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ABSTRACT: A single-ended down-conversion subharmonic mixer is im-
plemented using 0.35-�m SiGe BiCMOS technology. Two lumped-element
rat-race couplers are applied to generate differential LO and RF signals.
This single-ended rat-race mixer has the conversion gain of 25 dB, �90-dB
2�LO-to-RF isolation and �78-dB 2�LO-to-IF isolation at the RF fre-
quency of 10 GHz. The input return loss is about �10 dB. © 2007 Wiley
Periodicals, Inc. Microwave Opt Technol Lett 49: 2018–2020, 2007;
Published online in Wiley InterScience (www.interscience.wiley.com).
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1. INTRODUCTION

Direct-conversion is the main stream in the transceiver architecture
design. Because of no demand of image rejection in a direct-
conversion transceiver, many bulky and expensive off-chip com-
ponents are eliminated [1–3]. Therefore, the direct-conversion
structure can be utilized not only for the manufacturing cost
reduction but also for the high integration. In a direct-conversion
structure, the LO frequency of the fundamental mixer is too close
to the RF one so that the LO radiation and self-mixing caused by
the LO leakage can influence the transceiver performance. How-
ever, a harmonic mixer conquers these problems because of the
large difference between the RF and LO frequencies. The subhar-
monic mixer works with the second harmonic of the LO signal, so
that the LO frequency is set to be half of the RF frequency. Then,
the mixer is free of LO self-mixing and the LO leakage radiation
is easily lowered by a well-designed antenna.

There are three distinct subharmonic active mixers based on the
double-balanced structure. The first one is a two-level stacked-lo
structure. The two-level stacked-lo structure performs twice mix-
ing with quadrature LO signals and had been implemented in the
SiGe HBT technology [4]. The other two types, top-lo-configura-
tion and bottom-lo-configuration mixers, are one-level structures

and their operation is based on the second harmonic generated by
the transistor nonlinearity [5–7].

Subharmonic active mixers need balanced differential input
signals and balanced quadrature LO signals to perform harmonic
mixing perfectly. External baluns or hybrids are commonly used to
generate the desired signals. However, those components should
be integrated in chips to reduce the magnitude and phase mis-
matches of cables or baluns for high frequency applications. The
most commonly used 180° hybrid is a rat-race coupler. For inte-
gration, the lumped-element techniques are applied in rat-race
couplers for size reduction [8]. In this letter, a 10-GHz subhar-
monic mixer with rat-race couplers is demonstrated using 0.35-�m
SiGe BiCMOS process.

2. CIRCUIT DESIGN

When an emitter-coupled pair with collectors tightening together is
fed with a differential sinusoidal signal, this emitter-coupled pair
doubles input signal frequency and also eliminates the fundamen-
tal tone. Thus, it can be used to effectively double the LO fre-
quency. The mixer core in this letter is designed based on this
principle.

Figure 1 depicts the bottom-lo-configuration subharmonic
mixer. The LO emitter-coupled pairs are under the RF input stage.
These emitter-coupled pairs can effectively double the LO fre-
quency as well as the phase. Here, the differential quadrature LO
signals generated by a two-section poly-phase circuit and a 5-GHz
rat-race coupler are employed to pump the mixer LO port. The LO
differential quadrature signals hence function as the 2�LO differ-
ential signals.

Two rat-race couplers are employed at RF and LO stages. For
size reduction, the lumped-element technique is utilized. Simpli-
fied lumped-element rat-race is designed based on quarter-wave-
length and three-quarter-wavelength “pi” networks [8]. The adja-
cent shunt capacitor and inductor can cancel each other while two
neighboring shunt capacitors are combined in order to reduce the
number of lumped elements.

Differential active PMOS loads replace resistive loads in order
to improve the conversion gain without reducing the voltage swing
headroom. The drawback is the bias stability between PMOS and
NMOS transistors. Therefore, the common mode feedback
(CMFB) technique is adopted to adjust the current of active PMOS

Figure 1 Schematic representation of the subharmonic mixer with
lumped-element LO and RF rat-race couplers
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loads and to guarantee NMOS and PMOS in saturation region.
Here, the resistors, R1 and R2, serve as the CMFB sensing resistors
with high resistance to preserve high gain performance.

3. EXPERIMENTAL RESULTS

A high frequency subharmonic mixer is fabricated on the 0.35-�m
SiGe BiCMOS technology and its die photo is shown in Figure 2.
The chip size is only about 0.8 � 0.9 mm2. The input return loss
is about �10 dB and the total current consumption is about 16 mA
at 3.3 V supply. The wideband property of the subharmonic mixer
is measured with RF frequency form 9.8 to 10.4 GHz. The con-
version gain is about 25 dB with the fixed IF frequency of 50 MHz.

This rat-race mixer is measured with a fixed 5 GHz LO signal, as
shown in Figure 3. Because of high impedance of PMOS loads, the
frequency response is slow. The input 1-dB compression point,
IP1dB, is �30 dBm and the input third-order intercept point, IIP3,
is �22 dBm because of the high gain of the output buffer. This
rat-race subharmonic mixer has the �49-dB LO-to-RF isolation,
�90-dB 2�LO-to-RF isolation, �53-dB LO-to-IF isolation,
�78-dB 2�LO-to-IF isolation, and �44-dB RF-to-IF isolation, as
shown in Figure 4. High port-to-port isolations are achieved,
thanks to the truly balanced quadrature LO and differential RF
signals.

4. DISCUSSIONS AND CONCLUSIONS

This letter demonstrates a single-ended rat-race down conversion
subharmonic mixer using standard 0.35-�m SiGe BiCMOS tech-
nology. Differential LO and RF signals are generated by integrated
lumped-element rat-race couplers. This rat-race mixer operates at
10 GHz and has 25-dB conversion gain with the IF frequency of 50
MHz. Besides, high port-to-port isolations are archived thanks to
the truly balanced quadrature LO and differential RF signals. The
input return loss is about �10 dB and the chip size is 0.8 � 0.9
mm2. The total power consumption is about 52.8 mW.
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ABSTRACT: A microstrip bandstop filter using four square air holes
resonator at frequencies above 10 GHz has been investigated. The
square air holes resonator generate a bandgap, and its operation mech-
anism is made clearly through the Finite Differential Time-Domain
method. The measured frequency response of the filter is in good agree-
ment with the simulation, and the center frequency of stopband of the
microstrip filter shifted to higher frequency along with the dimension of
the square air holes increased. © 2007 Wiley Periodicals, Inc.
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1. INTRODUCTION

In microstrip technology, a Photonic Band Gap (PBG) structure
is obtained by introducing an adequate periodic pattern drilled
in the substrate [1, 2], etched in the ground plane [3, 4] and
etched in the microstrip [5–7]. The shortcoming of the previous
two methods is the fabricated method and interference problem
for the other electronics in the same substrate: the drilled
substrate can affect the other designed microwave elements in
the same substrate; the etched ground plane must be far
from any metal plate to keep etched patterns in the function.
The third method has conquered the shortcoming of previous
methods, and the majority of the structure has higher order
bandgap.

In this study, a microstrip bandgap filter with four square air
holes etched in strip is investigated. The structure contains periodic
cells of square patterns (Fig. 1).

The structures were both measured and simulated with Finite
Different Time-Domain (FDTD). The measured results are good
agreement with the simulation.

2. FILTER DESIGN AND FABRICATION

The design and subsequent analysis of the filter was carried out
by means of FDTD simulation method, which is a popular
computational electrodynamics modeling technique. The tar-
geted cutoff frequency was around 11 GHz, with potential
application for the microwave communication, radar target
identification, and wireless communication device. The micros-
trip filter is fabricated by the etching of PCB, which has
been printed on circuit boards [Fig. 1 (a)]. The substrate of our
microstrip filter is made of the microwave materials FR-4. The
dielectric constant of FR-4 and the thickness is 4.5 mm and is
1.4, respectively. The thickness of the microstrip and the
ground are both 0.1 mm. The width of the microstrip line is 2.5
mm, corresponding to a 50 � characteristic impedance.

The microstrip consists of a square patch, and four square air
holes in the patch. The detailed dimension information of the
microstrip filter is as following [Fig. 1 (b)]. The square patch is 9.2
mm � 9.2 mm, the square air hole a is 2 mm � 2 mm, and the
distance g is 1.9 mm between the edge of square air hole and
square patch. The feedline is connected with corner of the square
patch. The length and width of feedline are 6 and 2.5 mm,
respectively.

Figure 1 (a) The photograph of microstrip bandstop filter; (b) the sche-
matic diagram of microstrip bandstop filter
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