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Abstract

This paper presents a capacity trading method for two semiconductor fabs that have established a capacity-sharing partnership. A fab
that is predicted to have insufficient capacity at some workstations in a short-term period (e.g. one week) could purchase tool capacity
from its partner fab. The population of such a capacity-trading portfolio may be quite huge. The proposed method involves three mod-
ules. We first use discrete-event simulation to identify the trading population. Secondly, some randomly sampled trading portfolios with
their performance measured by simulation are used to develop a neural network, which can efficiently evaluate the performance of a
trading portfolio. Thirdly, a genetic algorithm (GA) embedded with the developed neural network is used to find a near-optimal trading
portfolio from the huge trading population. Experiment results indicate that the proposed trading method outperforms two other bench-
marked methods in terms of number of completed operations, number of wafer outs, and mean cycle time.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Semiconductor manufacturing is a capital intensive
industry. An up-to-date semiconductor fab may cost a
few billion dollars to build, and an individual tool may
charge over several tens of million dollars. Due to tremen-
dously high equipment cost, how to effectively manage tool
capacity is very important to semiconductor fabs. Such
decisions associated with tool capacity are generally called
capacity planning problems (Christie & Wu, 2002). The
objective of capacity planning is to well prepare and allo-
cate tool capacity in order to maximize a semiconductor
fabs’ profit. In terms of planning horizon, capacity plan-
ning problems could be classified into three levels: strategic,
tactical, and operational levels.
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At strategic level, capacity planning means the invest-
ment decisions on procuring new tools. Based on demand
forecast, the decision (also called tool planning) is to opti-
mally determine the type and number of tools needed for
new or existing fabs. The tool planning decision is distinct
in requiring large amount of expenditure and long-lead
time (3–9 months) in tool procurement. The tool planning
problem, a long-term decision, usually covers 1–2 years in
the planning horizon, and the annual tool expenditure of
a semiconductor company may be over billions of dollars.
Much literature on tool planning has been published (Wu,
Erkoc, & Karabuk, 2005a). Some addressed scenarios with
demand uncertainty and developed mix-integer program-
ming models (Barahona, Bermon, Gunluk, & Hood,
2001; Çatay, Erengüç, & Vakharia, 2003; Hood, Bermon,
& Barahona, 2003; Swaminathan, 2000, 2002); some others
were concerned with scenarios with constraints imposed by
target cycle time and developed solution methods by the
application of queuing network (Bard, Srinivasan, &
Tirupati, 1999; Connors, Feigin, & Yao, 1996; Iwata, Taji,
& Tamura, 2003; Wu, Hsiung, & Hsu, 2005b) or by
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simulation models (Chen & Chen, 1996; Grewal, Bruska,
Wulf, & Robinson, 1998; Mollaghsemi & Evans, 1994) or
by simulation and queuing techniques (Chou, Wu, Kao,
& Hsieh, 2001; Hopp, Spearman, Chayet, Donohue, &
Gel, 2002).

At tactical level, capacity planning refers to the decisions
of product-mix and production planning. The product-mix
decision is to find an optimal product mix to maximize the
profit of a fab, equipped with a given tool portfolio. The
production planning decision is to determine the release
schedule of each fab given a corporate demand output
schedule (Chen, Chen, Lin, & Rau, 2005). These two deci-
sions can be regarded as medium-term decisions because
they usually cover several months in the planning horizon.
Various techniques for solving the semiconductor product-
mix and production planning problems have been devel-
oped. These techniques involve the use of multi-objective
programming (Chung, Lee, & Pearn, 2003, 2005), linear
programming (Bermon & Hood, 1999), mix-integer pro-
gramming (Chou & Hong, 2000).

A semiconductor fab constantly faces some unexpected
events such as machine breakdown, urgent orders, and hold
lots. As known, the exact time when an unexpected event
will occur cannot be predicted. Therefore, in the decisions
of tool planning, product-mix planning and production
planning, the stochastic effects of unexpected events are
treated in a deterministic manner. For example, the effect
of machine breakdown is modeled by giving each tool a sta-
tic availability, even though the tool availability in fact
changes stochastically and dynamically. Due to the stochas-
tic behavior of unexpected events, the tool capacity of a fab
that is available to deal with the planned demand in an
upcoming short-term period (e.g. one week) may become
excessive or insufficient for some workstations. We call this
phenomenon a short-term capacity disequilibrium problem.

At operational level, capacity planning refers to the deci-
sion of solving the short-term capacity disequilibrium
problem. A few studies proposed to solve the problem by
leveraging the tool capacity of multiple fabs that belong
to the same company. Taking these fabs as a single big

fab and their operational control is centralized, these stud-
ies aimed to develop real-time inter-fab dispatching rules
for lots (Deboo, 2000; Toba, Izumi, Hatada, & Chiku-
shima, 2005). However, when the operational control sys-
tems of these fabs are not centralized, such real-time

inter-fab dispatching rules may not be effectively imple-
mented due to lack of real time shop-floor information.
In practice, two fabs, not being equipped with a centralized
operational control system, may still leverage their tool
capacity by a weekly trading agreement. That is, based
on a prediction of tool utilization, a fab with insufficient
capacity at some tools would purchase tool capacity from
its partner fab. The short-term off-line capacity trading
decision is important but has been rarely investigated in
literature.

This study aims to develop an effective method for mak-
ing the short-term off-line capacity trading decision to max-
imize the total number of completed operations of the two
trading fabs. The proposed method involves three modules:
(1) identifying a population of capacity trading portfolios,
(2) evaluating the performance of a trading portfolio by the
use of neural network together with discrete-event simula-
tion techniques, (3) finding a near-optimal trading portfo-
lio from the population by the use of a genetic algorithm
(GA).

The remainder of the paper is organized as follows. Sec-
tion 2 describes how to identify the population of capacity
trading portfolios. Section 3 presents the method for eval-
uating the performance of a trading portfolio. Section 4
discusses the GA technique for finding a near-optimal trad-
ing portfolio. Section 5 shows a numerical example and
concluding remarks are placed in Section 6.

2. Population of capacity trading portfolios

There are two factors that determine the population of
all possible capacity trading portfolios. The first factor
refers to the number of workstations that would participate
in capacity trading—herein called tradable workstations.
The second factor refers to the upper bound of trading vol-
ume for each tradable workstation. This section begins with
the operational assumptions for the wafer fabs of interest,
and presents the methods for identifying tradable worksta-

tions and the population of capacity trading portfolios.

2.1. Operational assumptions of wafer fabs

In the decision problem, we assume that two semicon-
ductor fabs have established a capacity-trading agreement
and trade capacity weekly. The two fabs have n-pairs of
common workstations by which capacity trading can be
implemented. In each pair, the two workstations, physi-
cally located in different fabs, are functionally identical
and therefore can trade capacity. Some operational
assumptions of the two fabs are described below.

(1) Each operation is only processed by a particular type
of workstation.

(2) For an operation that can be processed by a pair of
common workstation, its processing times at the
two fabs are the same.

(3) The weekly tool capacity bought by a fab is uni-
formly used; that is, the capacity used per day is a
constant.

(4) A workstation with bought-in capacity is given a
WIP threshold. If the WIP profile is higher than the
threshold, wafer lots waiting before the workstation
are continuously sent to the other fab until the daily
amount of bought-in capacity has been used up.

(5) Both fabs use the uniform policy in releasing lots.
That is, given a product mix, the number of lots
released to each fab per day is a constant.

(6) The lot dispatching policy at each workstation in
each fab is based on the First-In-First-Out rule.
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2.2. Identification of tradable workstations

A pair of common workstations is tradable if the tool
utilization of one workstation in the upcoming week is
lower than LB and that of the other is higher than UB,
where LB and UB are two predefined thresholds used to
define the intended extent of capacity difference in forming
a trading pair. For a trading pair, the low-utilization work-
station could sell tool capacity to the high-utilization one,
which hereafter are respectively called a seller workstation

and a buyer workstation.
We develop a discrete-event simulation program to esti-

mate the tool utilization of the upcoming week. The simu-
lation program is distinct in twofold.

First, the simulation program is a deterministic model, in
which the breakdown of machine is modeled in an ‘‘aver-
age’’ manner. That is, the tool breakdown is modeled by
enlarging the processing time of an operation—through
dividing the original processing time by the average tool
availability. The reason for using a deterministic simulation
model for estimating the tool utilization of the upcoming
week is based on the findings of Kim, Shim, Choi, and
Hwang (2003) on real-time scheduling. They claimed that
in making a short-term scheduling decision the perfor-
mance of using deterministic simulation is superior to that
of using a single run of stochastic simulation. This reflects
that a fab’s short-term behavior had better be predicted by
using deterministic simulation. Using multiple runs of sto-
chastic simulations may improve accuracy; however, it
needs lengthy computation time.

Second, the simulation program must capture in detail
the fab status at the decision point, which includes the pro-
files of WIP, hold lots, breakdown of machines, and
expected times for the recoveries of down-machines. Such
information is important to the capacity trading decision
because the time horizon for capacity trading is short—
only one week. The ignorance of the initial fab status
may seriously affect the performance of a capacity trading
portfolio.

2.3. Characterizing the population of capacity trading

portfolio

For a pair of tradable workstations, the possible amount
of tradable capacity is determined by two factors: basic
trading unit and upper bound of trading volume. We define
the basic trading unit of capacity (u) as follows: u =
c · max(Pij|i 2 TW) where TW is a set consisting of all
tradable workstations, Pij is the processing time of opera-
tion j processed at workstation i, and c P 1 is a predefined
integer.

For a pair of tradable workstations i, its maximum num-
ber of trading units can be defined as: Bi ¼ 1

2u ðqSi � qBiÞ�
Qi � T , where qSi is the before-trading tool utilization of
the seller workstation and qBi represents that of the buyer
workstation, Qi is the number of tools in the seller; and
T is the time horizon of the trading decision (i.e. one week).
The population of trading portfolio can be defined as
follows: P = {[b1,b2, . . . ,bm], bi 2 Z, 0 6 bi 6 Bi}, where m

denotes the number of tradable workstations, and the num-
ber of trading portfolios is NðP Þ ¼

Qm
i¼1ðbi þ 1Þ. The value

of N(P) can be quite huge. Assume that the maximum trad-
able units of each workstation are q units. Then, the sce-
nario has qm trading portfolios; that is, if q = 20 and
m = 4, there are totally 160,000 (204) capacity trading
portfolios.

3. Performance evaluation of trading portfolios

For each trading portfolio, we can use the aforemen-
tioned deterministic simulation program to estimate the
performance of each fab. The performance refers to the
total number of completed operations of the fab in the
upcoming week and is briefly called move number hereafter.
The sum of move numbers of the two fabs is regarded as
the aggregated performance of the trading portfolio.

If it takes one minute to simulate a trading portfolio, an
exhaustive evaluation of a typical trading population (with
204 trading portfolios) would take about 111 days. The
required computation time is undoubtedly too long to be
accepted in practice. To reduce the computation time for
the performance evaluation of a trading portfolio, we
attempt to construct a neural network to effectively and
efficiently emulate the simulation of a fab.

3.1. Development of neural network

The basic idea of modeling the simulation of a fab by a
neural network is as follows. First, we sample n trading
portfolios from population P and evaluate the performance
of each portfolio in the fab through simulation. After sim-
ulation, the behavior of the fab in the upcoming week can
be characterized by n sets of input/output vectors. An input
vector refers to a trading portfolio and an output vector
refers to the move number of the fab after capacity trading.
Second, the n sets of input/output data are used to con-
struct a neutral network for representing the simulation
of the fab. The detailed procedure for constructing such a
neural network is presented below.

Assume that fabs A and B have m tradable worksta-
tions. Each tradable workstation i has at most bi trading
alternatives. The trading population then has NðPÞ ¼Qm

i¼1ðbi þ 1Þ trading portfolios and can be expressed as
P = {Xk|1 6 k 6 N(P)}, where Xk = (x1k,x2k, . . . ,xmk) rep-
resents the kth trading portfolio and xik refers to the num-
ber of trading units for workstation i. Herein, xik > 0
denotes that fab A buys in capacity from fab B, and vice
versa. Define Yk = �Xk, then Yk represents the capacity
that fab B purchases from fab A in the kth trading
portfolio.

From trading population P, n trading portfolios are ran-
domly sampled and put in a set ~P ¼ fX jg. For each trading
portfolio in ~P , a simulation program is executed for calcu-
lating the move number of each fab in the upcoming week
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Fig. 1. The input/output relationship of the simulation program.
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Fig. 2. Architecture of back-propagation neural network with one hidden
layer.
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after capacity trading. As shown in Fig. 1, a functional
relationship TAj = SimA(Xj) is used to represent the simula-
tion program executed for fab A, where TAj represents the
move number of fab A under trading portfolio Xj. The n

sampled trading portfolios by simulation will generate n
pairs of input/output vectors for fab A, denoted by
Data Set A ¼ fðX j; T AiÞjX j 2 ~Pg. Similarly, a functional
relationship TBj = SimB(Yj) is used to represent the simula-
tion program executed for fab B, and n pairs of input/out-
put data Data Set B ¼ fðY j; T BiÞjX j 2 ~Pg can be likewise
generated. Notice that the two simulation programs SimA

and SimB are both based on a deterministic simulation
model because the short-term (one week) performance of
a fab is concerned.

Based on Data_Set_A, we construct a neural network
NetA for representing the simulation program SimA. Out
of the n pairs of input/output vectors in Data_Set_A, n1

pairs are randomly sampled and used to build a back-prop-
agation neural network NetA and the other (n � n1) pairs is
used to test the effectiveness of NetA. The n pairs of data is
called training data of NetA. This neural network model
is represented as ~T Ak ¼ NetAðX kÞ, where ~T Ak represents
the performance of fab A under trading portfolio Xk, calcu-
lated by the trained neural network. Likewise, Data_Set_B

can be used to construct a neural network ~T Bk ¼ NetBðY kÞ
for modeling the simulation program SimB.

3.2. Neural network algorithm

We construct NetA and NetB by using the back-propa-
gation neural network (BPN) technique (Fausett, 1994),
which has been widely used and justified to be effective in
various applications (Vellido, Lisboa, & Vaughan, 1999).
The architecture of a BPN involves three layers of neurons
(Fig. 2); the first layer represents the input, the last layer is
the output, and the hidden layer models the transformation
mechanism from input to output. Each neuron in a layer
and that in its subsequent layer is connected by a link on
which a weight (a real number) is to be found.

The development of a BPN, also called training, is to
determine the weight on each link so that the BPN can well
model the input/output mapping of the simulation pro-
gram of concern. For example, given an input Xj in Data_-
Set_A, the output ~T Aj computed by a well-trained BPN
would be fairly close to the target output TAj. A well-
trained BPN, NetA, can therefore be used to model the sim-
ulation program SimA.
The detailed algorithm for training a BPN can be
referred to (Fausett, 1994). The algorithm is essentially
based on the gradient descent technique, which changes
the network weights iteratively by the formula:

wijkðnþ 1Þ ¼ wijkðnÞ þ g � wijkðnÞ þ a � wijkðn� 1Þ
where i denotes a neuron in layer k, j denotes a neuron in
the preceding layer (k � 1), and wijk represents the weight
between the two neurons. The constant g (which lies in
the range 0–1) is called the learning rate, which determines
the speed of convergence and a (also in the range 0–1) is
called the momentum constant.

The accuracy of the model is evaluated in terms of the
root-mean-square error (RMSE), the prediction of RMSEx

for fab x is calculated by obtaining the square-root error
between the neural network’s predicted value and the
actual target value and is given by

RMSEx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

i�1

ðT xi � ~T xiÞ2
s

where n is the number of training/testing data, Txi is the
move number of fab x computed by the simulation pro-
gram Simx, and ~T xi is the move number of fab x computed
by the neural network Netx. The training error is the
RMSE of the data used for the network training, and the
prediction error is the RMSE of the data reserved for net-
work testing.

Network structure and training issues, such as the num-
ber of layers, number of neurons, the learning rate and the
momentum constant are determined during the network
development process. These values are selected such that
after training, the outputs of the established neural net-
work best match the experiment data.

4. Finding a near-optimal trading portfolio

Using the developed neural network to evaluate the per-
formance of a trading portfolio indeed saves computation.
Yet, applying an exhaustive search embedded with the neu-
ral network technique to find an optimal trading portfolio
may still need a lengthy computation time because the solu-
tion space is quite huge. We therefore developed a genetic
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algorithm (GA) to efficiently obtain a near-optimal solu-
tion. The reason for using GA is that the technique has
been widely applied and shown satisfactory results in vari-
ous space-searching problems.

In the proposed GA, a trading portfolio Xj = (x1j,
x2j, . . . ,xmj) is called a chromosome where xij is called a
gene. The performance of a trading portfolio, represented
by F(Xj), is called the fitness of the chromosome Xj. The
higher the value of F(Xj), the higher quality is chromosome
Xj.

The procedure of the GA is briefly described as follows.
An initial GA population G(t = 0) is generated by ran-
domly sampling N chromosomes from the trading portfo-
lio population P. Three genetic operators (reproduction,
crossover and mutation) are used to manipulate the chro-
mosomes in G(t) to form the next generation population
G(t + 1). The population is iteratively updated until a ter-
minating condition is reached.

Reproduction is a process by which a chromosome with
higher fitness value has higher probability of being repro-
duced so that a larger number of the chromosome copies
may be included in the new population. We use the elitist
roulette wheel selection method in the reproduction process
(Mitchell, 1998). After reproduction, the survived chromo-
somes are stored in a ‘‘mating pool’’ and await mutation
and crossover operations. The crossover operation ran-
domly takes two chromosomes and interchanges part of
their genetic values to produce two new chromosomes
based on a crossover rate (Cr). The mutation operation is
implemented by randomly changing a genetic value based
on a specific mutation rate (Mr). The entire process of three
genetic operators is intended to create ‘‘more fit’’ chromo-
somes in the next population. The successive updating of
G(t) is terminated when the best solution in G(t) keeps
unchanged for Nb generations or when maximum number
of iterations (Nf) is reached (i.e. t = Nf).

5. Numerical example

We use a numerical example to justify the effectiveness
of the proposed method for making the capacity trading
decision. The example scenario includes two fabs (Fab_A
and Fab_B) that attempt to trade capacity on a weekly
basis. Table 1 shows the tool numbers and the products
of the two fabs, in which the 4P1M product is a memory
Table 1
Tools and products for Fab_A and Fab_B

FAB Number of
workstations

Total
number of
machines

Product Total
processing
time (h)

Total
number of
operations

Fab_A 60 270 4P1M 400 358
1P7M 440 412

Fab_B 60 198 1P3M 318 276
1P8M 480 446
product while the other 1PXM products are logic products.
Notice that the tools required for producing memory prod-
ucts are significantly different from that for producing logic
products. The tool portfolios of the two fabs are thus
essentially different and may be able to supplement each
other in tool capacity. The routing information of each
example product is provided by a semiconductor company
in Taiwan.

We use eM-plant (Tecnomatix Technologies Ltd., 2001)
to establish three simulation programs. Each of these three
is a variant of a particular simulation program, with dis-
tinction in their simulation settings.

The first simulation program (called Sim_1), executed in
a single-replicate and stochastic simulation model, was
used to create and update the decision scenario before
capacity trading. The output of the scenario-creation pro-
gram provides the WIP profiles and the machine up-down
status of the two fabs, which reflects the initial status of the
two fabs before trading and is the input of the second sim-
ulation program.

The second simulation program (called Sim_2), executed
in a deterministic simulation model, aimed to generate the
training data set for establishing the neural network. We
firstly used Sim_2 to identify tradable workstations to
define the solution space. In the testing example, four types
of workstations (E10, E27, E31, E55) are found to be trad-
able (Table 2). Fab_A would buy-in tool capacity for
workstations E10 and E55, while Fab_B would buy-in tool
capacity for E27 and E31. Using 20 h as the basic unit for
capacity trading, the solution space involves 103,488 trad-
ing portfolios. Secondly, we randomly select 2000 sets of
trading portfolios and obtain each of their performances
by Sim_2. The simulation run for measuring the perfor-
mance of each trading portfolio can be executed on a differ-
ent computer. Therefore we use 20 personal computers
(Pentium IV, 2.0 GHz and 256-MB memory) to execute
the 2000 simulation runs in parallel; and it takes about
1.35 h to finish all the simulation runs. The 2000 set of
trading portfolios and their performance were used to
establish the neural network. The neural network com-
bined with the GA algorithm can be used to determine a
near-optimal trading portfolio. The parameters of neural
network and GA are shown in Table 3.
Table 2
Capacity utility estimation of buyer workstations in each fab and
maximum buy-in volume at the first trading decision scenario

Tradable workstation E10 E55 E27 E31

Estimate of utilization in
upcoming week at
Fab_A (%)

100 99.4 42.4 32.4

Estimate of utilization in
upcoming week at
Fab_B (%)

30.0 49.8 96.6 95.2

Maximum amount of
tradable tool
capacity (hours)

220 320 280 840



Table 3
Parameters of neural network and genetic algorithm

Item Value Item Value

Neural
network

Number of
input nodes

4 Number of
training data

1500

Number of
hidden nodes

7 Number of
testing data

500

Number of
output nodes

1 Maximum
iterations

50,000

Learning rate 0.10 Momentum 0.80

Genetic
algorithm

Population size 100 Maximum
iteration, Nf

20,000

Cross over rate 0.80 Maximum
generation, Nb

1000

Mutation rate 0.05

Table 4
The proposed buy-in decision and the performance of no-trading and
proposed method

Buyer
workstation

Buy-in
capacity

Move number
with no-trading

Move number with
proposed method

Fab_A E10 160 72,071 74,598
E55 220

Fab_B E27 180 50,126 51,665
E31 720

Sim_1

Stochastic model

Initial status of week t , S(t)  

Sim_2

Deterministic model
GA + NN

Sim_ 3

Stochastic model 

Performance of Xt

Proposed trading portfolio for week t, Xt   
ˆ

ˆ

Fig. 3. The input/output relationship of the three simulation programs.
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The third simulation program (called Sim_3), executed
in a stochastic simulation model with 20 replicates and
the simulation time horizon is one week, was used to justify
the effectiveness of the trading portfolio suggested by the
proposed algorithm. The output of Sim_3 includes the
move number of each fab in the upcoming week after
capacity trading. The sum of move numbers of the two fabs
is taken as the performance of the trading portfolio. The
proposed buy-in decision and its performance are shown
in Table 4.
Table 5
Comparison of the weekly effectiveness of proposed trading portfolio with no

Period Proposed trading portfolio Without any trad

Fab_A Fab_B Aggregate Fab_A Fa

1 74,598
(103.5%)

51,665
(103.1%)

126,263
(103.3%)

72,071
(100.0%)

50
(10

2 73,981
(103.2%)

50,545
(102.3%)

124,526
(102.9%)

71,675
(100.0%)

49
(10

3 74,797
(103.2%)

51,957
(103.4%)

126,754
(103.3%)

72,463
(100.0%)

50
(10

4 72,833
(103.1%)

50,693
(102.1%)

123,463
(102.7%)

70,664
(100.0%)

49
(10

5 73,978
(103.2%)

49,944
(103.3%)

123,922
(103.2%)

71,722
(100.0%)

48
(10

6 74,852
(105.7%)

49,896
(101.1%)

124,748
(103.8%)

70,849
(100.0%)

49
(10

7 74,065
(101.6%)

51,147
(104.4%)

125,212
(102.7%)

72,918
(100.0%)

48
(10

8 73,998
(103.7%)

51,268
(102.8%)

125,266
(103.3%)

71,394
(100.0%)

49
(10

The move numbers are shown as a percentage of that of without any trading
In summary, the three simulation programs are inte-
grated into a procedure to create the proposed trading deci-
sion for a particular week and justify its effectiveness. The
input/output relationships in the procedure are shown in
Fig. 3. Program Sim_1 was used to create S(t), the decision

scenario or the initial status of week t. Program Sim_2 was
used to generate data for establishing a neural network, by
which we can use the GA to yield X̂ t, the proposed trading
decision for week t. Program Sim_3 was used to evaluate
the performance of X̂ t. With X̂ t and S(t) as input, program
-trading and max-trading methods

ing Maximum trading portfolio

b_B Aggregate Fab_A Fab_B Aggregate

,126
0.0%)

122,197
(100.0%)

73,756
(102.3%)

51,183
(102.1%)

124,939
(102.2%)

,404
0.0%)

121,079
(100.0%)

74,071
(103.3%)

49,124
(99.4%)

123,195
(101.7%)

,254
0.0%)

122,717
(100.0%)

73,026
(100.8%)

50,265
(100.0%)

123,291
(100.5%)

,678
0.0%)

120,342
(100.0%)

71,426
(101.1%)

51,036
(100.7%)

122,462
(101.8%)

,369
0.0%)

120,091
(100.0%)

72,738
(101.4%)

48,927
(101.1%)

121,665
(101.3%)

,369
0.0%)

120,218
(100.0%)

73,580
(103.8%)

49,808
(100.9%)

123,388
(102.6%)

,975
0.0%)

121,893
(100.0%)

74,213
(101.7%)

48,755
(99.5%)

122,968
(100.9%)

,863
0.0%)

121,257
(100.0%)

73,986
(103.6%)

49,861
(100.0%)

123,847
(102.1%)

method in parenthesis.



Table 6
The results after performing eight consecutive weeks of proposed trading portfolio and without any trading and maximum trading methods

With proposed trading portfolio Without any trading Maximum trading

Fab_A Fab_B Fab_A Fab_B Fab_A Fab_B

4P1M 1P7M 1P3M 1P8M 4P1M 1P7M 1P3M 1P8M 4P1M 1P7M 1P3M 1P8M

Throughput 495 335 447 262 476 332 431 252 484 337 435 253
Mean CT 582.7 625.2 419.2 649.2 614.0 648.7 441.6 672.3 603.3 641.3 431.4 655.6
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Sim_1 was use to obtain S(t + 1), the decision scenario of
week t + 1. The procedure can be repeatedly performed
to obtain the results of consecutively implementing capac-
ity trading for multiple weeks.

We justify the effectiveness of the proposed method by
performing capacity trading for eight consecutive weeks.
The proposed method is compared with two other meth-
ods. The first one is without any trading. The second
one, called the maximum trading method, requests each
buyer workstation buys-in its maximum amount of trading
units (Bi). Table 5 shows that in each of the eight weeks the
proposed trading method outperforms the other two meth-
ods (about 2.7–3.8% higher) in terms of the aggregate move
number. This implies that the proposed trading method
can effectively increase the aggregated number of com-
pleted operations for the two fabs.

One may wonder such an increase in completed opera-

tions could lead to an increase in completed products. Table
6 indicates that the proposed method outperforms the
other trading methods in terms of throughput and mean
cycle time. Herein, throughput refers to the total number
of completed products during the eight trading weeks. This
implies that the proposed capacity trading method could
also effectively increase the aggregated fab throughput.

6. Concluding remarks

This paper develops a short-term off-line capacity trad-
ing method for two semiconductor fabs. The method
involves three major techniques. The first technique—dis-
crete-event simulation is essentially used to evaluate the
performance for a set of randomly sampled trading portfo-
lios. The second technique—neural network is used to
emulate the function of the simulation technique; that is,
evaluating the performance of a trading portfolio at a
much faster speed. The third technique—genetic algorithm
is used to find a near-optimum trading portfolio in an effi-
cient manner.

Two other trading methods (without-trading and maxi-
mum-trading) are compared with the proposed one. Exper-
iment results indicate that the proposed capacity trading
method outperforms the two other methods in each of
the three performance indices: aggregated number of com-
pleted operations, aggregated throughput, and mean cycle
time.

The implementation of the proposed method may take a
significant amount of computation time in collecting the
simulation data for establishing the neural network. One
possible extension to this study is developing methods for
reducing the computation time for establishing the neural
network.
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