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Compact Planar Quasi-Elliptic Function Filter With
Inline Stepped-Impedance Resonators
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Abstract—Compact microstrip bandpass filters of orders
= 4 6 and 8 with quasi-elliptic function responses are

synthesized with inline stepped-impedance resonators. The filters
have enhanced transition responses since two transmission zeros
are generated on both sides of the passband. Existence of these two
zeros is investigated by formulating the -matrix of the equiv-
alent circuit for the filter and taking adjacent and nonadjacent
coupling into account. Some matrix elements +2 representing
coupling between two nonadjacent resonators are shown to have
the opposite signs in both the lower and upper sides of the center
frequency. This property leads to creation of the two transmission
zeros on both sides of the passband. It is demonstrated that one
more zero can be created in the rejection band by the tapped-line
input/output scheme. Experimental circuits on substrates with

= 2 2 and 10 2 are measured to validate the theory and
design.

Index Terms—Bandpass filter, elliptic function response, inline,
stepped-impedance resonator, transmission zero.

I. INTRODUCTION

I N THE RF front-ends of recent wireless communication sys-
tems, bandpass filters are required to have several essential

properties, such as high selectivity, wide upper stopband, and
compact circuit size. Based on the traditional parallel-coupled
configuration [1], [2], however, the circuit may become very
long since an th-order filter consists of a cascade of
sections. To tackle this problem, folded stepped-impedance res-
onator filters are proposed to reduce the circuit size [3], [4].
Generally speaking, the stepped-impedance resonators are suit-
able for designing filters with a good transition response and
an extended rejection band since its first higher order resonance
can be easily tuned to much higher than twice the fundamental
frequency. To enhance filter performance in the transition and
rejection bands, however, one of the most effective ways is to
insert transmission zeros. The insertion can be realized by the
cross coupling [5], [6] or the source–load coupling [7], [8].

In this paper, we explore a simple filter structure using
stepped-impedance resonators as building blocks. Fig. 1
plots two fourth-order circuits with both symmetric and
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Fig. 1. Two inline fourth-order filters with two tapped input/output schemes:
symmetric (A–B) and skew–symmetric (A–B ) feeds.

skew-symmetric feeds [4]. The circuit exhibits several attrac-
tive properties, such as compact size, wide upper stopband,
elliptic function passband response, and plural transmission
zeros. In Fig. 1, all resonators form an inline array so that the
circuit occupies a compact area. When order is increased, the
circuit size grows only in the direction of the width, which is
usually much smaller than the length of the resonator. Besides,
in the array, adjacent and nonadjacent coupling simultaneously
exists among the resonators. Although the analysis becomes
more complicated, creation of certain transmission zeros in the
filter response indeed relies on nonadjacent coupling.

In the combline design [9]–[11], grounded line sections of
different lengths are loaded with various capacitors. It can be
easily identified in Fig. 1 that at the fundamental resonance,
the low- and high- segments of the resonator behave as ca-
pacitors and inductors, respectively. Although the circuit layout
looks quite similar to that of a combline structure, it has at least
several distinct features. First, all the resonators have identical
geometry and exhibit an electric length of 180 at the design
frequency. Second, multiple coupling exists among the low-
section array, as well as the high- array. Third, the circuit
needs neither a lumped element, nor grounding via so that filter
fabrication is easier and more reliable. The price paid for the
full-length resonators is that the circuit area is slightly larger
than twice the size of a quarter-wave combline counterpart [10].
The use of full-length resonators, however, brings one more de-
gree of freedom to circuit designers in choosing symmetric or
skew-symmetric feed [4]. It will be shown later that existence
and location of certain zeros are subject to the symmetry used
in the tapped input/output arrangement.

Here, we limit ourselves to exploring inline stepped-
impedance resonator filters only of orders four, six, and eight.
Some results for circuits of lower orders can be referred to
[12], [13]. In [12], second-order filters are developed to achieve
a wide upper stopband. The circuit in [13] also possesses a
quasi-elliptic function response. Its analysis by the theory
of multiple coupled microstrips, however, lacks for a design
concept for filter synthesis. This paper is organized as follows.
Section II briefly describes the passband synthesis procedure
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Fig. 2. Generic coupling structure of the inline bandpass filter.

and discusses the coupling properties among the inline res-
onators. Section III explores the existence of the zeros in terms
of a -parameter matrix by taking the adjacent and nonadjacent
coupling into account. Section IV addresses the creation of
zero by the tapped input/output structure, Section V presents
measured results for three experimental circuits. Section VI
draws the conclusion.

II. PASSBAND SYNTHESIS

Fig. 2 shows the generic basic coupling structure for the fil-
ters in Fig. 1. Each resonator has one high- and two low- sec-
tions. The former has physical (electric) lengths and
each of the later has , and their respective widths are
and with corresponding characteristic impedances and

. In addition to , the gap size can be tuned to establish
necessary coupling for synthesizing the passband. Choice of the
geometrical dimensions for the resonator has been extensively
studied in [1] and [2]. The impedance ratio and
length ratio are the key parameters to deter-
mine its resonant spectrum. If and are properly chosen, the
first spurious resonance can be pushed far beyond twice the fun-
damental frequency or [2]. For example, if the first higher
order resonance occurring at is desired, and

can be used. When GHz, geometry parameters can
be mm, mm, and mm for
a substrate with and thickness mm.

The next step is to determine spacing between each pair of
adjacent resonators. The coupling coefficient between the th
and th resonators, i.e., , is given by [14]

(1)

where is the th element value of the low-pass filter prototype
and is the fractional bandwidth. To realize this coefficient
for coupled resonators in Fig. 2, the test method in [6] can be
invoked. Through weak gap feeds to the coupled resonators, the
simulated transmission response will present two peaks. If the
peaks are at and , the coefficient can be calculated as

(2)

For the fourth-order circuits in Fig. 1, the coupling matrix is
symmetric about its two main diagonals, i.e.,

and
. Thus, only and need specifying

since all diagonal entries are zero and is negligible
owing to the relatively large space between resonators 1 and 4.

Fig. 3. Coupling coefficients of two stepped-impedance resonators against D
for various D . L = L = 7:6;W = 0:4;W = 2:0 (all in millimeters).
Substrate: " = 2:2; thickness = 0:508 mm.

It can be anticipated that change of will not significantly
alter the first resonance of the resonator, but will change mag-
nitude, and even polarity of the coupling coefficient of two
coupled resonators. This property is useful for adjusting the
resonator geometry when more than one coupling coefficients
have to be simultaneously considered in filter synthesis. An ex-
ample will be given in Section V for such a demonstration. For

mm to , Fig. 3 plots coupling coefficients of two
resonators against . Except for , each curve runs
from positive to negative values when is increased up to 4
mm. Generally speaking, the structure consists of both electric
and magnetic coupling, called mixed coupling in [6]. When
is small, magnitude of magnetic coupling due to current on the
thin sections is larger than that of electric coupling between
the low- sections at both ends. When is increased to be
large enough for small , on the other hand, electric coupling
becomes dominant. The coefficient calculated by (2) is the net
coupling, which can be electric or magnetic .

The use of curves in Fig. 3 can be demonstrated as follows.
Suppose we are designing a fourth-order Chebyshev filter with
a 0.1-dB ripple and %. From (1), the three interstage
coupling coefficients are and

. If mm is chosen, we have
, and the zero-crossing point is at mm. It is

obvious that both electric and magnetic coupling can be used
to realize each value. Thus, there are at least two possible
designs: one uses and , and the other
uses and . The former and latter are,
respectively, referred to as the - and -type filters herein.

For the input and output coupling, the tap positions, i.e.,
in Fig. 2, should be determined by matching the singly loaded

of the tapped resonator with the passband specification
[15]. The singly loaded is defined as

dB
(3)

where is the impedance seen by the resonator looking to-
ward the source, is the operation frequency, and is the
input susceptance of the resonator seen at the tap point. The
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Fig. 4. Simulation responses of the two fourth-order filters. (a)M -type:D =

D = 0:28; D = 1:0; L = 3:2. (b)E-type:D = D = 0:82;D =

0:37; L = 3:2 (all in millimeters).

derivation of (3) for a stepped-impedance resonator can be re-
ferred to [2]. Both - and -type circuits can be designed with
the symmetric or the skew-symmetric feeds
[4] with identical values and, hence, identical passband re-
sponses. In the rejection bands, nevertheless, they exhibit quite
different characteristics. Fig. 4 shows the simulated re-
sponses of the fourth-order - and -type filters. The four
passbands, say, before dB, show very good agree-
ment. In Fig. 4(a), both the -type filters have a transmission
zero in the upper stopband. The circuit with the symmetric

feed, however, has one more zero in the lower
stopband. In Fig. 4(b), the two -type filters exhibit sharp tran-
sition bands, like those of an elliptic function response, since
two zeros, i.e., and , are created on both sides of the
passband. In addition, there is an extra transmission zero
in the lower stopband and in the upper stopband for the

and feeds, respectively. Obviously, the -type
filters possess better frequency selectivity in the stopband than
the -type ones. Thus, the -type filters are investigated in de-
tail as follows.

III. TRANSMISSION ZEROS OF THE -TYPE FILTERS

The resonators of a cross-coupled four-pole filter [4]–[6], [16]
are arranged in a 2 2 configuration to achieve a quasi-elliptic

Fig. 5. (a) Two coupled resonators with coupling. (b) Equivalent circuit.

function response. The occurrence of the zeros relies on the elec-
tric coupling , which causes two split signals to be out-of-
phase at the output port. In the -type filters, however, the el-
liptic function-like response is clearly resulted from a different
scheme since the in Fig. 1 can be negligible, while the non-
adjacent coupling coefficients and should be taken into
account. In addition, for predicting the zeros of the particular
filter configuration, based on the -parameter of the equivalent
circuit of the filter, an analysis method is developed as follows.

The equivalent lumped-circuit model of two coupled res-
onators in Fig. 5(a) is shown in Fig. 5(b). Each resonator is
modeled with a parallel LC network, and there are magnetic
and electric coupling between the inductors and capacitors, re-
spectively. From the circuit theory, the two-port -parameters
can be derived as follows:

(4)

(5)

where

(6)

(7)

(8)

(9)

(10)

(11)

The coefficients in (9) and in (10), respectively, repre-
sent magnetic and electric coupling between the two resonators.
They are assumed constants over a certain frequency range cen-
tered at the design frequency. The natural frequencies and
in (2) of the coupled system can be determined by two condi-
tions: , which are obtained by enforcing the



1750 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 8, AUGUST 2007

determinant of the -matrix to zero. It can be validated that

(12)

The approximation is valid since . The result in (12)
means that the net coupling calculated by (2) should be .
Note that all -parameters in (4) and (5) are purely imagi-
nary since the circuit is assumed lossless. In (5), has a
zero-crossing point at . Thus, its sign over

is opposite to that over . This property
is unusual since, in a conventional coupling matrix, nondiagonal
elements are usually assumed independent of frequency [6]. For
investigating the possible occurrence of transmission zeros, de-
fine the relative phase between and as

(13)

It can be deduced from this equation that when
or , and when if

(i.e., net coupling is magnetic) or
if (i.e., net coupling is electric). The identification rule
for determining the type of coupling proposed in [17] can also
be justified by (13) as well.

Fig. 6 plots the simulated responses for the three basic cou-
pled structures of the -type filter in Fig. 4(b). The -param-
eters are obtained by Zeland Software Inc.’s software package
IE3D [18]. Each response shows a jump at due to the
phase change of the denominator of (13). Based on Fig. 6(a), one
can assure that the coupling between resonators 1 and 2 is mag-
netic dominant and for 2 GHz GHz.
Similarly, the response in Fig. 6(b) guarantees .
In Fig. 6(c), there are extra phase jumps at 2.08 and 2.75 GHz.
Two important properties of this coupled structure should be
identified by the latter jump. First, the type of coupling is
magnetic, as indicated in Fig. 6(a). The jump at GHz
indicates that changes sign, by (13), since when

. Also, by (13), the and values can be extracted since
and is known by (2) from

simulation data. The jump at 2.08 GHz, however, cannot be ex-
plained by (13). It could be due to the fact that the equivalent
circuit in Fig. 5(b) has a lower frequency limit for modeling the
distributed coupled resonators with a relative large distance in
Fig. 6(c).

Identifying the type of coupling and value of is further
investigated for mm and mm by Fig. 7. From
Fig. 7(a), is electric coupling and . Sim-
ilarly, Fig. 6(b) indicates that is of the magnetic type and

. It is important to identify and from
the responses of coupled resonators in Figs. 6(c) and 7 since
analysis of the transmission zeros relies on it. By analyzing the

Fig. 6. Responses of Y � Y for investigating occurrence of the trans-
mission zeros of the E-type filter in Fig. 4(b). (a) Resonators 1 and 2, D =

0:82 mm. (b) Resonators 2 and 3, D = 0:37 mm. (c) Resonators 1 and 3,
D = 3:19 mm.

Fig. 7. Y � Y responses for identification type of coupling between
resonators 1 and 3. (a) D = 0:6 mm. (b) D = 1:5 mm.

phase relation of two split signals in the main and cross-coupled
paths, a zero in the upper stopband can occur at GHz
[17]. This zero can also be validated by the -matrix method
given below. Let the filter bandwidth % and ripple
dB, and then the external . The -matrix for the
circuit, normalized with respect to can be expressed
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Fig. 8. jS j responses based on coupling matrices in (14).

as

(14)

where and . These
values are derived from (1). The entries in the first off-diagonal
use the following approximation. For example,
since and the last term in (7) is neglected. Values
of and can be obtained by prescribed zeros at .
If the two zeros are symmetric about is required.
Note that the sign of the elements is determined by

. When and , and
can be obtained from the responses based on (14), respec-
tively. Fig. 8 shows responses from the matrices with and
without the nonadjacent coupling . Note that when

, the response will have no transmission zero. It can
be seen from this example that values of and can be varied
for controlling these two transmission zeros. One possible way
to adjust and is to slide or deform the high- section of one
of the coupled resonators, as shown in Fig. 1.

Fig. 9. Responses of higher order inline filters with m = e = 0:011.

The -matrix in (14) can be easily extended to circuits of
order and with the quasi-elliptic response. The -ma-
trix can be established and the frequencies of the zeros can
be predicted. For example, the coupling matrix for is
shown in (15) at the bottom of this page, where

and , and
. Fig. 9 plots the responses for filters of

order and with GHz, %, and
a 0.1-dB ripple. For all nonadjacent elements

is used.

IV. TRANSMISSION ZEROS DUE TO TAPPED INPUT/OUTPUT

Fig. 10 plots simulation responses of the -type fil-
ters with skew-symmetric feed for and mm.
Impedance transformers are added to keep the value of each
tapped resonator unchanged for the three tap positions. It can be
seen that frequencies of and , as well as the passband do
not vary significantly with the changes of . However, the zero

moves to higher frequency when tap point is moved away
from the center to the edge of the resonator. It reflects the fact
that determination of can be dominated by . In the par-
allel-coupled stepped-impedance resonator filters in [2], a zero
can be created at a frequency where the electric length of the
arm between the open end of the tapped resonator and the tap
point is one quarter-wavelength long. The arm used for coupling
with an adjacent resonator, however, does not create a zero. For

(15)
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Fig. 10. Moves of the tunable transmission zeros due to the slide of tap point
for the E-type filters with skew-symmetric feed.

Fig. 11. Analysis of f and f . (a) Four-port network. (b) Responses forX
of the E-type filters. For �(X ) , only the important part is shown.

the structure in Fig. 1, both open ends of the input and output
resonators are coupled with their adjacent resonators. Thus, cre-
ation of the zero in Fig. 10 needs further investigation.

The four-port network in Fig. 11(a) is employed for the pre-
diction. Two more ports are added to the circuit in Fig. 1 since,
in analysis, the whole circuit can be reduced by half due to the
symmetry (dashed line). Let be the total current flowing into
port or . It can be derived that

(16)

where subscript represents symmetric feed and and
denote that the dashed line is a magnetic and electric

wall, respectively. For the skew-symmetric feed, and in

(c)

Fig. 12. X responses for the test circuit and the E-type circuit. (a) Test cir-
cuit. (b) Skew-symmetric feed. (c) Symmetric feed.

Fig. 11(a) are set to zero. The transfer impedance , denoted
as , can be written as

(17)

For both feeds, zeros of the responses can be obtained by
enforcing (16) and (17) to zero. The conditions are

(18)

where the plus and minus signs apply to the skew-symmetric and
symmetric feeds, respectively. Obviously, complete formulas of

and will be tedious and complicated since
four-microstrip structures are involved [13].

The transfer impedances are purely reactive for lossless struc-
tures. Let the reactance be denoted by and .
Simulated and responses are shown in
Fig. 11(b), where each intersection point indicates a zero in
the response. Note that the zeros and are in
the lower and upper rejection bands for the symmetric and
skew-symmetric feeds, respectively. To further investigate the
property of the zeros, the behavior of the circuit in Fig. 12(a)
is tested. It is the -type filter in Fig. 4(b) that is altered by
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Fig. 13. Group delay and S-parameter responses of the E-type filters with
symmetric feed. All circuit parameters are in Fig. 4(b).

Fig. 14. Layout and performances of the E-type filters with skew-symmetric
feed. (a) Circuit layout. Dimensions in millimeters: L = 3:48; L =

3:78; L = 2:2; L = 1:48;L = 4:1; L = 1:5; L = 2:13;W =

0:2;W = 2:5;D = 0:6;D = 0:5. (b) Group delay, jS j and jS j
responses.

moving the high- sections of resonators 1 and 4 outward.
Fig. 12(b) and (c) plots the responses of the test circuit
(solid lines) and the -type filter (dashed lines). It can be seen
that the -type filter shows three transmission zeros. For the
test circuit, however, both and disappear, although
and exist, respectively, for symmetric and skew-symmetric
feeds. Based on the results in Fig. 12(b) and (c), must
be negative or must be capacitive in the transition
bands for creation of and in the design of the -type
filters.

Fig. 15. Layout and performances of the sixth-order E-type filters with skew-
symmetric feed. (a) Circuit layout. Dimensions in millimeters: L = L =

6:32;L = 3:2;W = 0:2;W = 2:5;D = D = 0:14;D = D =

0:82;D = 0:23. (b) Group delay, jS j and jS j responses.

V. SIMULATION AND MEASUREMENT

Fig. 13 plots the simulation and measured responses of the
-type filters with a symmetric feed. All geometric parameters

are referred to Fig. 4(b). The tap points are chosen to match to
the value for 50- reference impedance. The measured re-
jection levels are better than 40 dB up to 5 GHz or . The
extra zero is at 1.9 GHz. It is found that rejection levels of
better than 60 dB can be achieved within the bands covering
from 1.82 to 2.18 and 2.9 to 3.01 GHz. It can be observed that

has a response with sharp transition bands and good sym-
metry about the center frequency. The measured and simulated
group delays are also given.

The second design demonstrates control of the transmission
zeros and . The center frequency GHz
and fractional bandwidth % with a 0.1-dB ripple level.
Let GHz and GHz, the coupling co-
efficients and

. The geometric dimensions of the end resonators and
the tap position are chosen to locate the zero at with
no transformer. For reducing the circuit size, a substrate with

and thickness mm is used. Fig. 14(a) shows
the circuit layout with deformed resonators 2 and 3 to simultane-
ously fulfill required magnitudes of all the coupling coefficients
including and . To have , the high- sections
of two middle resonators are bent to a U shape. The distance

can be readily determined by the results shown in Fig. 3.
At the same time, the low- sections are moved inwardly by
a distance to simultaneously realize the specified and
values. It could be due to the right-angled bends in the high-
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sections (linewidth mm) that and are trimmed by
increasing 0.105 and 0.425 mm, respectively, for recovering the
resonant frequency shift by the resonator deformation. In the
previous example, there is no such problem. The simulated and
measured filter responses in Fig. 14(b) show good agreement.
In measurements, the passband insertion loss is approximately
2.2 dB and the notch at 4.9 GHz is approximately 65 dB.
The total circuit size is approximately 1.5 1.5 cm .

The third example is a sixth-order filter built on a substrate
with and thickness mm. The center frequency

GHz, ripple dB, and %. The resonator
geometry is chosen to push the first spurious passband to .
In the filter, the resonators are configured with alternating elec-
tric and magnetic types of coupling for establishing all coupling
coefficients with proper magnitudes and phases. Note that the
coupling coefficients and are of an electric type.
Simulation and measured results with a skew-symmetric feed
are plotted in Fig. 15. The insertion loss is 2.5 dB at , in-band
return loss is better than 15 dB, and the stopband with a rejec-
tion level of 50 dB is extended to 7.5 GHz and 30 dB to
12.5 GHz .

An eighth-order filter is synthesized with a skew-symmetric
feed. The circuit simulation exhibits a similar response to that
of a sixth-order -type filter in Fig. 15, but has better rejection
rates in transition bands.

VI. CONCLUSION

Stepped-impedance resonators have been arranged in an in-
line configuration to make the entire circuit a compact size. The
use of the resonators has assured a wide upper stopband and the
inline resonator array facilitates new coupling schemes for pro-
ducing a quasi-elliptic function passband response. Creation of
transmission zeros has been investigated by -matrix parame-
ters of the equivalent circuit of the filter. It has been shown that
proper nonadjacent elements are key factors for creating
the transmission zeros on both sides of the passband for fourth-,
sixth-, and eighth-order filters. An enhanced attenuation rate in
transition bands can then be obtained. Formulation of the con-
ditions of the extra zero in rejection bands has also been given.
It has been demonstrated for the particular inline structure that
the extra zero can be placed in the lower and upper stopbands by
symmetric and skew-symmetric feeds, respectively. For demon-
strative purposes, measured results for three experimental filters
have been compared with simulation data.
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