a2y United States Patent

US008505099B2

(10) Patent No.: US 8,505,099 B2

Chiang et al. 45) Date of Patent: Aug. 6,2013

(54) MACHINE-IMPLEMENTED METHOD AND 2003/0200464 A1* 10/2003 Kidron ..o 713/201
2007/0204257 Al1* 8/2007 Kinnoetal. 717/100

SYSTEM FOR DETERMINING WHETHER A 2008/0120720 Al* 5/2008 Guoetal.cooocvvrnns 726/23

TO-BE-ANALYZED SOFTWARE IS A KNOWN
MALWARE OR A VARIANT OF THE KNOWN
MALWARE
(75) Inventors: Yi-Ta Chiang, Hsinchu County (TW);
Ying-Dar Lin, Taipei (TW); Yu-Sung
‘Wu, Hsinchu (TW); Yuan-Cheng Lai,
Hsinchu (TW)

National Chiao Tung University,
Hsinchu (TW)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 181 days.

(21) Appl. No.: 13/112,249
(22) Filed: May 20, 2011
(65) Prior Publication Data

US 2012/0124667 Al May 17, 2012
(30) Foreign Application Priority Data

Nov. 12,2010 (TW) v 99139009 A

(51) Int.CL
GUOGF 11/00
GOGF 7/04
GOSB 23/00
GOG6F 17/30

(52) US.CL
USPC oo, 726/24; 726/22; 726/23; 726/25,

726/26; 709/224

(2006.01)
(2006.01)
(2006.01)
(2006.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,809,670 B2 10/2010 TLeeetal.
8,205,256 B2* 62012 Ahnetal ...ocooornnn. 726/22
8,332,944 B2* 12/2012 Rozenbergetal. 726/24

2009/0235357 Al

2009/0254989 Al1*
2009/0313700 Al*
2010/0175132 Al*

9/2009 Ebringer et al.

10/2009 Achanetal.c..... 726/22
12/2009 Horne o 726/24
7/2010 Zawadowskiy et al. 726/23
2010/0229239 Al* 9/2010 Rozenbergetal. 726/24
2011/0302654 Al* 12/2011 Miettinen ..o, 726/23

OTHER PUBLICATIONS

“Malicious executables classification based on behavioral factor

analysis,” Hengli Zhao, et al., presented at the 2010 International
Conference on e-Education, e-Business, e-Management and
e-Learning.

“Malware Obfuscation Detection via Maximal Patterns,” Jian Li, et
al., presented at the 2009 Third International Symposium on Intelli-
gent Information Technology Application.

“Visual Analysis of Malware Behavior Using Treemaps and Thread
Graphs” Phillipp Trinius, et al., presented at the 6th International
Workshop on Visualization for Cyber Security Oct. 11, 2009.

“A Fast Flowgraph Based Classification System for Packed and
Polymorphic Malware on the Endhost,” Silvio Cesare and Yang
Xiang, presented at the 2010 24th IEEE International Conference on
Advanced Information Networking and Applications.

“Automated Classification and Analysis of Internet Malware,”
Michael Bailey, et al., Apr. 26, 2007.

* cited by examiner

Primary Examiner — Nathan Flynn
Assistant Examiner — Trang Doan
(74) Attorney, Agent, or Firm — DLA Piper LLP (US)

(57) ABSTRACT

A machine-implemented method for determining whether a
to-be-analyzed software is a known malware or a variant of
the known malware includes the steps of: (A) configuring a
processor to execute the to-be-analyzed software, and obtain
ato-be-analyzed system call sequence that corresponds to the
to-be-analyzed software with reference to a plurality of sys-
tem calls made in sequence as a result of executing the to-be-
analyzed software; (B) configuring the processor to deter-
mine a degree of similarity between the to-be-analyzed
system call sequence and a reference system call sequence
that corresponds to the known malware; and (C) configuring
the processor to determine that the to-be-analyzed software 1s
neither the known malware nor a variant of the known mal-
ware when the degree of similarity determined in step (B) is
not greater than a predefined similarity threshold value.

5 Claims, 6 Drawing Sheets

configuring the processor to execute
the to-be-analyzed software ,and to
record the plurality of systen calls
made in sequence as & result of
executing the to-be-analyzed software

/221

]

from the plurality of systen calls
recorded in sub-step 221 ,a primary
portion thet corresponds to the kernel
functionality of the to-be-analyzed
software so as to cbtain the
to-be-analyzed system call sequence

configuring the processor to extract ,

/222

i

configuring the processor to deternine
& longest comon stbsequence (LOS)

between the to-be- analyzed systen call
sequence and the reference system call

/231

Setioncs
]

configuring the processor to c

to S<L/min([X], Y]}

represents the to- be—analyzed systea
call sequence ,'Y" represents the
reference system call sequence ,"L"
represents a length of the longest
common subsequence , and "min(|X], [¥])"
represents a length of a shorter one
of the to-be-analyzed system call
sequence and the reference system call
sequence

the degree of slmllsrlty (S) atx:ordmz e

| 232

US 8,505,099 B2

Sheet 1 of 6

Aug. 6,2013

U.S. Patent

£ Sl

2JEeM]1JOS JUSJ2]]IP
JO 9JEBM]]JOS 2SUWBS

I

\\\\\\llxllllll// WO SAS
douonbas
|1 118D Wa1SAS
Q0UdJDJOu
T
SuIzETonE AL
UIZATBUR
- oouanbas 9 [npow
Nﬁ\\\ 1180 Wo}SAS SUIpI0DDI

pPozZAeuB-9(Qq-0)

/

9Jem]JoS
pazAjeur-a2q-01

S

I

/
61

(

6

US 8,505,099 B2

Sheet 2 of 6

Aug. 6,2013

U.S. Patent

V6

|

6 IId

€6

|

66

|

16

uorjiod Jojpuey
11%9 weasdoad

uorjJod JoUIOY

uorjJiod Jopeo]
guryoedun

uorjaod Jolpuey
Jopeo] weadoad

S

6

U.S. Patent Aug. 6,2013 Sheet 3 of 6 US 8,505,099 B2

establishing in the database a _ajal
reference system call sequence
corresponding to a known malware

configuring a processor to execute
the to-be-analyzed software, and
to obtain a to-be-analyzed system
call sequence that corresponds to _’/32
the to-be-analyzed software with
reference to a plurality of system
calls made in sequence as a result
of executing the to-be-analyzed
software

configuring the processor to
determine a degree of similarity
(S) between the to-be-analyzed _4/93
system call sequence and the

reference system call sequence
that corresponds to the known

malware

FIG. 3A

U.S. Patent Aug. 6,2013 Sheet 4 of 6 US 8,505,099 B2

26
|

jl
the degree of "~ — a _?
similarity (S) obtaining , for each element of |
greater than a the longest common subsequence | | 261
predefined ,an original position in each ._l//
similarity of the to-be-analyzed system
threshold call sequence and the reference

value (TS)? reference system call sequence

|
|
I
! |
|
|
|

determining , for each element
of the longest common
subsequence ,a difference __l//
between the original positions

inthe to-be-analyzed system
call sequence and the reference
system call sequence

V

determining a total number (N)
of unique values of the __L//
differences found for the
longest common subsequence

V

determining a shifting degree
(R) between the to-be-analyzed __l,/
system call sequence and the
reference system

configuring the
processor to
determine that the
to-be-analyzed
software is neither
the known malware
nor a variant of
the known malware

shifting degree (R)
greater than a predefined
shifting threshold
value (TR)?

configuring the processor to
determine that the |
to-be-analyzed software is the —-r//
known malware or a variant of
the known malware

FIG. 3B e — N

end

US 8,505,099 B2

Sheet 5 of 6

Aug. 6,2013

U.S. Patent

v Old

6l

11

01

[

ar 11eo
Wo]SAS

14

8

6

[

2ouonbas
ur JIopJo

£oYpPROTIN

STT4930T9IN

1 149382IDIN

9SOTOIN

[1€9o
Wo]1SAS

[

01

\

01

61

U.S. Patent Aug. 6,2013 Sheet 6 of 6 US 8,505,099 B2

configuring the processor to execute
the to-be-analyzed software ,and to 9291
record the plurality of system calls 2
made in sequence as a result of |
executing the to-be-analyzed software | |
|
|

configuring the processor to extract , r
from the plurality of system calls l
recorded in sub-step 221 ,a primary 999
portion that corresponds to the kernel f/T"
functionality of the to-be-analyzed }
software so as to obtain the |
to-be-analyzed system call sequence |

|

|
configuring the processor to determine | |
a longest common subsequence (LCS) |
between the to-be-analyzed system call
sequence and the reference system call | !
Sequence |
|
|
|
|
|
|
|

configuring the processor to compute
the degree of similarity (S) according
to S=L/min(|X], |Y|) , where "X" ’
represents the to-be-analyzed system |
call sequence ,"Y" represents the :
reference system call sequence ,"L" //k"232
represents a length of the longest |
common subsequence ,and "min(|X]|, |Y])" |
represents a length of a shorter one |
of the to-be-analyzed system call |
sequence and the reference system call | |
sequence |

|

US 8,505,099 B2

1
MACHINE-IMPLEMENTED METHOD AND
SYSTEM FOR DETERMINING WHETHER A

TO-BE-ANALYZED SOFTWARE IS A KNOWN
MALWARE OR A VARIANT OF THE KNOWN
MALWARE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority of Taiwanese Application
No. 099139009, filed on Nov. 12, 2010.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a machine-implemented method
for determining whether a to-be-analyzed software is a
known malware, more particularly to a machine-imple-
mented method for determining whether a to-be-analyzed
software is a known malware or a variant of the known mal-
ware.

2. Description of the Related Art

With the convenience of the Internet also come safety
threats posed by malicious software and programs (collec-
tively referred to as malware).

A botnet is an autonomous network of compromised zom-
bie computers running software agents, commonly referred to
as robots or bots, under the control of an attacker. Botnets are
generally for nefarious purposes, such as sending spam mes-
sages and conducting information theft. These attacks might
lead to crippling of the Internet or even financial losses.
Therefore, preventive measures such as botnet detection and
removal are constantly under study and research in the rel-
evant field.

Conventionally, there are two approaches to detecting bot-
nets, namely a static analysis approach and a dynamic analy-
sis approach. In the static analysis approach, a to-be-analyzed
binary (or code) is analyzed to determine if there are suspi-
cious instruction sequences or if there are well-known signa-
tures of known botnets. The static analysis approach does not
consider what happens after the to-be-analyzed binary is
executed, and does not produce accurate results if the to-be-
analyzed binary is a botnet agent binary that has undergone
obfuscation (e.g., that has been encrypted or compressed). On
the other hand, the dynamic analysis approach executes the
to-be-analyzed binary and monitors the runtime behavior
(e.g., calling of application program interface (API), modify-
ing system registry) of the to-be-analyzed binary in order to
determine if it resembles a known botnet. However, the con-
ventional dynamic analysis approach is rough and does not
generate highly accurate results.

SUMMARY OF THE INVENTION

Therefore, the object of the present invention is to provide
a system and a machine-implemented method for determin-
ing whether a to-be-analyzed software 1s a known malware or
a variant of the known malware with increased accuracy.

According to one aspect of the present invention, there is
provided a machine-implemented method for determining
whether a to-be-analyzed software is a known malware or a
variant of the known malware. The machine-implemented
method includes the steps of: (A) configuring a processor to
execute the to-be-analyzed software, and obtain a to-be-ana-
lyzed system call sequence that corresponds to the to-be-
analyzed software with reference to a plurality of system calls
made in sequence as a result of executing the to-be-analyzed

10

15

20

25

30

35

40

45

50

55

60

65

2

software; (B) configuring the processor to determine a degree
of similarity between the to-be-analyzed system call
sequence and a reference system call sequence that corre-
sponds to the known malware; and (C) configuring the pro-
cessor to determine that the to-be-analyzed software is nei-
ther the known malware nor a variant of the known malware
when the degree of similarity determined in step (B) is not
greater than a predefined similarity threshold value.

According to another aspect of the present invention, there
is provided a system for determining whether a to-be-ana-
lyzed software is a known malware or a variant of the known
malware. The system includes a database, a recording mod-
ule, and an analyzing module. The database has a reference
system call sequence that corresponds to the known malware
established therein. The recording module is for executing the
to-be-analyzed software, and obtains a to-be-analyzed sys-
tem call sequence that corresponds to the to-be-analyzed
software with reference 1o a plurality of system calls made in
sequence as a result of executing the to-be-analyzed software.
The analyzing module is coupled to the database and the
recording module for determining a degree of similarity
between the to-be-analyzed system call sequence and the
reference system call sequence, and further determines that
the to-be-analyzed software is neither the known malware nor
avariant of the known malware when the degree of similarity
thus determined is not greater than a predefined similarity
threshold value.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the present invention will
become apparent in the following detailed description of the
preferred embodiment with reference to the accompanying
drawings, of which:

FIG. 1 is a block diagram illustrating a system for deter-
mining whether a to-be-analyzed software is a known mal-
ware or a variant of the known malware according to the
preferred embodiment of the present invention;

FIG. 2 is a schematic diagram illustrating four portions of
a sequence of system calls made by a program;

FIGS. 3A and 3B collectively illustrate a flow chart illus-
trating a machine-implemented method for determining
whether a to-be-analyzed software is a known malware or a
variant of the known malware according to the preferred
embodiment of the present invention; and

FIG. 4 is a schematic diagram illustrating a table with
exemplary system calls in a to-be-analyzed system call
sequence corresponding to the known malware; and

FIG. 5 is a flow chart illustrating sub-steps of step 22 and
step 23 of the machine-implemented method shown in FIG. 2.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference to FIG. 1, according to the preferred
embodiment of the present invention, a system 1 for deter-
mining whether a to-be-analyzed software 9 is a known mal-
ware (e.g., a bot) or a variant of the known malware includes
a database 13, a recording module 11 and an analyzing mod-
ule 12. The to-be-analyzed software 9 may originally be
resident in a storage space (not shown). According to the
present invention, the system 1 achieves the determination by
using three primary principles, namely segment identification
of system call sequence, a similarity matching algorithm
based on longest common subsequence (LCS), and shift
analysis. These will become clear in the following description
with reference to the preferred embodiment and the accom-

US 8,505,099 B2

3

panying drawings. The system 1 is capable of determining not
only if the to-be-analyzed software 9 is a known malware, but
also whether the to-be-analyzed software 9 is a variant of a
known malware. The variant may come as a result of using an
obfuscation tool (e.g., a packer) to insert additional system
calls, or modifying the source code of an existing (ancestor)
bot.

The database 13 has established therein at least one refer-
ence system call sequence 131 that corresponds to the known
malware.

The recording module 11 is for executing the to-be-ana-
lyzed software 9, and obtains a to-be-analyzed system call
sequence 19 that corresponds to the to-be-analyzed software
9 with reference to a plurality of system calls made in
sequence as a result of executing the to-be-analyzed software
9. Preferably, the recording module 11 records the plurality of
system calls made in sequence as a result of executing the
to-be-analyzed software 9, and extracts, from the plurality of
system calls thus recorded, a primary portion that corre-
sponds to the kernel functionality of the to-be-analyzed soft-
ware 9 50 as to obtain the to-be-analyzed system call sequence
19.

With reference to FIG. 2, generally speaking, the system
calls made by a program can be divided into four portions.
The first portion is a program loader portion 91, where system
calls are made by the operating system (e.g., Windows®) to
load the necessary dynamic link libraries (DLLs) and allocate
the required memory space, etc. The second portion is an
unpacking loader portion 92, where system calls are made to
prepare a suitable environment for execution of the source
program, such as unpacking compressed binary into a text
segment. The third portion is the kernel portion 93 referred to
above, where system calls are made to perform theunderlying
kernel functionality of the program. The fourth portion is a
program exit handler portion 94, where system calls are used
to release the allocated resource and to exit the program. If the
program is obfuscated by an obfuscation tool such that addi-
tional system calls are introduced, in order to maintain the
kernel functionality of the program, the system calls made
during the kernel portion 93 are always kept intact. The
present invention utilizes this particular characteristic to
determine whether the to-be-analyzed software 9 is a known
malware or a variant of the known malware. In this embodi-
ment, the kernel portion 93 is the primary portion that is
extracted to serve as the to-be-analyzed system call sequence
19. The extraction of the to-be-analyzed system call sequence
19 is referred to above as the segment identification of system
call sequence.

Since the unpacking loader portion 92 varies when the
same malware is obfuscated by different obfuscation tools, a
profile needs to be built for each different obfuscation tool for
proper identification of the unpacking loader portion 92 and
for effective extraction of the kernel portion 93. In order to
increase the accuracy in extracting the kernel portion 93 from
the sequence of system calls made by the to-be-analyzed
software 9 to serve as the to-be-analyzed system call
sequence 19, a profile for each different obfuscation tool
needs to be established to effectively remove the non-relevant
segments 91, 92, 94.

The analyzing module 12 is coupled to the database 13 and
the recording module 11 for determining a degree of similar-
ity (S) between the to-be-analyzed system call sequence 19
and the reference system call sequence 131. The analyzing
module 12 further determines that the to-be-analyzed soft-
ware 9 is neither the known malware nor a variant of the

10

20

25

40

45

50

60

65

4

known malware when the degree of similarity (S) thus deter-
mined is not greater than a predefined similarity threshold
value (Ty).

Specifically, the analyzing module 12 determines the
degree of similarity (S) by determining a longest common
subsequence (LCS) between the to-be-analyzed system call
sequence 19 and the reference system call sequence 131, and
computes the degree of similarity (S) according to S=L/min
(X1, 1Y), where “X” represents the to-be-analyzed system
call sequence 19, “Y” represents the reference system call
sequence 131, “L” represents a length of the longest common
subsequence, and “min(IXI, [Y!)” represents a length of a
shorter one of'the to-be-analyzed system call sequence 19 and
the reference system call sequence 131. This is the similarity
matching algorithm referred to above.

The analyzing module 12 further performs the following
steps when the degree of similarity (S) determined thereby is
greater than the predefined similarity threshold value (Ty):
obtaining, for each element of the longest common subse-
quence, an original position in each of the to-be-analyzed
system call sequence 19 and the reference system call
sequence 131; determining, for each element of the longest
common subsequence, a difference between the original posi-
tions in the to-be-analyzed system call sequence 19 and the
reference system call sequence 131; determining a total num-
ber of unique values of the differences found for the longest
common subsequence; determining a shifting degree (R)
between the to-be-analyzed system call sequence 19 and the
reference system call sequence 131 according to R=N/L,
where “N” represents the total number of unique values of the
differences and “L”” represents the length of the longest com-
mon subsequence; determining that the to-be-analyzed soft-
ware 9 is neither the known malware nor a variant of the
known malware when the shifting degree (R) thus determined
is greater than a predefined shifting threshold value (T); and
determining that the to-be-analyzed software 9 is the known
malware or a variant of the known malware when the shifting
degree (R) thus determined is not greater than the predefined
shifting threshold value (T). This is the shifting analysis
referred to above.

The predefined similarity threshold value (Tg) ranges
between 0.58 and 0.63, and the predefined shifting threshold
value (T;) ranges between 0.05 and 0.08. Preferably, the
predefined similarity threshold value (Tg) is 0.6, and the
predefined shifting threshold value (Tj) is 0.06.

Referring to FIGS. 3A and 3B, the present invention will be
more clearly understood with reference to the following
descriptions in connection with the machine-implemented
method according to the preferred embodiment of the present
invention. The machine-implemented method is for deter-
mining whether the to-be-analyzed software 9 is a known
malware or a variant of the known malware, and includes the
following steps.

First, in step 21, a reference system call sequence 131
corresponding to a known malware is established in the data-
base 13. The machine-implemented method is then per-
formed to determine whether the to-be-analyzed software 9 is
the known malware or a variant of the known malware. One
should readily appreciate that there may be multiple reference
system call sequences 131 respectively corresponding to mul-
tiple different known malwares established in the database
13, and the machine-implemented method of the present
invention is for determining whether the to-be-analyzed soft-
ware 9 is one of the known malwares or a variant of one of the
known malwares.

Next, in step 22, a processor (not shown) (or the recording
module 11 of the system 1 shown in FIG. 1) is configured to

US 8,505,099 B2

5

execute the to-be-analyzed software 9, and to obtain a to-be-
analyzed system call sequence 19 that corresponds to the
10-be-analyzed software 9 with reference to a plurality of
system calls made in sequence as a result of executing the
to-be-analyzed software 9.

With reference to FIG. 5, step 22 includes two sub-steps in
this embodiment. In sub-step 221, the processor (or the
recording module 11 of the system 1 shown in FIG. 1) is
configured to execute the to-be-analyzed software 9, and to
record the plurality of system calls made in sequence as a
result of executing the to-be-analyzed software 9. In sub-step
222, the processor (or the recording module 11 of the system
1 shown in FIG. 1) is configured to extract, from the plurality
of system calls recorded in sub-step 221, a primary portion
111 that corresponds to the kernel functionality of the to-be-
analyzed software 9 so as to obtain the to-be-analyzed system
call sequence 19. In this embodiment, the primary portion
111 corresponds to the kernel portion 93 shown in FIG. 2. The
remaining ofthe plurality of system calls recorded in sub-step
221 include the program loader portion 91, the unpacking
loader portion 92, and the program exit handler portion 94 of
FIG. 2, and are collectively referred to as a secondary portion
112.

The reason behind taking only the kernel portion 93 as the
primary portion 111 to serve as the to-be-analyzed system call
sequence 19 and neglecting the secondary portion 112 is that,
as described previously with reference to FIG. 2, the program
loader portion 91 and the program exit handler portion 94 of
the secondary portion 112 of the system calls are common to
nearly all programs and executable files and are irrelevant to
the identification of the known malware, and that while the
unpacking loader portion 92 of the secondary portion 112
may vary among programs obfuscated using different obfus-
cation tools, the system calls made to perform the underlying
kernel functionality of the program (i.e., the kernel portion
93) remain substantially unchanged for a known malware and
its variants. As such, the reference system call sequence 131
established in the database 13 in step 21 also only corresponds
to the kernel portion 93 of the system calls made by the known
malware . Using only the primary portion 111 as the basis for
the determination increases both the speed and the success
rate of the identification.

In the system 1 described above, after sub-step 222 is
performed by the recording module 11, the to-be-analyzed
system call sequence 19 is transmitted to the analyzing mod-
ule 12. FIG. 4 shows a table with exemplary system calls 10
in the to-be-analyzed system call sequence 19 (e.g., NtClose,
NtCreateFile, NtDeleteFile, NtLoadKey, etc.). The actual to-
be-analyzed system call sequence 19 in this embodiment is a
sequence of the system call identifications (IDs) correspond-
ing to the system calls 10. Therefore, in this example, the
to-be-analyzed system call sequence 19 is (1, 10, 11,
12, ...). In this embodiment, the processor (or the recording
module 11 shown in FIG. 1) utilizes the “Pin” tool, a dynamic
binary instrumentation tool developed by Intel® for dynamic
instrumentation of programs, to record the system calls and
the corresponding system call IDs made as a result of execut-
ing the to-be-analyzed software 9.

Subsequently, in step 23, the processor (or specifically, the
analyzing module 12 shown in FIG. 1) is configured to deter-
mine a degree of similarity (S) between the to-be-analyzed
system call sequence 19 and the reference system call
sequence 131 that corresponds to the known malware. With
reference to FIG. 5, step 23 includes two sub-steps in this
embodiment. In sub-step 231, the processor (or the analyzing
module 12 shown in FIG. 1) is configured to determine a
longest common subsequence (LCS) between the to-be-ana-

20

25

40

45

60

65

6

lyzed system call sequence 19 and the reference system call
sequence 131. In sub-step 232, the processor (or the analyz-
ing module 12 shown in FIG. 1) is configured to compute the
degree of similarity (S) according to the following equation:
S=L/min(IXI, IY[), where “X” represents the to-be-analyzed
system call sequence 19, “Y™ represents the reference system
call sequence 131, “L” represents a length of the longest
common subsequence, and “min(IXI, IYl)” represents a
length of a shorter one of the to-be-analyzed system call
sequence 19 and the reference system call sequence 131. The
value of the degree of similarity (S) ranges between 0 and 1,
and S=1 indicates that X is a variant of Y or thatY is a variant
of X.

For instance, assuming that X (i.e., the to-be-analyzed
system call sequence 19) 1s (1, 10, 11, 12, 2, 3, 18, 4, 20, 21,
5), whileY (i.e., the reference system call sequence 131)is (1,
2,3,4,5), the longest common subsequence (LCS) between
XandYis(1,2.3,4, 5)with alength “L.” of 5, and min (IXI,
Y1) is 5. Therefore, S=1, and X is a variant of Y.

Next, in step 24, the processor (or the analyzing module 12
shown in FIG. 1) is configured to determine whether or not the
degree of similarity (S) determined in step 23 is greater than
a predefined similarity threshold value (T). In this embodi-
ment, the predefined similarity threshold value (T) ranges
between 0.58 and 0.63. Preferably, the predefined similarity
threshold value (Ty) is 0.6. In the negative, i.e., if it is deter-
mined in step 24 that the degree of similarity (S) is smaller
than or equal to the predefined similarity threshold value (T),
the flow goes to step 25, where the processor is configured to
determine that the to-be-analyzed software 9 is neither the
known malware nor a variant of the known malware. If affir-
mative, i.e., if it is determined in step 24 that the degree of
similarity (S) is greater than the predefined similarity thresh-
old value (T), the flow goes to step 26, where the processor
(or the analyzing module 12 shown in FIG. 1) is configured to
perform the following sub-steps.

In sub-step 261, it is obtained, for each element of the
longest common subsequence, an original position in each of
the to-be-analyzed system call sequence 19 and the reference
system call sequence 131. In the following description, let the
sequence (a;, a,, as, . . ., a;) represent the original positions
of the elements of the longest common subsequence in the
to-be-analyzed system call sequence 19, and let the sequence
(by, by, b, .. ., b;) represent the original positions of the
elements of the longest common subsequence in the reference
system call sequence 131.

In sub-step 262, it is determined, for each element of the
longestcommon subsequence, a difference between the origi-
nal positions in the to-be-analyzed system call sequence 19
and the reference system call sequence 131. In other words,
the differences (a,-b,, a,-b,, a;-b,, ..., a,-b;) are deter-
mined in sub-step 262.

In sub-step 263, a total number (N) of unique values of the
differences found for the longest common subsequence is
determined. The total number (N) is a positive integer.

In sub-step 264, a shifting degree (R) between the to-be-
analyzed system call sequence 19 and the reference system
call sequence 131 is determined according to R=N/L.

For the above-described example, where the to-be-ana-
lyzed system call sequence 19 (X) is (1,10, 11,12, 2,3, 18, 4,
20,21, 5), the reference system call sequence 131 (Y) is (1, 2,
3,4, 5),and the longest common subsequence (LCS) between
XandYis(1,2,3,4,5), the original positions ofthe elements
of the longest common subsequence in the to-be-analyzed
system call sequence 19 (a,, a5, a5, . .., a,)1s (1, 5, 6, 8, 11),
and the original positions of the elements of the longest com-
mon subsequence in the reference system call sequence 131

US 8,505,099 B2

7

(by,bs,bs, ..., b,)18(1,2,3,4, 5). Therefore, the differences
between the original positions in the to-be-analyzed system
call sequence 19 and the reference system call sequence 131
(a,=by, a,-b,, a5-bsy, ..., a,-b;) are (0, 3, 3, 4, 6), and the
total number (N) of unique values of the differences found for
the longest common subsequence is 4. As such, the shifting
degree (R) between the to-be-analyzed system call sequence
19 and the reference system call sequence 131 is determined
by R=%=0.8.

Subsequently, in sub-step 265, it is determined whether or
not the shifting degree (R) determined in sub-step 264 is
greater than a predefined shifting threshold value (T). In this
embodiment, the predefined shifting threshold value (Tg)
ranges between 0.05 and 0.08. Preferably, the predefined
shifting threshold value (T}) is 0.06.

If affirmative, i.e., the shifting degree (R) determined in
sub-step (264) is greater than the predefined shifting thresh-
old value (Tj), the flow goes to step 25, where it is determined
that the to-be-analyzed software 9 is neither the known mal-
ware nor a variant of the known malware. On the other hand,
in the negative, i.e, the shifting degree (R) determined in
sub-step (264) is smaller than or equal to the predefined
shifting threshold value (Ty), the flow goes to step 27, where
it is determined that the to-be-analyzed software 9 is the
known malware or a variant of the known malware.

Taking the previous example, where the degree of similar-
ity (S) is 1, and the shifting degree (R) is 0.8, although there
is a 100% similarity between the to-be-analyzed system call
sequence 19 and the reference system call sequence 131,
there is a shifting degree (R) that is far greater than the
predefined shifting threshold value (T), meaning that as
there are multiple additional system calls (to be exact, six
additional system calls in this example, namely system call
IDs 10, 11, 12, 18, 20 and 21) in the to-be-analyzed system
call sequence 19 as compared to the reference system call
sequence 131, the shiftings resulted in the system calls that
are made for both the to-be-analyzed software 9 and the
known malware (or a variant thereof) are too great so as to
render the to-be-analyzed software 9 be deemed as neither the
known malware nor a variant of the known malware. In other
words, even if the degree of similarity (S) between the to-be-
analyzed system call sequence 19 and the reference system
call sequence 131 is very high, or even indicating 100%
similarity, the processor (or the analyzing module 12 shown
in FIG. 1) will determine that the to-be-analyzed software 9 is
neither the known malware nor a variant of the known mal-
ware when the shifting degree (R) exceeds the predefined
shifting threshold value (Tj).

It should be noted herein that in practice, a virtual machine,
such as VirtualBox, may be used for execution of the to-be-
analyzed software 9 in order to obtain the to-be-analyzed
system call sequence 19 so that in case where the to-be-
analyzed software 9 is a malware, the system 1 is not con-
taminated. In addition, the virtual machine may be connected
to the Internet through a firewall to allow connection access to
the to-be-analyzed software 9 while preventing malicious
traffic from interfering with the determination process.

In summary, the present invention utilizes segment identi-
fication of system call sequence, a similarity matching algo-
rithm based on longest common subsequence (LCS), and a
shift analysis to determine whether a to-be-analyzed software
9 is a known malware or a variant of the known malware. In
addition, by extracting, from a plurality of system calls
recorded as a result of executing the to-be-analyzed software
9, a primary portion 111 that corresponds to the kernel func-
tionality of the to-be-analyzed sofiware 9 so as to obtain the

10

15

20

25

35

40

45

50

55

60

65

8

to-be-analyzed system call sequence 19, both the speed and
the success rate of the identification can be increased.

while the present invention has been described in connec-
tion with what is considered the most practical and preferred
embodiment, it is understood that this invention is not limited
to the disclosed embodiment but is intended to cover various
arrangements included within the spirit and scope of the
broadest interpretation so as to encompass all such modifica-
tions and equivalent arrangements.

What is claimed is:

1. A machine-implemented method for determining
whether a to-be-analyzed software is a known malware or a
variant of the known malware, the machine-implemented
method comprising the steps of:

(A) configuring a processor to execute the to-be-analyzed
software, and obtain a to-be-analyzed system call
sequence that corresponds to the to-be-analyzed soft-
ware with reference to a plurality of system calls madein
sequence as a result of executing the to-be-analyzed
software;

(B) configuring the processor to determine a degree of
similarity between the to-be-analyzed system call
sequence and a reference system call sequence that cor-
responds to the known malware; and

(C) configuring the processor to determine that the to-be-
analyzed software is neither the known malware nor a
variant of the known malware when the degree of simi-
larity determined in step (B) is not greater than a pre-
defined similarity threshold value;

wherein step (B) includes the sub-steps of:

(B-1) determining a longest common subsequence (L.CS)
between the to-be-analyzed system call sequence and
the reference system call sequence; and

(B-2) computing the degree of similarity (S) according to
S=L/min(IXI, Y1), where “X” represents the to-be-ana-
lyzed system call sequence, “Y” represents the reference
system call sequence, “L” represents a length of the
longest common subsequence, and “min(1XI,IY1)” rep-
resents a length of a shorter one of the to-be-analyzed
system call sequence and the reference system call
sequence.

2. The machine-implemented method as claimed in claim

1, further comprising the step of:

(D) configuring the processor to perform the following
sub-steps when the degree of similarity determined in
step (B) is greater than the predefined similarity thresh-
old value:

(D-1) obtaining, for each element of the longest common
subsequence, an original position in each of the to-be-
analyzed system call sequence and the reference system
call sequence,

(D-2) determining, for each element of the longest com-
mon subsequence, a difference between the original
positions in the to-be-analyzed system call sequence and
the reference system call sequence,

(D-3) determining a total number of unique values of the
differences found for the longest common subsequence,

(D-4) determining a shifting degree (R) between the to-be-
analyzed system call sequence and the reference system
call sequence according to R=N/L, where “N” repre-
sents the total number determined in sub-step (D-3) and
“L” represents the length of the longest common subse-
quence,

(D-5) determining that the to-be-analyzed software is nei-
ther the known malware nor a variant of the known

US 8,505,099 B2
9

malware when the shifting degree (R) determined in
sub-step (D-4) is greater than a predefined shifting
threshold value, and
(D-6) determining that the to-be-analyzed software is the
known malware or a variant of the known malware when 5
the shifting degree determined in sub-step (D-4) is not
greater than the predefined shifting threshold value.
3. The machine-implemented method as claimed in claim
2, wherein the predefined similarity threshold value ranges
between 0.58 and 0.63, and the predefined shifting threshold 10
value ranges between 0.05 and 0.08.
4. The machine-implemented method as claimed in claim
3, wherein the predefined similarity threshold value is 0.6,
and the predefined shifting threshold value is 0.06.

5. The machine-implemented method as claimed in claim 15
1, wherein step (A) includes the sub-steps of:

(A-1) configuring the processor to execute the to-be-ana-
lyzed software, and record the plurality of system calls
made in sequence as a result of executing the to-be-
analyzed software; and 20

(A-2) configuring the processor to extract, from the plural-
ity of system calls recorded in sub-step (A-1), a primary
portion that corresponds to the kernel functionality of
the to-be-analyzed software so as to obtain the to-be-
analyzed system call sequence. 25

* % %k ok %k

