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In this letter, the authors propose a practical and reliable approach—using deposited multiwalled
carbon nanotubes (MWCNTS) as source and drain electrodes—for reducing the contact resistance
(R,) in pentacene-based bottom-contact thin-film transistors. The value of R, of the devices was
closely linked to the resultant length of the deposited MWCNTSs; the lowest value was 3
X 108 0 um. The largest saturation mobility was 0.14 cm?/V s; this value reached up to three times
higher when the threshold voltage was determined using the maximum transconductance (G,, max)
extrapolation method, rather than the constant current method. The on/off ratio was more than
10%. © 2007 American Institute of Physics. [DOI: 10.1063/1.2771532]

Pentacene-based organic thin-film transistors (OTFTs)
have been attracting much attention because of their rela-
tively low cost and the feasibility of fabricating them on
flexible organic substrates at low temperature. Currently, two
typical device structures are employed for the fabrication of
OTFTs, i.e., bottom-contact OTFT (BC-OTFT) and top-
contact OTFT-(TC-OTFT). When pursuing denser electrical
circuits, BC-OTFTs have an advantage over TC-OTFTs be-
cause exposure of the active organic material to solvents and
chemicals can be avoided during the lithography process.1
Nevertheless, the performance of BC-OTFTs is usually infe-
rior to that of TC-OTFTs because of higher contact resistance
(R,) at the source/drain (S/D) electrodes; this phenomenon
has been investigated extensively.z’3 Carbon nanotubes
(CNTs) have been the focus of much recent research because
of their unique electronic properties and extraordinary me-
chanical properties.‘"5 Single-walled carbon nanotubes
(SWCNTs) have been demonstrated as highly useful materi-
als in nanoscale devices, while multiwalled carbon nano-
tubes (MWCNTSs) have great potential for the field emission
applications and as interconnects.’

In this letter, we propose a technique—employing ther-
mal chemical vapor deposition (T-CVD) to deposit
MWCNTs directly onto patterned S/D electrodes—for reduc-
ing the value of R, of pentacene-based BC-OTFTs; this ap-
proach appears to be more practical and reliable than that
proposed in a previous study.9 We found that the value of R,
in our devices was affected strongly by the resultant length
of the deposited MWCNTs. The lowest value reached ~3
X 108 Q0 um. Not surprisingly, our fabricated devices exhib-
ited high carrier saturation mobility (0.14 cm?/V s) and an
on/off ratio spanning six orders of magnitude.

Figure 1 provides a schematic cross section of a BC
pentacene TFT possessing an MWCNT S/D and the recipe
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for growth of the MWCNTSs. A n**-Si substrate was used as
the gate electrode. After standard cleaning, a 320-nm-thick
SiO, layer was grown thermally as the gate insulator. For
S/D formation, an Fe/Ti catalytic layer was then deposited
through electron beam thermal evaporation and patterned us-
ing the lift-off technique. For comparison, the Ti buffer layer
was prepared at two different thicknesses (10 and 50 nm),
while the thickness of the Fe layer was fixed (5 nm). Subse-
quently, the MWCNTs were grown through T-CVD; the pro-
cedure was performed as follows: The samples were heated
to 700 °C under a nitrogen gas (N,) atmosphere. After pre-
treatment of the Fe/Ti catalytic layer in a mixed hydrogen
(H,) and N, atmosphere, MWCNTSs were grown on the S/D
region through pyrolysis of ethylene (C,H,), as the carbon
source, over two different growth times (3 and 5 min). The
lengths of the MWCNTs deposited for 3 and 5 min were
confirmed through scanning electron microscopy (SEM) to
be ~400 nm and | um, respectively. A pentacene layer
(~40 nm) was finally deposited using thermal evaporation in
a high vacuum chamber operated at a base pressure of
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FIG. 1. (Color online) Schematic cross-sectional depiction of a pentacene
BC-OTFT possessing MWCNT S/D electrodes, and the recipe for the
growth of the MWCNTs.

© 2007 American Institute of Physics
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FIG. 2. (Color online) (a) /,-V, characteristics of BC-OTFTs prepared with
and without coverage of MWCNTSs on the S/D region. (b) I,-V, character-
istics of BC-OTFTs plotted with respect to the MWCNT growth time and
the Ti layer thickness. The channel width and length were 600 and 50 wm,
respectively; the Ti layer was 10 nm thick.

1076 Torr at room temperature. The electrical properties of
the fabricated OTFTs were characterized using a Kiethley
4200 parameter analyzer.

Figure 2(a) provides a comparison of the /,-V, charac-
teristics of the OTFTs prepared with and without MWCNT
coverage on the S/D region. It is clear that the performance
of the OTFTs was improved significantly after incorporating
the MWCNTs. We believe that this behavior is related to
three factors: (1) the difference between the work functions
of Fe (~4.5 eV) and pentacene is larger than that between
MWCNT (4.7+£0.4 eV) and pentacene;7 (2) the MWCNT/
pentacene system probably possesses better contact proper-
ties than that of the metal/pentacene system, as might be
expected from a previous finding that pentacene molecules,
when deposited onto SWCNT electrodes, stack on the sur-
face of the SWCNTs in a commensurate configuration as a
result of favorable 7r-1 interactions:’ and (3) the contact area
induced by the presence of MWCNTSs was increased tremen-
dously. All of these factors will contribute to the smaller
contact resistance and, in turn, improve the device perfor-
mance. Figure 2(b) depicts the I,-V, characteristics of OT-
FTs prepared using different MWCNT growth times and Ti
layer thicknesses. The device width (W) and length (L) were
600 and 50 um, respectively. Obviously, the BC-OTFT pre-
pared with a longer MWCNT growth times and having a
thinner Ti layer exhibited better performance; remarkably, its
on/off ratio spanned six orders of magnitude. The effect of
the Ti layer’s thickness presumably is due to the fact that a
thicker Ti layer has a larger carrier injection barrier at the
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FIG. 3. SEM images of the surface morphologies after the deposition of
pentacene for samples prepared using (a) 5 and (b) 3 min MWCNT growth.

interface with the pentacene active layer.10 In terms of the
effect of the MWCNTSs’ growth time, we suspect that a
longer duration increased the length of the MWCNTs accord-
ingly, providing a larger contact area between the pentacene
layer and the MWCNT S/D electrodes. For OTFTs contain-
ing a 10-nm-thick Ti layer and 5-min-grown MWCNT, we
found that the best performance was a saturation mobility of
0.14 cm?/V s at a value of V, of =50 V when W and L were
75 and 50 um, respectively; this value was extracted from
the current equation,

Id = qusatcoxW( VGS - Vt)2/2La

where g, is the saturation mobility, C,, is the capacitor per
unit area (cm?), V, is the threshold voltage [defined as the
voltage at which the drain current level is equal to Io(W/L)],
and I, has the magnitude of 1.67 X 107!% A. It is noteworthy
that if the value of V, were determined using maximum
transconductance (G, n.) gear, the best value for the satu-
ration mobility would be three times larger. Figure 3 displays
SEM images of the surface morphologies after the deposition
of pentacene for the two MWCNT growth times. We observe
that pentacene had coated both the MWCNTSs and the cata-
lytic metal surfaces, and that a longer duration of growth
resulted in longer MWCNTs, as expected. Moreover, we
found that the two samples possessed almost identical pen-
tacene grain structures in the channel region and near the S/D
region, i.e., the transition region. As a result, we suggest that
the enhanced performance of our MWCNT S/D OTFTs arose
mainly from the improved contact properties, rather than
from carrier transport along the channel.

Figure 4 displays the dependence of the total resistance
R.oia1 On the channel length at different gate voltages for the
sample subjected to 5 min MWCNT growth. The drain volt-
age was —5 V. For the channel gradual approximationz’3 with
S/D series resistance Rgp, the value of R 1s given by
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FIG. 4. Total resistance of the BC-OTFTs plotted as a function of the chan-
nel length.

Rtotal = VD/ID = Rch + RSD = RSD + L/[Wﬂlincox(VG - Vt)]s

where gy, is the linear-region mobility. The extracted value
of the total resistance from the intercept of linear fitting was
~3%10% Q pm, which is one order of magnitude lower than
that of the sample subjected to 3 min MWCNT growth (data
not shown).

In summary, we propose a simple and practical tech-
nique for preparing T-CVD-grown MWCNTs as S/D elec-
trodes in pentacene-based BC-OTFTs. We found that the di-
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rect contact of the MWCNT electrodes with the pentacene
channel provided excellent contact properties and a larger
contact area, which, in turn, led to a relatively low contact
resistance. As a consequence, the fabricated devices exhib-
ited good electrical characteristics, i.e., high saturation mo-
bilities and high on/off ratios.

The authors thank P. C. Chang for suggesting the proce-
dure for growing the MWCNTs.
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