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Abstract

This paper proposes a method called layered genetic programming (LAGEP) to construct a classifier based on multi-population genetic
programming (MGP). LAGEP employs layer architecture to arrange multiple populations. A layer is composed of a number of populations. The
results of populations are discriminant functions. These functions transform the training set to construct a new training set. The successive layer
uses the new training set to obtain better discriminant functions. Moreover, because the functions generated by each layer will be composed
to a long discriminant function, which is the result of LAGEP, every layer can evolve with short individuals. For each population, we propose
an adaptive mutation rate tuning method to increase the mutation rate based on fitness values and remaining generations. Several experiments
are conducted with different settings of LAGEP and several real-world medical problems. Experiment results show that LAGEP achieves

comparable accuracy to single population GP in much less time.

© 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Genetic programming (GP) [1], an important evolutionary
computation (EC) technique, has developed rapidly in recent
years. Researchers have proposed creative ideas to improve the
effectiveness and efficiency of GP, such as new fitness func-
tions, new architectures, and new individual expressions.

Traditionally, GP works with a single population. Multi-
population GP (MGP) [3,18], which employs several popu-
lations to discover optimal solutions, has been proposed and
developed. Many different topologies of MGP have been pro-
posed, such as the circle topology and the random topology.
Fig. 1 shows the circle topology where circles stand for pop-
ulations [3]. An important characteristic of MGP is migration.
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This means that individuals can be transmitted from one
population to another. The arrows in Fig. 1 indicate the mi-
gration direction. Ferndndez et al. [18] performed several
experiments with parallel and distributed GP (PADGP), iso-
lated multi-population GP (IMGP), where “isolated” means
that there is no migration between populations, and traditional
single population GP. Their experiments show that PADGP
and IMGP usually obtain better performance than traditional
single population GP.

Many classifiers have been developed based on GP in recent
years [2—-13,19,21]. To generate classification rules, Freitas [6]
proposed the tuple-set-descriptor (TSD), a logical formula to
represent an individual. Kotani and Sherrah [9,13] used GP
to perform feature selection before using other classification
methods. Multi-category classification problems are more dif-
ficult than two-class classification problems. Kishore et al. [7]
and the present authors [4] have considered such a problem
as multiple two-class classification problems and then gen-
erated corresponding expressions or discriminant functions.
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Fig. 1. An example of circle topology MGP. A circle is a population and a
arrow is a migration direction.

These methods need & runs for a k-class classification problem.
Muni et al. [12] proposed a novel method to solve k-class classi-
fication problems in a single run. Each individual in their work
is represented by a multi-tree. Evolving one individual is equiv-
alent to evolving k trees simultaneously. Loveard and Ciesielski
[11] proposed five methods for solving multi-category classi-
fication problems including binary decomposition, static range
selection, dynamic range selection, class enumeration, and ev-
idence enumeration. Brameier and Banzhaf [3] used linear GP
and MGP techniques. Individuals are represented as strings and
can be transmitted between demes, i.e. subpopulations, accord-
ing to their fitness value. Tsakonas [21] compares four differ-
ent structures evolved by GP in several different classification
problems.

Using functional expressions to represent individuals is ef-
fective in GP [4,7,10]. The tree structure is a common data
structure for functional expressions. However, two problems
occur when GP is employed to generate functional expres-
sions. First, it is difficult to choose appropriate operations for a
given problem because characteristics of the problem are com-
pletely unknown. If the operator set contains many operations,
there is a greater possibility of discovering optimal solutions,
but the searching space becomes larger and therefore may be-
come impracticable. Fortunately, as shown in Ref. [7], GP with
an operation set comprising only basic arithmetic operations,
ie. {4+, —, X, =}, generates results comparable to that with an
operation set comprising additional operations. Second, it is
difficult to know the proper length of an individual because
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there is no prior knowledge about optimal solutions. The pre-
defined individual length, as the length of a string-expression
individual or the number of available nodes of a tree-expression
individual, is usually chosen according to heuristic or empir-
ical assumptions. The following is an example of a classifi-
cation problem containing 64 dimensional data, i.e. a training
instance x is represented by x = (ay, az, . . ., asa). Suppose that
an optimal solution F is known as F =[[;~, a;. F can be rep-
resented as a skew binary tree with a height of 64 or a balanced
binary tree with a height of seven, as shown in Fig. 2. An in-
dividual can contain at most 24 — 1 nodes if the predefined
maximum depth is 64. A population containing so many large
trees is highly complex and is thereby impracticable. On the
other hand, if the predefined maximum depth is fixed at seven,
it is very difficult to generate the ideal balanced tree. Moreover,
the function F will never be obtained if the maximum depth is
less than seven.

Using an acceptable and practicable individual size is a sim-
ple but dangerous way to avoid this problem. This problem has
motivated us to develop this work. Since a long function can
be viewed as a composition of a number of small functions, it
is possible to combine a number of small GP solutions into a
large one. Therefore, it is desirable to generate those small so-
lutions with a practicable size of individuals and then use them
to compose a larger solution. For example, consider the above
function F and two functions B = [[;2, a; and C = [[5; a;.
Clearly, F can be represented as (B x C), as shown in Fig. 3,
where the tree representations of B and C have at most a height
of 32 rather than 64. Functions B and C can be generated by
two separate GPs and then are combined together to form F.
Here we attempt to develop a method by which we can deter-
mine a proper node to combine small functions, for example,
the shaded x operation in Fig. 3.

The method proposed in this paper is called layered genetic
programming (LAGEP). It is a method based on MGP. LAGEP
arranges populations in a layered architecture. Populations in
the same layer evolve with identical training set and store the
results of their best individuals into a dataset; this dataset be-
comes a new training set for the successive layer. After all lay-
ers have finished the evolution process, the output of the final
layer is used as the result of LAGEP.

The rest of this paper is organized as follows. Section 2 de-
scribes the details of LAGEP. Section 3 presents and discusses

45

Fig. 2. Two possible representations of function F = Zfi 1 @i~ The left representation needs depth 7 but the right one needs depth 64.
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Fig. 3. Function F' can be obtained from two short functions B and C. To
combine B and C, we need to generate the multiplication operation as shown
in the shaded circle.

the experimental results on selected classification problems.
Conclusions are drawn in Section 4.

2. Proposed LAGEP method

LAGEP is based on multi-population method. In this
section, we at first describe the design of each single popu-
lation including a mutation weight tuning method. Then the
design of LAGEP and the benefits of it are explained. The test
phase and conflict problem are addressed afterward. Finally,
an example demonstrates LAGEP.

2.1. Design of single population

GP is a supervised learning method. The training set is de-
noted by T containing m-dimensional training instances:
T = {x,-|xi = (a,-l,aiz, e lijy e, aim), aijj € [R}.
An individual is a possible solution for the given problem. In
this paper, we tend to discover the optimal discriminant func-
tions to solve the classification problem. Therefore, an indi-
vidual is defined as a functional expression. An individual /
is formulated by three components, variables, constants, and
operations, which belong to the variable set S,, the constant
set Sc, and the operation set S,,, respectively. Variables are
symbolic notations related to attributes of training instances. A
variable A; indicates ith attribute of an instance. S, is a set of
predefined constants. We define S, as 10 floating numbers also
belonging to [0, 1] because the attribute values of classifica-
tion datasets used in this paper are normalized to [0, 1]. (The
classification dataset will be described in Section 3.1.) S, can
contain logarithm operations or trigonometric functions, but we
use only simple arithmetic operations because of two reasons.
First, Kishore et al. [7] did experiments to show that the classi-
fication accuracy of using only simple arithmetic operations is
sufficient to achieve high accuracy. Second, using simple oper-
ations is capable of reducing computation cost because individ-
uals generated by small operations set are simple and efficient.

Therefore, Sy, S¢, Sop, and I are defined as follows:
Sy={A;|1<i <the number of attributes of a training instance},
$.={0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0},

Sop ={+. = %, /},

I'=(Sy, Se; Sop)»

where / in S, is a protected division. When the denominator
equals zero, the division will be set to 1.

The structure of individuals is the binary tree because opera-
tions are binary operations. The maximum number of available
nodes of an individual is predefined and is called the individual
length.

The fitness function is a function used to evaluate the fitness
of every individual. When we perform the training task of a
classification problem, we need to know which class is the
target class. The target class is the class label for which we train
the system to find solutions. Training instances are divided into
positive instances if they belong to the target class and negative
instances if they do not.

For a given training instance x, we say an individual /;:

I recognizes sample x iff 1;(x)>0;
I repels sample x iff 1;(x) <O0.

We try to find an individual that recognizes positive instances

and repels negative instances.
An individual is capable of classifying a set of instances. We
define a function Acc of a set of data S by

Acc(l s S)
the number of objects of S that are correctly classified by /;
= H .

The fitness function F used in this work is made by
F(j)=Acc(1;,T).

We use such a fitness function not only because an accurate
discriminant function is desired but also because F' will be
computed many times so that should be as simple as possible.

A population P is a set of individuals and is defined by

S ey}

The best individual produced by P is denoted as A and is
derived by an evolution process of P. The evolution process
mimics the natural selection mechanism by performing a sys-
tematic process on the population by genetic operators. Three
primary genetic operators, crossover, mutation, and reproduc-
tion, are performed according to predefined rates R., R,,, and
R, respectively. When the crossover operation is chosen, we
first perform the selection process to pick two individuals from
P. The crossover operator then produces two new individuals
from these two individuals by randomly selecting a subtree
from each individual and swapping the two selected subtrees to
build two new individuals. If the mutation operator is chosen
to perform, we pick one individual via the selection process.
A node of the individual is randomly selected as the mutation

P={lL1L,..
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Fig. 4. An example of mutation. A mutant (x + y + xy) is derived from the
selected individual (x 4+ y+z). Both the mutation point of the select individual
and the generated new subtree of the mutant are marked in bold circle.

point. Then the mutation operator replaces the mutation point
by a randomly generated new node based on the S,, S., and
Sop to produce a mutant. While the new node is an operator, the
mutation operator generates a subtree rooted at the mutation
point. An example of mutation is shown in Fig. 4. The mutation
operator is designed to escape from local optimum because the
mutant may contain new structures that have never occurred on
existing individuals. The reproduction operator keeps a selected
individual alive to the next generation. It mimics the natural
principle of survival of the fittest.

The evolutionary process in this paper is based on elitism
strategy. After one generation is completed, a number of opti-
mal individuals are reproduced directly to the next generation
to keep surviving. In order to keep the diversity of the popula-
tion, the number of reserved best individuals should be small.
In this paper, we reserve two best individuals per generation.
The remaining individuals continue performing crossover and
mutation. When individual(s) are selected to perform crossover,
or mutation, we insert their offspring, or its mutant, into a new
population if and only if the offspring, or the mutant, has bet-
ter fitness values than their parents. We use the deterministic
tournament selection method to select individuals. This method
at first chooses a number of individuals from the population at
random and then returns the individual with the highest fitness
value to be the selection result.

2.2. Adaptive mutation rate tuning method (AMRT)

As mentioned above, mutation operator is capable of gener-
ating individuals with new structures and mainly used to escape
local optimum. Given a high R,,, the population tends to gen-
erate diverse individuals instead of discovering solutions from
present individuals. Moreover, high R, makes the GP system
become a random search model, which is difficult to converge
and generate stable results. In order to avoid such problem, R,,
is usually much lower than R.. However, when R, is fixed at
a small value, individuals may not have sufficient opportunity
to mutate. As a result, the diversity of the population is lim-
ited. In particular, if some terminals are already good enough
to classify samples, individuals may be stuck with such ter-
minals. Since there is no exact guide to define R. and R,
we proposed a method called AMRT to raise R, to perform
the mutation operator more frequently when the generation
increases.

The AMRT method at first considers the performance of
individuals. In case individuals have similar fitness values, then
AMRT is triggered to increase R,,. Otherwise, the population
uses the initially given R,,. Moreover, because R,, + R, =1,
to increase R,, implies to decrease R.. AMRT performs every
generation. At generation g the AMRT considers remaining
generations to tune R,, and R,

(Rm, R¢) at generation g

fMAX 2,

(Rm, R¢) if
JAVERAGE

* o
- R.+ 0o’ Ro+ua)’

R. g/G
o= R, X <—> otherwise,

R

where G is the maximum generation, fjs4 is the fitness value
of the best individual in generation g; and fAyERAGE 1S the
average fitness value of all individuals in generation g. From
this formula, R, increase smoothly and achieves 0.5 at the
final generation, which means that the mutation operator and
the crossover operator have the same chance to be selected.

We draw the curve of R,,. In Fig. 5 under these conditions:
G =100, (R, R.) is initialized to (0.05, 0.95), and fpsax is
supposed to never larger than 2 x foypraGE during these 100
generations. This curve shows that R,, increases smoothly and
ends up at 0.5.

The overfitting problem occurs when the trained solution ex-
cessively adapt to the training set. During the training phase,
it is difficult to detect whether the overfitting occurs or not.
Validation process can be used to avoid overfitting. Valida-
tion process uses a set of validation instances, V, to check the
generalization of individuals. A good individual should derive
good performance from the training set, i.e. high fitness value,
and derive high classification accuracy from the validation set.
When all generation complete, the best individual of each gen-
eration evaluates the classification accuracy with V. The pop-
ulation’s best individual is the one that has maximum sum of
fitness value and classification accuracy on V [21,22]. For this
purpose, we define score of an individual I; as

score(1;) = F(Ij) +Acc(lj, V).
Algorithm 1. proposed process of evolving single population:

(1) Initialize | P| randomly generated individuals; define g <
0; generate an empty population P’.
(2) Evaluate fitness value of individuals with the training set
T.
(3) Perform reproduction on two best individuals. Insert them
into population P’.
(4) Check and tune the mutation rate by AMRT.
(5) Select crossover or mutation according to R. and Ry,.
(5.1) If the crossover is selected and | P'|=|P|— 1, jump
to step (5.3).
(5.2) If the crossover is selected, select two individuals
as parents by tournament selection and perform the
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Fig. 5. The curve of Wy, using AMRT given maximum generation G = 100.

crossover operator. Evaluate the fitness values of the
offspring. Compare their fitness values with parents,
and insert the best two individuals to P’.

(5.3) If mutation is selected, then perform the mutation
operator on a selected individual and evaluate the
fitness value for the mutant. Compare fitness values
of the selected individual and the mutant, and insert
the better individual to P’.

(6) Continue step (5) if | P’| < | P|. Otherwise, one generation
is completed.
(7) Store the best individual of this generation A,. P < P’,

P <, and g < g+ 1.

(8) Repeat steps (2)—-(6) if g < G.
(9) Evaluate score (A4;), 0<i <G.
(10) Output A; to be the result if A; has the highest score.

2.3. LAGEP layers

The LAGEP architecture is shown in Fig. 6, which provides
an overview of the proposed method. LAGEP composes a num-
ber of layers. For each layer, it contains a set of populations to
generate a set of best individuals. A new training set is produced
by such individuals and the training set of the layer. Populations
of the successive layer will use the new training set to evolve
individuals. In the final layer, the results can be obtained.

LAGEP is a layered architecture model. A layer in LAGEP is
a set of populations with a particular variable set and a particular
training set. A layer L; is defined by

Li=(Py,...,Pi,..., Ppy, T;, SP),

where P; is a population, /(i) is the number of populations
in L;, and Sf) is the variable set used for all populations of
L;. A layer is a multi-population model. In this paper, we use
the IMGP model [18] because IMGP is simpler than PADGP.
Every population in IMGP model is independent to others. The
evolution algorithm of each population does not require any
change.

For layer L;, a particular training set 7; is prepared and is
used for the evolution processes of L;’s populations. Each pop-
ulation, as mentioned at previous section, generates an indi-
vidual with best score. Since an individual is a discriminant

| Population 1 | | Population 2 | ..... | Population /(1)

A set of populations evolving with 7,

JL

()

| A set of best individuals | Layer 1
11
Function value evaluation |
[
% | Population 1 | | Population 2 | ----- | Population /(2)
A set of populations evolving with 7,
J L
| A set of best individuals | Layer 2
[]
% Population 1
A population evolving with Tt
J L
The best individual of population 1 | Layer T’

Fig. 6. The LAGEP architecture. LAGEP contains I layers. The ith layer
has /(i) populations. Those populations evolve with training set 7;.

function, after L;’s populations have performed the evolution
processes, a set of discriminant functions {A4;1, 4,2, ..., Aj;i)}
is obtained. Based on these discriminant functions and training
instances of 7;, a new training set 7;41 and a new variable set
Si  can be constructed by

Tiv1 = {x@+1)jlxi+1))

= (A1) /15 -+ -5 QG+ ks - - AG+1)j1G))> AG+1) jk

= Ajr(xij), xij € T;},

SL = {AG+11, AGt1)2s -« - A1) )-

An attribute of an instance x(;11); of ;4 is made by a corre-
sponding instance x;; of 7; with a corresponding discriminant
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function of previous layer. When 7; 1 has been constructed, we
say an era ends. The layer L;4 is able to begin its evolution
process with 7j41.

The training instance x(1); € T;11 is derived by x;; € T
through the set of discriminant functions, i.e. x;; is transformed
by the set of discriminant functions to a new space. Populations
of L; discover a set of function to separate instances of 7;. The
function value of a discriminant function for an instance pro-
vides classification information. The layer architecture is capa-
ble of sending such information to next layer, L;1, to discover
a set of discriminant function. Therefore, most of the positive
instances will have positive attributes and most of negative in-
stances will have negative attributes. Training instances in later
layers should be easier to be classified.

According to the definitions provided so far, we define
LAGEP as

LAGEP ={L;|i=1,2,...,T},

where I is the number of layers. The last layer is designed to
have only one population. Although having more populations
is possible, in this paper, we used this design to simplify the
LAGEP system. The result of LAGEP is a single discriminant
function and is denoted as A,

For a K-class classification problem LAGEP has to be trained
K times for K different target classes. The K different 7T stands
for training results of K classes. The algorithm of LAGEP evo-
lution is shown in Algorithm 2.

Algorithm 2. LAGEP evolution:

(1) Let T; < given training set, V <« given validation set,
i< 1.

(2) Perform Algorithm 1 for all populations in layer L;, with
training set 7;.

(3) Evaluate A;1, A2, ..., Aj) with all instances in 7; and
store them into 7;41. An era is completed.

4) fi<I,theni < i+ 1. Jump to step (2).

(5) Change target class to the next class label and jump to
step (1).

2.4. Advantages of layer architecture

In this section, we describe the advantages of using LAGEP.
At first, we show that the result of LAGEP is a composition
of small discriminant functions. The result of the last layer of
LAGERP is a function A which can be represented by

A=AAqr-n1, Aar-1)2, --
Ar—nj=Ar-nj(Acr—2)1, AaT-2)2, - -

SAT—DIr=1)>
o Ar—oir-2))s

A2 =Aar-2) i (Awr-3)1, AT —-3)2, - - - » AT =3)1(I'~3))»

Aryj = M2j (A1, Arz, ..., Auqy)s
Ayj=A1j(A1, Ag, .ol A,

where (A1, Az, ..., Ay) is the original variable symbols of
the original given training set 77. Such expansion shows that

Table 1
Prediction results of A;;

Belong to target class Not belong to target class

R Ry
R3 Ry

the function A is a long function composed by a number of
functions generated by layers.

A layer has a great probability of having higher fitness
value better than its previous layer. Consider two populations
Piy1yj € Li+1) and P;; € L;. The classification result of A;;
with 7; is shown in Table 1. Obviously, we have

(1) Ry + R, instances in 7T; 11 have the positive attribute A;;;

(2) R3 + R4 instances in T; 11 have the negative attribute A;;;

(3) Ry positive instances have positive attribute A;; and R4
negative instances have negative attribute A;;.

For any individual I € P(y1); and I = A;;, we have

Ri + Ry
|7

Since an individual containing only a variable is very likely
to appear in a population, the fitness value of the best individual
of the Pgyyy; is very likely to be better than the maximum
fitness value of {A;1, A2, ..., Ajiiy}-

F()= ( ) = fitness value of A;;.

2.5. The testing phase and Z-value measure

The set of test instances is denoted as 7S. To predict the
class of a test instance y; €7, we substitute y; to K LAGEPs
responding to K different classes. The classification vector of
y; is defined as

cy; = (ri1, ¥z, -« ., TiK)s
if Aclass:i (yi)>09

1
Tij = {0 otherwise.

A problem called conflict occurs when Zf: 1 7ij > 1, that s,
conflict occurs when y; is classified into two or more classes.
This problem can be avoided by executing functions in the
proper sequence, or the problem can be resolved by using ad-
ditional techniques. Researchers have developed creative meth-
ods to solve the conflict problem. Kishore et al. [7] proposed
a method to evaluate “strength of association” (SA) measured
by each GP classification expression (GPCE). Ambiguous data
are assigned to the class whose GPCE has the largest SA. They
further used heuristic rules to improve accuracy. Muni et al.
[12] proposed two methods to resolve the conflict problem: a
heuristic rule-based scheme and a weighting scheme. Here we
use a method called Z-value measure we proposed previously
[4,10] because it is based on statistical theorem and accurate.
Z-value measure employs means and standard deviations of
all function values within the given training set to estimate Z-
value for a conflict test instance. The class of such instance is
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Table 2
A 2-class problem containing nine training instances in 7
Ty Al A Az Ag As A Aq Ag Ag Class
X1 0.20 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M
X2 0.20 0.10 0.10 0.10 0.20 0.10 0.30 0.10 0.10 M
X3 0.50 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M
X4 0.50 0.40 0.60 0.80 0.40 0.10 0.80 1.00 0.10 B
X5 0.50 0.30 0.30 0.10 0.20 0.10 0.20 0.10 0.10 M
X6 0.20 0.30 0.10 0.10 0.30 0.10 0.10 0.10 0.10 M
X7 0.30 0.50 0.70 0.80 0.80 0.90 0.70 1.00 0.70 B
xg 1.00 0.50 0.60 1.00 0.60 1.00 0.70 0.70 1.00 B
X9 1.00 0.90 0.80 0.70 0.60 0.40 0.70 1.00 0.30 B
determined to be class i if the ith function has the minimum Table 3
Z-value. Furthermore, in case the test instance is not classified Training set 7> generated by L,
to any class, we also use the Z-value to find a probable class
. . . . . T Al Alp Alz Class
rather than directly assign it to a special class REJECT. An in-
stance is assigned to class REJECT only when it has multiple X11 0.9000 0.7000 1.9000 M
minimum Z-value. X1 0.9000 0.3667 2.9000 M
We introduce the main steps of Z-value measure in this sec- i” 83888 82888 (1)3888 1;;1
. . . . 14 B —u. —u.
tion. Details of Z-value measqre can be found in Ref. [;1]. First, i 0.9000 0.2000 1.9000 M
we compute vectors u, standing for the mean, and ¢-, stand- X16 0.9000 2.7000 0.9000 M
ing for the standard deviation, of training samples in 7. Since x17 —0.2000 0.1429 —0.3000 B
every sample x; in T is a scalar, u and o2 are computed by 18 0.4286 —0.7429 0.3000 B
X19 —0.1000 —0.9429 —0.3000 B
= (.ulvlu21 --~’:uK)’
. ZXjET and x;eclass iXJj |
#i = the number of training instances of class i’ Sy =1{A1, A2, A3, Aq, As, Ag, A7, Ag, Ao,
2
S, ={An, Az, A3},
2_,2 2 2
0" =(01,05,...,0%),
. 2 S() ={+7_3Xa/}7
b ZX_/'ET and x;eclass i(xJ - :ui) P

o; = T =
" the number of training instances of class i
Second, for a test instance y;, if Zf: 1 rij=1, we do not have

to execute its Z-value measure. If Z;;l rij =0, we change all
rij to 1. A K-dimensional vector Z; is computed by

Zi=Zi,Zia, ..., ZiK),
|Aclass:j()’i)_,uj| i rij=1,
Zij= aj
00 otherwise.

We assign y; to class j if Z;; is the minimum among Z;.
2.6. A brief example of LAGEP

In this section, we illustrate LAGEP by solving a 2-class
problem, i.e. K =2. Table 2 shows the training set 7 containing
nine training instances where M stands for malignant and B
stands for benign. The settings of this example are

target class=M,I'=2, LEN= 2% 1= 15,

LAGEP = {L, L2, L3},

Ly = (P11, P12, P13, Th, S,}), Ly = (P, Ty, 55)

S.=1{0.0,0.1,0.2, ..., 1.0}.
Three best individuals generated by first layer are
A1 = (Ag/Ag) — As,
A2 = (As/A7) — (A3 + Ay),
A13 = (A7/Ag) — As,

we construct 77 according to Ay, A2, and A;3. Training set
Ty is shown in Table 3.
Next, L, uses T3 to evolve its population and generates A:

A=A+ Ap.

Table 4 shows that A achieves perfect classification accuracy
on the training set and shows the training results as well.
The solution of LAGEP for class M is

A=A+ A1p=(Ag/Ag) — Ac + (A5/A7) — (A3 + Ay).

Here we omit the details of the training LAGEP with target
class B and show its results with the training results of LAGEP
with target class M in Table 5. The validation process is also
omitted to simply this example.
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Table 4
Training result generated by L,

A Class

X1 1.6000 M
X12 1.2667 M
X13 1.3000 M
X14 —0.6000 B
Xis 1.1000 M
X16 3.6000 M
X17 —0.0571 B
X18 —0.3143 B
X19 —1.0429 B
Table 5

Training results responding to classes M and B

M B Class

x31 1.6000 —0.6000 M
X32 1.2667 —0.6000 M
X33 1.3000 —0.3000 M
X34 —0.6000 0.0000 B
X35 1.1000 —0.1000 M
X36 3.6000 —0.4000 M
X37 —0.0571 0.5000 B
x38 —0.3143 1.5000 B
X39 —1.0429 1.2000 B

For two given test instances y; and y, we use the two trained
LAGEPs corresponding to class M and B on y; and y, and
obtain

Ap(y) =0.3,

Ap(y2) =0.3,

Ap(y1) =—0.4,
Ap(y2) =0.2,

We determine the class label of y; to be class M. The conflict
problem occurs at y,. Through the Z-value measure [4], Z-
values of y, corresponding to class M and B are 1.5886 and
1.0215, respectively. y; is classified to class B because Z>p is
the minimum one.

3. Experiments

In this section we describe the experiments and analyze clas-
sification results. To conduct the experiments described in this
section, we developed a system based on the LAGEP Project
[23] executed under an ACER VT7600GL, which is equipped
with 3.0 GHz processor and 1.5 GB memory.

Table 6
Summary of selected problems
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3.1. Experiment medical classification problems

In order to illustrate LAGEP we used six diagnostic prob-
lems selected from the PROBENT1 benchmark set of real-world
problems [20], which was also used in Ref. [3]. These prob-
lems are originally from the UCI repository [17] and have been
preprocessed by Ref. [20]. The values of all sets are normal-
ized to the continuous range [0, 1]. Missing attributes are com-
pleted. Every attribute having m possible values is encoded
by the 1-of-m method, i.e. using m binary attributes instead
of the original attribute. Each problem prepared by PROBEN1
has been divided into three subsets: training, validation, and
test. The training set contains the first half of the samples. The
validation set includes the next 25% of the samples. The last
25% of the samples are test instances. Therefore, in this pa-
per we do not re-separate each problem to new training set
and test set. Furthermore, each problem in PROBEN1 has three
different compositions with different distribution of instances,
i.e. instances are separated to the training set, the validation
set, and the test set by three different orders. This should in-
crease confidence that classification results are not influenced
by the distributions of the training set and test set. Therefore,
we have 18 problems in total. We summarize these problems in
Table 6.

3.2. The AMRT experiment

At first, we show the performance improved by using AMRT.
Since AMRT is designed for single population, we use a pop-
ulation to conduct this experiment. Table 7 shows the exper-
iment setting, which is denoted as ES1. The population size,
maximum generation and the tournament size are referring to
Ref. [21]. However, the crossover rate and the mutation rate in
Ref. [21] are 0.35 and 0.65, respectively. Such combination of
R, and R,, is not proper. Mutation operator is not supposed
to be the primary genetic operator because it is used to es-
cape local optimum. Therefore, we consider the R, and R, of
Ref. [12]. The crossover rate, mutation rate, and reproduction
rate of Ref. [12] are 0.75, 0.15, and 0.1, respectively. In this pa-
per, the reproduction operator is not performed by probability.
We divide the reproduction rate, 0.1, equally to the crossover
rate and the mutation rate. The number of available nodes of
an individual used in Ref. [21] is 650 because the structure of
individuals is not the binary tree structure. In this paper we use
the most approximate number, 511, to be the maximum number
of available nodes of an individual.

Problem Classes Number of features Training instances Validation instances Test instances
Heart (HRT) 2 35 152 76 75
Horse (HRS) 3 58 182 91 91
Cancer (CAN) 2 9 350 175 174
Diabetes (DBT) 2 8 384 192 192
Gene (GEN) 3 120 1588 794 793
Thyroid (TRD) 3 21 3600 1800 1800




Table 7

Experiment settings (ES1) of AMRT experiment
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Parameter Value
Max generation G 100
Population size 2000
Individual length 511
Tournament size 6

R 0.8
R 0.2
Table 8
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Denoting the ES1 with AMRT and without AMRT as ES1.w
and ES1.w/o, respectively, we perform them on the 18 classi-
fication problems 10 times. Table 8 shows accuracy compar-
isons and paired ¢-test between ES1.w and ES1.w/o. The three
values in each cell stand for the highest accuracy, the average
accuracy and the standard variation.

From Table 8, the average accuracy comparison and the
paired ¢-test results show that AMRT is capable of improving
classification performance of single population GP. ES1.w has

Accuracy comparisons and paired z-test between ES1 with AMRT and ES1 without AMRT

Problem ES1.w ES1.w/o Paired 7-test Problem ES1.w ES1.w/o Paired 7-test
HRTI 80.00 81.33 DBTI 78.13 76.56
76.80 76.67 0.4557 72.50 72.34 0.4667
3.09 2.69 2.76 3.54
HRT2 98.67 94.67 DBT2 75.52 75.00
93.33 92.27 0.2332 71.25 71.15 0.4584
3.20 2.16 2.44 1.79
HRT3 88.00 86.67 DBT3 77.60 78.13
84.40 82.93 0.0769 75.16 74.53 0.2594
2.60 2.50 2.53 1.46
HRS1 71.43 67.03 GENI1 89.66 89.41
64.51 62.53 0.1593 85.31 85.21 0.4787
4.61 2.28 4.37 3.10
HRS2 67.03 65.93 GEN2 90.04 88.65
61.98 60.77 0.2358 85.98 83.32 0.0343
3.78 2.64 3.95 5.97
HRS3 65.93 60.44 GEN3 88.27 88.15
61.21 55.27 0.0010 84.59 81.78 0.0397
3.11 3.74 3.00 5.07
CANI1 98.85 98.85 TRD1 97.72 97.72
97.70 97.70 0.5000 97.15 95.94 0.0361
0.72 0.77 0.47 1.74
CAN2 96.55 94.83 TRD2 98.28 98.67
94.89 94.08 0.0022 97.33 96.84 0.0766
0.69 0.47 1.22 1.34
CAN3 97.13 97.13 TRD3 98.06 98.50
96.32 96.44 0.3097 96.95 96.69 0.3332
0.78 0.45 0.92 1.38

Three values in a cell stand for highest accuracy, average accuracy, and standard deviation. The better highest accuracy is marked in italic face. The better

average accuracy and significance p-value (p <0.05) are marked in bold face.

Table 9

Experiment settings of traditional single population GP and LAGEP

Settings r 1(i) Population size of each Total number of individuals Individual length
Traditional GP ES1 1 1 2000 2000 511
LAGEP ES2 2 2,1 666 1998 255
LAGEP ES3 2 3,1 500 2000 255
LAGEP ES4 2 4,1 400 2000 255
LAGEP ESS 2 5,1 333 1998 255
LAGEP ES6 2 6, 1 286 2002 255
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Table 10
Accuracy comparisons of six experiment settings and four methods cited from [21]
Problem ES1 ES2 ES3 ES4 ES5 ES6 G’P D G’PF G’P A GP P
HRT1 80.00 80.00 82.67 82.67 80.00 82.67 82.10 81.66 76.86 76.86
76.80 77.47 78.27 76.67 76.00 77.33 78.13 77.88 76.86 74.37
3.09 2.98 3.45 2.90 2.18 3.27 2.12 1.93 0.00 1.44
HRT2 98.67 94.67 97.33 96.00 96.00 96.00 82.10 79.04 80.35 78.17
93.33 93.47 93.87 93.33 93.60 94.27 78.32 76.32 79.66 74.68
3.20 1.72 1.91 1.66 1.86 2.81 1.81 1.89 2.15 3.73
HRT3 88.00 88.00 88.00 86.67 89.33 89.33 77.30 74.68 74.68 75.11
84.40 85.20 83.87 84.13 84.40 84.80 74.24 74.24 71.40 74.10
2.60 2.31 1.83 1.33 2.27 245 1.46 0.61 1.59 1.76
HRS1 71.43 73.63 68.13 71.43 68.13 73.63 71.12 61.12 71.12 63.33
64.51 66.59 64.73 65.05 65.38 65.38 66.45 58.52 69.39 59.63
4.61 3.28 1.90 3.39 2.65 4.22 2.78 4.49 2.05 3.90
HRS2 67.03 64.84 70.33 67.03 68.13 68.13 63.33 62.23 61.12 64.45
61.98 61.98 62.31 62.31 61.65 63.63 57.73 59.73 56.50 61.12
3.78 2.15 3.81 2.98 3.61 3.38 3.48 4.29 2.55 4.84
HRS3 65.93 68.13 68.13 63.74 67.03 62.64 71.11 72.23 68.89 63.33
61.21 62.31 62.42 61.43 63.52 61.65 64.06 64.72 63.73 58.89
3.11 2.69 2.73 2.95 3.18 0.96 3.04 5.00 2.53 4.44
CAN1 98.85 98.85 99.43 98.85 98.28 98.85 97.71 97.71 97.13 97.13
97.70 97.70 97.82 97.76 97.70 97.82 96.21 95.61 94.34 95.69
0.72 0.54 0.85 0.79 0.77 0.80 1.01 1.42 1.24 0.94
CAN2 96.55 95.40 95.98 95.98 95.98 95.40 98.28 98.28 97.13 97.71
94.89 94.60 94.89 94.94 94.77 94.83 95.32 95.55 91.70 95.17
0.69 0.48 0.92 0.59 0.74 0.47 2.18 1.23 2.16 1.19
CAN3 97.13 97.13 97.13 97.13 97.13 97.13 97.71 96.56 98.86 97.71
96.32 96.09 96.38 96.61 96.32 96.03 95.61 95.10 94.72 95.58
0.78 0.71 0.61 0.57 0.40 0.69 1.36 0.83 1.70 1.43
DBTI1 78.13 75.00 77.60 76.04 75.52 76.56 73.3 78.02 77.49 76.97
72.50 72.71 73.91 73.13 72.08 71.98 68.3 73.53 75.46 73.18
2.76 2.04 2.24 1.98 1.94 2.44 3.24 3.40 1.26 2.56
DBT2 75.52 75.00 73.96 73.96 75.00 74.48 74.35 76.44 76.97 76.97
71.25 71.46 71.46 71.88 72.29 72.08 68.7 75.22 74.59 72.92
2.44 1.80 1.32 1.15 2.19 1.63 3.48 1.22 1.15 2.65
DBT3 77.60 78.65 78.65 78.65 77.08 77.60 80.11 78.01 75.92 75.92
75.16 75.99 75.36 75.16 75.16 75.47 71.21 75.75 71.24 71.79
2.53 2.72 1.32 2.13 1.04 1.91 5.11 1.64 1.84 2.16
GEN1 89.66 88.65 90.92 89.66 88.27 87.77 77.68 88.03 68.23 87.27
85.31 85.41 86.15 85.85 85.36 85.49 66.97 62.88 65.26 67.50
4.37 1.74 2.78 2.34 1.92 1.74 6.70 14.99 4.19 14.93
GEN2 90.04 89.79 93.06 91.55 90.29 91.30 70.37 85.63 68.73 79.45
85.98 86.61 87.69 86.80 88.25 87.93 62.97 62.73 58.52 70.88
3.95 2.77 2.25 3.33 1.58 3.52 4.71 11.44 4.08 12.12
GEN3 88.27 91.43 86.13 88.78 88.40 87.14 73.52 88.03 67.47 75.11
84.59 86.02 84.82 84.83 85.11 84.97 67.79 62.96 62.17 74.10
3.00 3.64 1.14 3.00 2.66 1.43 5.06 11.81 7.37 1.76
TRDI1 97.72 97.89 97.67 98.00 98.17 98.44 97.11 94.72 94.56 94.45
97.15 97.19 97.16 97.18 97.52 97.19 95.04 93.92 94.50 93.74
0.47 0.28 0.49 0.55 0.55 0.66 0.81 0.57 0.80 0.69
TRD2 98.28 98.28 98.28 98.50 98.78 98.33 97.34 94.56 94.44 94.56
97.33 97.24 97.43 97.27 97.57 97.54 94.27 94.05 93.92 94.05
1.22 1.04 0.72 1.18 0.76 0.64 1.25 0.52 0.60 0.60
TRD3 98.06 98.22 97.94 98.28 98.33 98.39 98.06 94.56 94.61 95.78
96.95 97.06 97.21 97.20 97.04 97.64 94.55 93.97 94.28 94.51
0.92 0.89 0.58 0.82 1.34 0.58 1.37 0.82 0.50 0.84

Three values in a cell stand for highest accuracy, average accuracy, and standard deviation. The best average accuracies of ES1 and LAGEP settings are
marked by bold face.
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Table 11

Paired 7-test results between ES1 and other five experiment settings

Problem ES1 vs. ES2 ESI1 vs. ES3 ES1 vs. ES4 ES1 vs. ES5 ES1 vs. ES6
HRT1 0.3004 0.1460 0.4576 0.2754 0.3392
HRT2 0.4576 0.3526 0.5000 0.3925 0.2358
HRT3 0.2125 0.3097 0.3902 0.5000 0.3817
HRS1 0.1759 0.4325 0.3819 0.2925 0.3429
HRS2 0.5000 0.4233 0.4254 0.4270 0.1762
HRS3 0.2007 0.2132 0.4427 0.0602 0.3643
CANI1 0.5000 0.3925 0.4236 0.5000 0.3820
CAN2 0.1494 0.5000 0.4236 0.3849 0.3988
CAN3 0.2955 0.4361 0.1815 0.5000 0.2201
DBT1 0.4267 0.0621 0.2608 0.3021 0.3021
DBT2 0.4076 0.4064 0.1606 0.1685 0.1966
DBT3 0.2907 0.3908 0.5000 0.5000 0.3888
GENI1 0.4772 0.2882 0.3807 0.4884 0.4549
GEN2 0.3073 0.1218 0.3299 0.0567 0.1645
GEN3 0.1757 0.4143 0.4311 0.3359 0.3668
TRD1 0.4226 0.4794 0.4426 0.0552 0.4328
TRD2 0.4445 0.4198 0.4620 0.3298 0.3254
TRD3 0.4075 0.2357 0.2526 0.4344 0.0258

Significant p-values (p <0.05) are marked in bold face.

higher average accuracy than ES1.w/o except the CAN3 prob-
lem. Although AMRT is not proposed to enhance the solution
quality, Table 8 shows that for most problems ES1.w discovers
better discriminant functions. Based on these observations, all
of the following experiments will use the AMRT method.

3.3. LAGEP experiment

In this paper, we use five two-layer LAGEP experiment set-
tings to illustrate the performance of LAGEP. Table 9 shows six
experiment settings including ES1. In this paper, we focus on
investigating the behavior of the LAGEP architecture with dif-
ferent number of populations rather than with different number
of layers. Table 9 shows that all settings use similar numbers
of individuals. These settings are referred to Ref. [21] because
we are going to compare the results with that. LAGEP is pro-
posed to utilize short discriminant functions to obtain a longer
function. We set the individual length of them to be 255. Every
medical dataset is performed with each experiment setting for
10 times.

Table 10 shows accuracy comparisons of the six settings
and four different GP structures cited from [21], G*P for deci-
sion trees (G°P D), GP for fuzzy rule based systems (G’P F),
G3P for artificial neural networks (G°P A), and G3P for fuzzy
Petri-nets (G3P P). The values in each cell stand for the high-
est accuracy, the average accuracy and the standard variation.
Table 11 shows the paired ¢-test results between ES1 and other
five LAGEP settings.

3.3.1. Comparing classification accuracy between LAGEP
and ES1

At first, we compare the classification accuracies between
ES1 and LAGEP settings from Tables 10 and 11. ES1 has higher

average accuracy than at least one LAGEP setting only in prob-
lems HRT1, HRT3, HRS2, CAN2, CAN3, DBTI, and TRD2.
However, the best average accuracy of each problem is obtained
by one of the five LAGEP settings. Table 11 shows that the
significant p-value occurs at only problem TRD3 (p =0.0258)
where ES6 has higher average accuracy. If the significance level
o increases to 0.1, four more significance p-values occur at ES5S
with HRS3 (p = 0.0602), ES3 with DBT1 (p = 0.0621), ES5
with GEN2 (p = 0.0567), and ES5 with TRD1 (p = 0.0552).
In contrast, ES1 does not significantly outperform any LAGEP
setting over the 18 problems.

The classification accuracies of test set obtained by LAGEP
and ES1 are similar. The reason of this situation could be ex-
plained by the inadequate generalization of LAGEP and the
inconsistencies of instances of training set, validation set, and
test set. Table 12 shows the average score values of ES1 and
the population of the second layer of LAGEP settings. The
paired ¢-test between ES1’s score values and each LAGEP set-
ting’s score values is also conducted as shown in Table 12.
LAGEP achieves significantly better score value than ES1 ex-
cept for TRD problems. ES1 has higher average score value
for TRD1 and TRD3 problems only, but it performs worse than
all LAGEP settings in these problems. Furthermore, ES2, ESS5,
and ES6 achieves significantly better average score values than
ES1 for CAN2 problem, but Table 10 shows that ES2, ES5,
and ES6 have lower average accuracy. In summary, LAGEP has
been slightly affected by the overfitting problem even though
the validation process has been applied. The overfitting is not
serious because we found that some LAGEP settings having
highest average score values obtain highest average accuracies.
For instance, for CAN1 problem, ES3 and ES6 have highest
score value, 1.9627 and 1.9626, respectively, and they both
achieve the highest average accuracy, 97.82. If the test set could
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Table 12
Comparison of training performance of ES1 and LAGEP settings

Problem ES1 ES2 ES3 ES4 ES5 ES6
HRT1 1.7898 1.8135 1.8280 1.8257 1.8191 1.8105
0.0023 0.0015 0.0006 0.0300 0.0275
HRT2 1.6875 1.7454 1.7438 1.7500 1.7155 1.7158
0.0001 0.0005 0.0000 0.0161 0.0030
HRT3 1.7477 1.7697 1.7944 1.7724 1.7727 1.7734
0.0438 0.0004 0.0183 0.0211 0.0146
HRSI1 1.6762 1.7071 1.7247 1.7255 1.7108 1.7093
0.0011 0.0001 0.0001 0.0086 0.0004
HRS2 1.6868 1.7366 1.7385 1.7496 1.7372 1.7225
0.0007 0.0011 0.0001 0.0001 0.0028
HRS3 1.6908 1.7275 1.7432 1.7399 1.7357 1.7443
0.0095 0.0004 0.0008 0.0005 0.0007
CAN1 1.9537 1.9596 1.9627 1.9577 1.9610 1.9626
0.0048 0.0017 0.0324 0.0022 0.0001
CAN2 1.9707 1.9741 1.9743 1.9734 1.9736 1.9749
0.0127 0.0017 0.0532 0.0005 0.0085
CAN3 1.9560 1.9579 1.9610 1.9639 1.9649 1.9601
0.1154 0.0038 0.0001 0.0001 0.0169
DBT1 1.5901 1.6061 1.6301 1.6206 1.6090 1.6147
0.0446 0.0002 0.0091 0.0081 0.0071
DBT2 1.5866 1.6055 1.6206 1.6163 1.6096 1.6174
0.0763 0.0018 0.0048 0.0036 0.0043
DBT3 1.5645 1.5956 1.5885 1.5957 1.5980 1.5820
0.0060 0.0109 0.0043 0.0012 0.0556
GEN1 1.7915 1.8307 1.8262 1.8376 1.8435 1.8471
0.0778 0.0761 0.0299 0.0100 0.0310
GEN2 1.7732 1.8161 1.8392 1.8090 1.8432 1.8338
0.0089 0.0044 0.0959 0.0018 0.0291
GEN3 1.7786 1.8285 1.8391 1.8438 1.8406 1.8367
0.0516 0.0409 0.0176 0.0354 0.0401
TRDI1 1.9779 1.9773 1.9769 1.9786 1.9804 1.9801
0.3867 0.3175 0.3699 0.2035 0.1924
TRD2 1.9719 1.9725 1.9746 1.9737 1.9769 1.9743
0.4627 0.2188 0.3581 0.0642 0.2621
TRD3 1.9779 1.9773 1.9741 1.9726 1.9739 1.9752
0.3867 0.0909 0.1151 0.1328 0.1676

For each problem, ES1 column shows its average score value. A LAGEP setting column shows the average score value of the population of the second layer
and paired z-test result between it and ES1. Significant p-values (p <0.05) are marked in bold face.

be more consistent with training set and validation set, the
enhancement of classification accuracy of LAGEP would be
considerable.

3.3.2. Comparing classification accuracy between LAGEP
and four cited methods

The classification accuracies of the four cited methods are
various. LAGEP has lower average accuracy than one of the
four methods for problems HRS1, HRS3, CAN2, DBT1, and
DBT2. However, we found that LAGEP performs amazingly

better than the four cited methods for HRT2, HRT3, GEN2,
and TRDI. For those problems, the lowest average accuracy of
LAGERP setting is higher than the maximum highest accuracy
of the four methods.

3.3.3. Comparing classification accuracy between LAGEP
settings

The relation between the number of populations and the
classification accuracy is not clear. ES5 achieves best aver-
age accuracy for five problems, which is the most one. ES2,
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Table 13

The average score value of populations of ES2 and the paired ¢-test results L; P; indicates the jth population of the ith layer

Problem ES2 L, P, ES2 L, P, ES2 L, P, Paired ¢-test L Py vs. Ly Py Paired ¢-test L1 P> vs. Ly Py
HRT1 1.7576 1.7720 1.8135 0.0000 0.0000

HRT2 1.6882 1.6737 1.7454 0.0000 0.0000

HRT3 1.7329 1.7155 1.7697 0.0000 0.0000

HRS1 1.6577 1.6423 1.7071 0.0000 0.0000

HRS2 1.6795 1.6885 1.7366 0.0000 0.0000

HRS3 1.6700 1.6723 1.7275 0.0000 0.0000

CANI1 1.9519 1.9499 1.9596 0.0023 0.0000

CAN2 1.9646 1.9664 1.9741 0.0005 0.0001

CAN3 1.9511 1.9519 1.9579 0.0000 0.0004

DBT1 1.5733 1.5754 1.6061 0.0004 0.0001

DBT2 1.5660 1.5728 1.6055 0.0000 0.0000

DBT3 1.5505 1.5434 1.5956 0.0000 0.0000

GEN1 1.7897 1.7601 1.8307 0.0001 0.0000

GEN2 1.7770 1.7585 1.8161 0.0077 0.0003

GEN3 1.7824 1.7372 1.8285 0.0119 0.0001

TRDI 1.9658 1.9694 1.9773 0.0000 0.0028

TRD2 1.9582 1.9660 1.9725 0.0005 0.0034

TRD3 1.9658 1.9694 1.9773 0.0000 0.0028

Significant p-values (p <0.05) are marked in bold face.

Table 14

The average training time of six experiment settings and 18 problems in seconds

Problem ES1 ES2 ES3 ES4 ES5 ES6
HRT1 299.12 179.61 169.50 183.20 180.49 164.36
HRT2 334.87 199.01 180.15 178.64 173.70 161.39
HRT3 299.17 200.42 179.19 166.39 170.32 168.22
HRS1 452.25 302.19 305.34 309.23 276.03 286.49
HRS2 429.87 281.04 308.62 290.77 258.99 265.44
HRS3 420.87 325.74 283.43 297.34 266.15 287.89
CANI1 313.05 238.19 235.37 226.36 239.20 239.61
CAN2 349.83 247.53 245.30 244.63 228.43 233.43
CAN3 314.57 206.97 215.00 230.19 222.49 225.88
DBT1 421.83 298.17 294.32 296.38 260.71 248.41
DBT2 344.72 270.59 265.95 282.44 277.93 251.84
DBT3 391.46 274.79 264.93 259.56 249.48 252.10
GEN1 1446.09 1232.41 1285.21 1190.22 1115.65 1157.48
GEN2 1615.26 1287.77 1262.48 1252.35 1118.27 1095.65
GEN3 1585.13 1212.39 1277.77 1157.58 1162.54 1110.59
TRD1 4410.35 2680.82 2789.47 2497.28 2612.90 2522.12
TRD2 5243.94 2774.68 2702.87 2738.57 2725.54 2649.07
TRD3 4451.99 2682.36 2613.43 2495.75 2670.19 2628.05

ES3 and ES6 achieve best average accuracy for four problems.
From Table 10, it is not certain that using more populations can
obtain higher classification accuracy. Considering the training
performance from Table 12, both ES3 and ESS5 have best av-
erage score values for five problems. ES2 have best average
score value for TRD3 only. Based on these observations, the
number of populations could be irrelevant to obtaining good
discriminant functions.

3.3.4. The improvement of score value

The performance of second layer is supposed to be better
than the first layer because the population of the second layer
uses the transformed training set. We use ES2 to demonstrate
the performance improvement. Table 13 illustrates the 18 prob-
lems and average score values of the three populations of ES2,
where L1 Py, L1 P>, and L, P implies the first population and
the second population of the first layer, and the population of
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the second layer, respectively. Both score values obtained by
populations of the first layer are lower than the score value of
the population of the second layer. Table 13 also shows the
paired 7-test results between L P; and L, P;, and L P, and
L, Py. Tt is obvious that L, P; is significantly better than the
two populations of the first layer. This result confirms that the
training performance, the accuracy of classifying the training
set and the validation set, can be improved by the proposed
layer architecture.

3.3.5. Comparing elapsed training time

LAGEP not only improves effectiveness but also reduces
the training time. Table 14 shows the elapsed training time of
six experiment settings. Obviously, LAGEP settings use much
less time than single population GP does. The average elapsed
training time of every LAGEDP setting is at least 10% less than
it is of ES1. The decrease in time is huge for TRD problems
where every LAGEP setting uses at most 64% of time of ES1.

The evolutionary process of a population spends most of
the time on evaluating fitness values for individuals. The in-
dividual length directly affects the required computation time.
LAGERP settings and ES1 perform under the same conditions
of the number of generations and the number of total individu-
als. LAGEP requires less training time because it uses shorter
individuals. Concluding the observation from the classification
accuracy and the elapsed time, LAGEP is more efficient than
single population GP.

4. Conclusions and future work

In this paper, we propose a MGP method, LAGEP. LAGEP
arranges a number of populations into a layer. Every layer
evolves its populations to generate a set of discriminant func-
tions. These functions transform the training set to a new train-
ing set, which is used for successive layer. The evolution pro-
cess of every population is efficient because it evolves with
short individuals. We also proposed a method to prevent falling
into a local optimum for a long time called AMRT.

Experiment results show that LAGEP is capable of gener-
ating a high accuracy discriminant function efficiently. More-
over, an experiment comparing single population with AMRT
and without AMRT shows that AMRT is effective. We found
that LAGEP is affected by overfitting problem slightly, thus
we show the average score values of single population GP and
LAGERP settings to illustrate that LAGEP settings have signifi-
cant higher training performance. We also use one of LAGEP
settings to show that the training performance can be improved
by the layered architecture. Although the classification accu-
racy is similar, the elapsed training time of LAGEP is much less
than single population GP. Experiment results also show that
the number of populations could be irrelevant to either training
performance or classification accuracy of test set.

In this paper, LAGEP used only two layers. We intend to
investigate the performance of LAGEP with more layers in fu-
ture. Furthermore, we are interested in LAGEP with different
population configurations that is called heterogeneous MGP
model [18]. We also intend to develop further research on

feature selection and feature generation based on the LAGEP
architecture.
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