 0

1 | = 1, and |H ′
| = k − 1. By induction, there is a spanning (u, H ′)-

fan {Q1, Q2, . . . , Qk−1} of G0. Without loss of generality, we assume that Q1 is joining u to ȳ, Qi is joining u to vi
for every 2 ≤ i ≤ t , and Q j is joining u to x̄ j−t+2 for every t + 1 ≤ j ≤ k − 1. We set W1 = 〈u, ū, P−1

1 , x, Z1, v1〉,
Wi = 〈u, Qi , vi 〉 for every 2 ≤ i ≤ t , W j = 〈u, Q j , x̄i−t+2, xi−t+2, Ri−t+2, v j 〉 for every t + 1 ≤ j ≤ k − 1,
and Wk = 〈u, Q1, ȳ, y, Z2, vk〉. Then {W1, W2, . . . , Wk} forms the spanning (u, S)-fan of G. See Fig. 5(c) for an
illustration where k = 6 and t = 3.

Case 5: |T ∩ V 1
0 | = |T | ≥ 3. Let H = (T ∪ {ū}) − {vk}. Obviously, H ⊂ G1, |H ∩ V 1

1 | = 1, and |H | = k − 1.
By induction, there is a spanning (vk, H)-fan {P1, P2, . . . , Pk−1} of G1. Without loss of generality, we assume that
P1 is joining vk to ū and Pi is joining vk to vi for every 2 ≤ i ≤ k − 1. Without loss of generality, we write
P1 = 〈vk, x1, R1, ū〉 and write Pi = 〈vk, xi , Ri , vi 〉 for every 2 ≤ i ≤ k − 1. Since vk ∈ V 1

0 , xi ∈ V 1
1 and x̄i ∈ V 0

0 for
every 1 ≤ i ≤ k − 1. We set C = {x̄2, x̄3, . . . , x̄k−1}.

Case 5.1: v1 ∈ V 0
1 . Let H ′

= C ∪ {v1}. Obviously, H ′
⊂ G0, |H ′

∩ V 0
1 | = 1, and |H ′

| = k − 1. By induction,
there is a spanning (u, H ′)-fan {Q1, Q2, . . . , Qk−1} of G0. Without loss of generality, we assume that Q1 is joining
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Fig. 6. Illustration for Case 5 of Theorem 5.

u to v1 and Qi is joining u to x̄i for every 2 ≤ i ≤ k − 1. We set W1 = Q1, Wi = 〈u, Qi , x̄i , xi , Ri , vi 〉 for every
2 ≤ i ≤ k − 1, and Wk = 〈u, ū, P−1

1 , vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G. See Fig. 6(a) for
an illustration where k = 6.

Case 5.2: v1 ∈ V 1
1 and v1 ∈ V (P1). Without loss of generality, we write P1 = 〈vk, Z1, y, v1, Z2, ū〉. Since

v1 ∈ V 1
1 , y ∈ V 1

0 and ȳ ∈ V 0
1 . Let H ′

= C ∪{ȳ}. Obviously, H ′
⊂ G0, |H ′

∩V 1
0 | = 1, and |H ′

| = k−1. By induction,
there is a spanning (u, H ′)-fan {Q1, Q2, . . . , Qk−1} of G0. Without loss of generality, we assume that Q1 is joining
u to ȳ and Qi is joining u to x̄i for every 2 ≤ i ≤ k − 1. We set W1 = 〈u, ū, Z−1

2 , v1〉, Wi = 〈u, Qi , x̄i , xi , Ri , vi 〉

for every 2 ≤ i ≤ k − 1, and Wk = 〈u, Q1, ȳ, y, Z−1
1 , vk〉. Then {W1, W2, . . . , Wk} is the spanning (u, S)-fan of G.

See Fig. 6(b) for an illustration where k = 6.
Case 5.3: v1 ∈ V 1

1 and v1 ∈ V (Pi ) for some 2 ≤ i ≤ k − 1. Without loss of generality, we assume that
v1 ∈ V (Pk−1) and write Pk−1 = 〈vk, xk−1, Z1, v1, y, Z2, vk−1〉. Since v1 ∈ V 1

1 , y ∈ V 1
0 and ȳ ∈ V 0

1 . Let
H ′

= C ∪ {ȳ}. Obviously, H ′
⊂ G0, |H ′

∩ V 0
1 | = 1, and |H ′

| = k − 1. By induction, there is a (u, H ′)-fan
{Q1, Q2, . . . , Qk−1} of G0. Without loss of generality, we assume that Q1 is joining u to ȳ and Qi is joining u to
x̄i for every 2 ≤ i ≤ k − 1. We set W1 = 〈u, Qk−1, x̄k−1, xk−1, Z1, v1〉, Wi = 〈u, Qi , x̄i , xi , Ri , vi 〉 for every
2 ≤ i ≤ k − 2, Wk−1 = 〈u, Q1, ȳ, y, Z2, vk−1〉, and Wk = 〈u, ū, P−1

1 , vk〉. Then {W1, W2, . . . , Wk} is the spanning
(u, S)-fan of G. See Fig. 6(c) for an illustration where k = 6. �

Theorem 6. Every graph in B ′
n is super spanning laceable for n ≥ 1.

Proof. Suppose that G = G0 ⊕ G1 in B ′
n with bipartition V0 and V1. Let u be any node in V0 and v be any node in V1.

We need to show there is a k∗-container of G between u and v for every positive integer k with k ≤ n. By Theorem 2,
there is a 1∗-container of G joining u to v. Thus, we assume that k ≥ 2 and n ≥ 2. Since k ≤ n and |NG(v)| = n,
we can choose (k − 1) distinct nodes x1, x2, . . . , xk−1 in NG(v) − {u}. Since v is in V1, xi is in V0 − {u} for i = 1
to k − 1. We set S = {v, x1, x2, . . . , xk−1}. By Theorem 5, there is a spanning (u, S)-fan {R1, R2, . . . , Rk} of G.
Without loss of generality, we assume that R1 is joining u to v and Ri is joining u to xi−1 for every 2 ≤ i ≤ k. We
set P1 = R1 and Pi = 〈u, Ri , xi−1, v〉 for every 2 ≤ i ≤ k. Then {P1, P2, . . . , Pk} is the k∗-container of G between
u and v. �

4. On the w∗-connectedness of N ′
n-graphs

4.1. Every graph in N ′
n is 3∗-connected

Lemma 2. According to isomorphism, there is only one graph in N ′

3. Moreover, this graph is 3∗-connected.

Proof. By brute force, we can check the graph T in Fig. 7 is the only graph in N ′

3.
Let x and y be two distinct nodes of T . By the symmetry of T , we can assume that x = 0 and y ∈ {1, 2, 3, 4}. The

3∗-containers {P1, P2, P3} of T between x and y are listed below:

y = 1 {P1 = 〈0, 1〉, P2 = 〈0, 4, 3, 2, 1〉, P3 = 〈0, 7, 6, 5, 1〉}

y = 2 {P1 = 〈0, 1, 2〉, P2 = 〈0, 7, 3, 2〉, P3 = 〈0, 4, 5, 6, 2〉}

y = 3 {P1 = 〈0, 4, 3〉, P2 = 〈0, 7, 3〉, P3 = 〈0, 1, 5, 6, 2, 3〉}

y = 4 {P1 = 〈0, 4〉, P2 = 〈0, 1, 2, 3, 4〉, P3 = 〈0, 7, 6, 5, 4〉}
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Fig. 7. The only graph T in N ′
3.

Thus, T is 3∗-connected. �

Let n ≥ 3. Let G = G0 ⊕ G1 ∈ N ′

n+1 with G0 ∈ H ′
n and G1 ∈ H ′

n . Depending on G0 and G1 is bipartite or not,
we prove that G = G0 ⊕ G1 is 3∗-connected with the following lemmas.

Lemma 3. Let n ≥ 3. Assume that G = G0 ⊕ G1 in N ′

n+1 with both G0 and G1 in N ′
n . Then G is 3∗-connected.

Proof. Let u and v be any two distinct nodes of G. We need to construct a 3∗-container of G between u and v.
Case 1: u, v ∈ G0. By Theorem 1, there is a 2∗-container {P1, P2} of G0 between u and v. By Theorem 1 again,

there is a hamiltonian path P of G1 joining ū to v̄. We set P3 as 〈u, ū, P, v̄, v〉. Then {P1, P2, P3} is the 3∗-container
of G between u and v.

Case 2: u ∈ G0 and v ∈ G1 with ū = v. Since there are 2n nodes in G0 and 2n > 3 for n ≥ 3, we can choose two
distinct nodes x and y in G0 − {u}. By Theorem 1, there is a hamiltonian path R of G0 joining x to y. Again, there
is a hamiltonian path W of G1 joining x̄ to ȳ. We write R = 〈x, R1, u, R2, y〉 and W = 〈x̄, W1, v, W2, ȳ〉. We set
P1 = 〈u, R−1

1 , x, x̄, W1, v〉, P2 = 〈u, R2, y, ȳ, W −1
2 , v〉, and P3 = 〈u, v〉. Then {P1, P2, P3} is the 3∗-container of G

between u and v.
Case 3: u ∈ G0 and v ∈ G1 with ū 6= v. Since there are 2n nodes in G0, we choose a node x in G0 − {u, v̄}.

By Theorem 1, there is a hamiltonian path R of G0 joining x to v̄. Again, there is a hamiltonian path W of
G1 joining x̄ to ū. We write R = 〈x, R1, u, R2, v̄〉 and W = 〈x̄, W1, v, W2, ū〉. We set P1 = 〈u, ū, W −1

2 , v〉,
P2 = 〈u, R−1

1 , x, x̄, W1, v〉, and P3 = 〈u, R2, v̄, v〉. Then {P1, P2, P3} is the 3∗-container of G between u and
v. �

Lemma 4. Let n ≥ 3. Assume that G = G0 ⊕ G1 in N ′

n+1 with G0 in B ′
n and G1 in N ′

n . Then G is 3∗-connected.

Proof. Let V0 and V1 be the bipartition of G0. Let u and v be any two distinct nodes of G. We need to construct a
3∗-container of G between u and v.

Case 1: u, v ∈ G0. By Theorem 2, there is a 2∗-container {P1, P2} of G0 between u and v. By Theorem 1, there
is a hamiltonian path P of G1 joining ū to v̄. We set P3 = 〈u, ū, P, v̄, v〉. Then {P1, P2, P3} is the 3∗-container of G
between u and v.

Case 2: u, v ∈ G1. Without loss of generality, we assume that ū ∈ V0.
Case 2.1: v̄ ∈ V0. Since there are 2n−1 nodes in V1 and 2n−1

≥ 4 for n ≥ 3, we can choose two distinct nodes
x and y in V1. By Theorem 1, there is a hamiltonian path R of G1 joining x̄ to ȳ. Without loss of generality, we
write R = 〈x̄, R1, u, R2, v, R3, ȳ〉. By Theorem 3, there are two disjoint paths T1 and T2 of G0 such that (1) T1 joins
ū to y, (2) T2 joins x to v̄, and (3) T1 ∪ T2 spans G1. We set P1 = 〈u, R2, v〉, P2 = 〈u, R−1

1 , x̄, x, T2, v̄, v〉, and
P3 = 〈u, ū, T1, y, ȳ, R−1

3 , v〉. Then {P1, P2, P3} is the 3∗-container of G between u and v.
Case 2.2: v̄ ∈ V1. By Theorem 1, there is a 2∗-container {P1, P2} of G1 between u and v. By Theorem 2, there is

a hamiltonian path P of G0 joining ū to v̄. We set P3 = 〈u, ū, P, v̄, v〉. Then {P1, P2, P3} is the 3∗-container of G
between u and v.

Case 3: u ∈ G0 and v ∈ G1 with ū 6= v. By Theorem 2, there is a hamiltonian cycle C of G0. Without loss
of generality, we write C = 〈u, R1, v̄, x, R2, u〉. By Theorem 1, there is a hamiltonian path T of G1 joining ū to
x̄ . Without loss of generality, we write T = 〈ū, T1, v, T2, x̄〉. We set P1 = 〈u, R1, v̄, v〉, P2 = 〈u, ū, T1, v〉, and
P3 = 〈u, R−1

2 , x, x̄, T −1
2 , v〉. Then {P1, P2, P3} is the 3∗-container of G between u and v.

Case 4: u ∈ G0 and v ∈ G1 with ū = v. Without loss of generality, we assume that u ∈ V0. We can choose a node
x in V0 − {u} and a node y in V1. By Theorem 2, there is a hamiltonian path R of G0 joining x to y. By Theorem 1,
there is a hamiltonian path T of G1 joining x̄ to ȳ. Without loss of generality, we write R = 〈x, R1, u, R2, y〉

and T = 〈x̄, T1, v, T2, ȳ〉. We set P1 = 〈u, v〉, P2 = 〈u, R−1
1 , x, x̄, T1, v〉, and P3 = 〈u, R2, y, ȳ, T −1

2 , v〉. Then
{P1, P2, P3} is the 3∗-container of G between u and v. �
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Lemma 5. Assume that G = G0 ⊕ G1 in N ′

n+1 with both G0 and G1 in B ′
n for n ≥ 2. Then G is 3∗-connected.

Proof. Let V i
0 and V i

1 be the bipartition of Gi for i = 0, 1. Let u and v be two distinct nodes of G. Without loss of
generality, we assume that u ∈ V 0

0 and ū ∈ V 1
1 . We need to construct a 3∗-container of G between u and v.

Case 1: v ∈ V 0
0 ∪ V 0

1 and v̄ ∈ V 1
0 . By Theorem 2, there is a 2∗-container {P1, P2} of G0 between u and v. By

Theorem 2, there is a hamiltonian path P of G1 joining ū to v̄. We set P3 = 〈u, ū, P, v̄, v〉. Then {P1, P2, P3} is the
3∗-container of G between u and v.

Case 2: v ∈ V 0
0 and v̄ ∈ V 1

1 . Since u ∈ V 0
0 , ū ∈ V 1

1 , v ∈ V 0
0 , and v̄ ∈ V 1

1 , we can choose a node x in V 0
1

such that x̄ ∈ V 1
0 and choose a node y in V 0

0 such that ȳ ∈ V 1
0 . By Theorem 2, there is a hamiltonian path R of G0

joining x to y. Without loss of generality, we write R = 〈x, R1, p, R2, q, R3, y〉 where {p, q} = {u, v}. Without loss
of generality, we assume that p = u and q = v. By Theorem 3, there are two disjoint paths T1 and T2 of G1 such that
(1) T1 joins x̄ to v̄, (2) T2 joins ū to ȳ, and (3) T1 ∪T2 spans G1. We set P1 = 〈u, R2, v〉, P2 = 〈u, R−1

1 , x, x̄, T1, v̄, v〉,
P3 = 〈u, ū, T2, ȳ, y, R−1

3 , v〉. Then {P1, P2, P3} is the 3∗-container of G between u and v.
Case 3: v ∈ V 0

1 and v̄ ∈ V 1
1 . Since u ∈ V 0

0 and ū ∈ V 1
1 , v ∈ V 0

1 , and v̄ ∈ V 1
1 , we can choose a node x in V 0

1
such that x̄ ∈ V 1

0 and choose a node y in V 0
0 such that ȳ ∈ V 1

0 . By Theorem 2, there is a hamiltonian path R of G0
joining x to y. Without loss of generality, we write R = 〈x, R1, p, R2, q, R3, y〉 where {p, q} = {u, v}. Without loss
of generality, we assume that p = u and q = v. By Theorem 3, there are two disjoint paths T1 and T2 of G1 such that
(1) T1 joins x̄ to v̄, (2) T2 joins ū to ȳ, and (3) T1 ∪T2 spans G1. We set P1 = 〈u, R2, v〉, P2 = 〈u, R−1

1 , x, x̄, T1, v̄, v〉,
P3 = 〈u, ū, T2, ȳ, y, R−1

3 , v〉. Then {P1, P2, P3} is the 3∗-container of G between u and v.
Case 4: v ∈ V 1

0 ∪ V 1
1 and ū 6= v.

Case 4.1: v̄ ∈ V 0
0 . Since u ∈ V 0

0 , ū ∈ V 1
1 , and v̄ ∈ V 0

0 , we can choose a node x ∈ V 0
1 such that x̄ ∈ V 1

0 .
By Theorem 2, there is a hamiltonian path R of G0 joining x to v̄. Again, by Theorem 2, there is a hamiltonian
path T of G1 joining x̄ to ū. Write R = 〈x, R1, u, R2, v̄〉 and T = 〈x̄, T1, v, T2, ū〉. We set P1 = 〈u, ū, T −1

2 , v〉,
P2 = 〈u, R2, v̄, v〉, and P3 = 〈u, R−1

1 , x, x̄, T1, v〉. Then {P1, P2, P3} is the 3∗-container of G between u and v.
Case 4.2: v̄ ∈ V 0

1 and v ∈ V 1
0 . Since u ∈ V 0

0 , ū ∈ V 1
1 , v ∈ V 1

0 , and v̄ ∈ V 0
1 , we can choose a node x ∈ V 0

0
such that x̄ ∈ V 1

0 . By Theorem 2, there is a hamiltonian path R of G0 joining x to v̄, and there is a hamiltonian
path T of G1 joining x̄ to ū. We write R = 〈x, R1, u, R2, v̄〉 and T = 〈x̄, T1, v, T2, ū〉. We set P1 = 〈u, ū, T −1

2 , v〉,
P2 = 〈u, R2, v̄, v〉, and P3 = 〈u, R−1

1 , x, x̄, T1, v〉. Then {P1, P2, P3} is the 3∗-container of G between u and v.
Case 4.3: v̄ ∈ V 0

1 and v ∈ V 1
1 . Since u ∈ V 0

0 , ū ∈ V 1
1 , and v ∈ V 1

1 , we can choose a node x ∈ V 0
0 such that x̄ ∈ V 1

0 .
By Theorem 2, there is a hamiltonian path R of G0 joining x to v̄, and there is a hamiltonian path T of G1 joining x̄
to ū. We write R = 〈x, R1, u, R2, v̄〉 and T = 〈x̄, T1, v, T2, ū〉. We set P1 = 〈u, ū, T −1

2 , v〉, P2 = 〈u, R2, v̄, v〉, and
P3 = 〈u, R−1

1 , x, x̄, T1, v〉. Then {P1, P2, P3} is the 3∗-container of G between u and v.
Case 5: v = ū. Since u ∈ V 0

0 and ū ∈ V 1
1 , we can choose a node x ∈ V 0

0 such that x̄ ∈ V 1
0 and choose a node

y ∈ V 0
1 such that ȳ ∈ V 1

1 . By Theorem 2, there is a hamiltonian path R of G0 joining x to y, and there is a hamiltonian
path T of G1 joining x̄ to ȳ. Without loss of generality, we write that R = 〈x, R1, u, R2, y〉 and T = 〈x̄, T1, v, T2, ȳ〉.
We set P1 = 〈u, v〉, P2 = 〈u, R−1

1 , x, x̄, T1, v〉, and Pi s = 〈u, R2, y, ȳ, T −1
2 , v〉. Then {P1, P2, P3} forms the 3∗-

container of G between u and v. �

With Lemmas 2–5, we have the following theorem:

Theorem 7. Every graph in N ′
n is 3∗-connected.

4.2. An N ′
n-graph H is not 4∗-connected

We say that u = unun−1 . . . u2u1 is an n-bit binary string if ui ∈ {0, 1} for every 1 ≤ i ≤ n. For 1 ≤ i ≤ n, we
use (u)i to denote the binary string, vnvn−1 . . . v2v1, such that vi = 1 − ui and v j = u j for every j 6= i . Moreover,
we use (u)i to denote ui . The Hamming weight of an n-bit binary strings u = unun−1 . . . u2u1, w(u), is

∑n
i=1 ui .

The n-dimensional hypercube, Qn , consists of all n-bit binary strings as its nodes. Two nodes u = unun−1 . . . u2u1
and v = vnvn−1 . . . v2v1 of Qn are adjacent if and only if v = (u)i for some i ∈ {1, 2, . . . , n}. Note that Qn is a
bipartite graph with bipartition {u | w(u) is even} and {u | w(u) is odd}. Let Qi

n be the subgraph of Qn induced by
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{u ∈ V (Qn) | (u)n = i} for i ∈ {0, 1}. Then Qi
n is isomorphic to Qn−1. By the definition of Qn , Qn ∈ B ′

n . Let n ≥ 4
and let e = 00 . . . 0︸ ︷︷ ︸

n

be a node in Qn . We set v = (e)1, p = (e)n , and q = ((e)1)n .

Let H be the graph with V (H) = V (Qn) and E(H) = (E(Qn) − {(e, p), (v, q)}) ∪ {(e, q), (v, p)}. Obviously,
H −{(e, q), (v, p)} is a bipartite graph with bipartition A = {x | w(x) is even} and B = {x | w(x) is odd}. Moreover,
H is in N ′

n and H = Q0
n ⊕ Q1

n for some 1–1 connection φ. We will show that H is not k∗-connected for k ≥ 4.
Suppose that there is a k∗-container C = {P1, P2, . . . , Pk} of H between e and q for some k ≥ 4. We have the

following cases:
Case 1: (e, q) ∈ ∪

k
i=1 Pi and (v, p) ∈ ∪

k
i=1 Pi . Without loss of generality, we assume that (e, q) ∈ P1. Thus,

P1 = 〈e, q〉. Again, we can assume without loss of generality that (v, p) ∈ P2. Obviously, the number of nodes in P2
is 2t2 for some integer t2 and the number of nodes in Pi is 2ti + 1 for some integer ti for every 3 ≤ i ≤ k. Therefore,
there are t2 nodes of V (P2)∩ B and (t2 −2) nodes of V (P2)∩ A other than e and q, and there are ti nodes of V (Pi )∩ B
and (ti − 1) nodes of V (Pi ) ∩ A other than e and q for every 3 ≤ i ≤ k. As a consequence, |A| =

∑k
i=2 ti + 2 − k

and |B| =
∑k

i=2 ti . Thus, |A| 6= |B|.
Case 2: (e, q) ∈ ∪

k
i=1 Pi and (v, p) /∈ ∪

k
i=1 Pi . Without loss of generality, we assume that (e, q) ∈ P1. Obviously,

the number of nodes in Pi is (2ti +1) for some integer ti for every 2 ≤ i ≤ k. Moreover, there are ti nodes of V (Pi )∩B,
and (ti − 1) nodes of V (Pi ) ∩ A other than e and q for every 2 ≤ i ≤ k. As a consequence, |A| =

∑k
i=2 ti + 3 − k

and |B| =
∑k

i=2 ti . Thus, |A| 6= |B|.
Case 3: (e, q) /∈ ∪

k
i=1 Pi and (v, p) ∈ ∪

k
i=1 Pi . Without loss of generality, we assume that (v, p) ∈ P1. Obviously,

the number of nodes in P1 is 2t1 for some integer t1, and the number of nodes in Pi is (2ti + 1) for some integer ti for
every 2 ≤ i ≤ k. Moreover, there are t1 nodes of V (P1) ∩ B and (t1 − 2) nodes of V (P1) ∩ A other than e and q,
and there are ti nodes of V (Pi ) ∩ B and (ti − 1) nodes of V (Pi ) ∩ A other than e and q for every 2 ≤ i ≤ k. As a
consequence, |A| =

∑k
i=1 ti + 1 − k and |B| =

∑k
i=1 ti . Thus, |A| 6= |B|.

Case 4: (e, q) /∈ ∪
k
i=1 Pi and (v, p) /∈ ∪

k
i=1 Pi . Obviously, the number of nodes in Pi is (2ti + 1) for some integer

ti for every 1 ≤ i ≤ k. Moreover, there are ti nodes of V (Pi ) ∩ B, and (ti − 1) nodes of V (Pi ) ∩ A other than e and q
for every 1 ≤ i ≤ k. As a consequence, |A| =

∑k
i=1 ti + 2 − k and |B| =

∑k
i=1 ti . Thus, |A| 6= |B|.

With Case 1, Case 2, Case 3, and Case 4, C is not a k∗-container of H between e and q. Thus, H is not k∗-connected
for any k, 4 ≤ k ≤ n.

5. Concluding remark

In this paper, we have shown that every B ′
n graph is super spanning laceable. With this result, we believe that

there should exist more super spanning laceable graphs than we expected. Similarly, there are more superspanning
connected graphs to be discussed. We have also shown that every N ′

n-graph is w∗-connected for every w, 1 ≤ w ≤ 3.
It would be interesting to characterize those graphs being superspanning connected or superspanning laceable.

Finally, we prove that there exists a spanning (x, S)-fan in any B ′
n graph G with bipartition V0 and V1, for any node

x in Vi with i ∈ {0, 1}, and any node subset S with |S| ≤ n such that |S ∩ V1−i | = 1. We believe that there are other
bipartite graphs with such a nice property.

We also think that there exists a spanning (x, S)-fan in some incomplete graph G with κ(G) = k for any vertex x
and any node subset S such that S is not a cut set with |S| ≤ k. We can easily prove that G is superspanning connected
once the above property holds.
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