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Abstract Hydrogen exchange experiments (Krishna et al. in J. Mol. Biol. 359:1410, 2006)
reveal that folding–unfolding of cytochrome c occurs along a defined pathway in a
sequential, stepwise manner. The simplified zipper-like model involving nonadditive
coupling is proposed to describe the classical “on pathway” folding–unfolding behavior of
cytochrome c. Using free energy factors extracted from HX experiments, the model can
predict and explain cytochrome c behavior in spectroscopy studies looking at folding
equilibria and kinetics. The implications of the proposed model are discussed for such
problems as classical pathway vs. energy landscape conceptions, structure and function of a
native fold, and interplay of secondary and tertiary interactions.

Keywords Sequential folding . Pathway . Nonadditivity . The Zipper model . Cytochrome c .

Foldon . Circular dichroism

1 Introduction

Proteins are synthesized as linear chains of amino acid residues with specific primary
sequences encoded at the genetic level. In a living environment, the linear polypeptide
chain undergoes a rapid transition into a three-dimensional structure that is stable and
capable of carrying out a biological function [1]. The search for the native fold in
hyperdimensional conformational space is governed by a vast number of heterogeneous
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interactions involving the surrounding solvent and amino acid residues. The folding
potential is rough due to frustration among the numerous possible interactions [2].
However, proteins are able to find their native folds on a very fast time scale compared with
that of a random search in conformational hyperspace [3]. Simplified quantitative models
[4, 5] have shown that the folding potential has to be sloped enough toward the native state
to overcome the roughness of the energy function and to compensate for the gradual loss of
conformational entropy as the polypeptide chain adopts increasingly ordered structures. In
the classical Levinthal formulation, the slope toward the native fold exists on a unique
“pathway” [6], which is followed by all protein molecules as they undergo essentially the
same sequence of events to reach the native state quickly through discrete intermediates
[7–9]. The problem with the classical conception is the puzzle of how the unique pathway
can be found fast enough among all possible pathways. The classical pathway concept can
be viewed as a limiting case of the newer “energy landscape” concept. The latter one
eliminates the aforementioned puzzle by assuming a funnel shape of the folding potential
with multiple routes toward the native structure [2, 10–12]. Although the energy landscape
approach currently dominates as the theoretical principle of protein folding, studies of
several proteins are more consistent with the classical scenario. Such proteins fold through
distinct intermediates along defined pathways [13–17]. In this class of proteins, cytochrome
c (cyt c) has been the most extensively investigated experimentally. Early calorimetric [18]
and spectroscopy studies [19] suggested that cyt c exhibits a two-state behavior. The
existence of folding intermediates was revealed by the multiphase folding kinetics [20–22]
and by different folding–unfolding behaviors of equilibrium spectroscopy measurements on
different wavelengths [23–25]. It was mainly the work of Englander’s group using
hydrogen exchange (HX) experiments that provided detailed structural information about
the intermediate states of cyt c [13, 14, 26–31]. HX experiments consistently show that cyt
c folds by sequentially putting into place five groups of amino acid residues, called foldons.
The residues of the ith foldon have approximately the same thermodynamic [13, 14, 28]
and kinetic characteristics [26, 29]. The foldons appear in a definite order on the pathway
from the native to the unfolded state and vice versa. The sequential character of cyt c
folding was reaffirmed by stability-labeling experiments in which the stability of a given
foldon is altered and the related effect on other foldons is measured [27, 30, 31].

Elucidating the mechanisms of classical “on pathway” folding is an open and appealing
problem in the theory of protein folding. Because of the size and complex behaviors of
protein–solvent systems, it is not yet feasible to investigate this problem using a strictly
microscopic approach. Simplified statistical models coupled with coarse-grained descrip-
tions of the conformational space are widely used for investigating folding thermodynamics
and kinetics of polypeptides [32–38]. Indeed, the energy landscape concept stems from
theoretical and computational studies utilizing coarse-grained models with pairwise additive
interactions [10–12, 33]. At the same time, biologically important hydrophobic or
biochemical effects can give rise to nonadditive coupling if a coarse-grained approach is
used. In this paper, we propose a phenomenological zipper-like model of cyt c folding to show
that nonadditive coupling is a plausible cause of the classical scenario in protein folding.

The model is closely related to a structural viewpoint gained in HX studies [13, 14] and
draws its free energy factors from these experiments. To validate the model, we have
checked its ability to explain and predict the results of spectroscopy measurements. It
successfully explains a difference between the thermodynamic denaturant effect on the
circular dichroism behavior at 222 (cd222) and 695 nm (cd695) [24]. In addition, the
proposed model successfully predicts the thermodynamic temperature effect on cd222 (see
Section 6). The kinetic solution of the Zipper model can be obtained using either the mean-
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field approximation (MFA) of the generalized kinetic Ising model (GKI) [35] or Monte
Carlo (MC) kinetic simulations [39]. We have used MFA to explain qualitatively how the
foldon structure of cyt c manifests itself in two-exponential cd222 and three-exponential
fluorescence (fl) kinetics, while MC kinetic simulations were used to obtain the related
numerical solutions.

The Zipper Hamiltonian with pairwise additive interactions of the peptide bonds is used
in the Muñoz and Eaton model (ME) to describe folding of secondary structures [34]. In the
ME model, the zipper term serves as a topological constraint. In the case of alpha helix
folding, this topological constraint is equivalent to the short-range approximation [36]. The
idea to use zipper terms as topological constraints in a hierarchical scheme of protein
folding was introduced by Hansen et al. [38], but no reasons were proposed for the
existence of such constraints. In effect, their model is limited to the special case when only
the coupling interactions between the structural units are important. We use a similar but
more general formalism to account for solvent interactions, and we assume that on a coarse-
grained level of description, zipper terms describe the effects of nonadditivity. In the case of
cyt c, the heme group is the most plausible source of such interactions [40].

The paper is organized as follows. In Section 2, we present the Zipper model to treat the
thermodynamics and kinetics of cyt c folding–unfolding. Model calculations are used in
Section 3 to analyze and fit the experimental results. The last section discusses the
implications of the proposed model for understanding the classical folding scenario, the
separation of the secondary and tertiary folding time scales, and the specific roles of
the different foldons for the structural and functional properties of cyt c. It should be noted
that because of the simplicity of the proposed model, the calculations presented serve
mainly to illustrate the ideas in the paper and cannot be considered a detailed numerical
exposition.

2 The Zipper Hamiltonian

In the proposed model, one can view the cyt c protein as a collection of interacting foldon
units. These units, in turn, are collections of amino acid residues in the secondary structures
[30]. The fact that the free energy of the folding–unfolding transition for the different
residues of a given foldon unit is the same [13, 14] indicates a high level of cooperativity at
the level of the secondary structure. Thus, cyt c folding can be approximated as an
“assembling” of the tertiary structure from two-state structural units (foldons). The
conformation of the cyt c molecule is represented, then, by a set of binary variables:

x ¼ xif g; i ¼ 1; ::;N xi 2 0; 1ð Þ ð1Þ

where N=5 is the number of foldon units, xi=1 or xi=0 characterizing, respectively, the
folded or unfolded state of the ith unit. The experimentally observed pathway of cyt c
folding–unfolding via a series of partially unfolded intermediate conformations is presented
schematically in Fig. 1. The most recent HX experiments [14] showed that the first three
foldons fold by a stepwise sequential process, whereas the fourth and fifth do not follow a
predetermined sequence. The assumed Hamiltonian, which is actually a free energy
potential, reads:

H ¼
XN
i¼1

"ixi þ
XN�1

i¼1

ji
Yi
k¼1

xk þ jN
YN

k¼1;k 6¼N�1

xk ; ð2Þ
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where ɛi and ji denote the free energy factors of the ith unit due to the solvent and coupling
interactions, respectively. In other words, ji describes all cooperative effects, while ɛi is the
sum of the residue–solvent effects over all residues of ith foldon. One can see that addition
of the ith unit to the native structure is favored by coupling only if the zipper product

Qi
k¼1

xk

is equal to unity. The latter condition is fulfilled if all xk units are in the native states,
i.e., xk=1, k=1, ..., i. In this way, the sequence of cyt c folding is assumed to be governed
by the nonadditive many-body interactions of foldons. According to the minimal frustration
principle [33], only native coupling is taken into account by the Hamiltonian in (2). The jN

zipper product has been modified to account for the independent behavior of the fourth and
fifth units.

For N=5, the summation over 32 possible states to find the partition function or the
equilibrium averages of physical values can be done directly; for the general case, the
analytical solution of the Zipper model [41] can be used. By employing a substitution
xi ¼ σi þ 1ð Þ=2; σi 2 �1; 1ð Þ, the Zipper model is transformed into the GKI model:

HGKI ¼ �
XN
i¼1

s iEi s1; ::; s i�1;s iþ1; :::; sN

� �
: ð3Þ

For a system interacting with a heat bath and described by HGKI, the master equation in the

single-flip approximation reads [35, 42]:

dP x1; :; xi; :; xN ; tð Þ
dt

¼ �
X
i

w xi ! 1� xið ÞP x1; :; xi; :; xN ; tð Þ

þ
X
i

w 1� xi ! xið ÞP x1; :; 1� xi; :; xN ; tð Þ;
ð4Þ

where P(x1,., xi,., xN, t) is the probability of occupying state x={x1,., xi,., xN} at time t, and
the local flipping rate w is determined by the Fermi golden rule [35]. In kinetic
experimental measurements, one observes the time evolution of an average of a physical
value over all possible kinetic trajectories f tð Þh i ¼

P
x
f xð ÞP x; tð Þ. To analyze experimental

results, it is especially important to know the time evolution of the folded fraction of the ith
unit 〈xi(t)〉, i=1,.., N. This is given by the solution of the set of differential equations [42]:

t i
d

dt
xih i ¼ 1

2
� xih i þ 1

2
tanh

Eih i
kBT

� �
; ð5Þ

where 〈Ei〉

Eih i ¼ � "i þ
XN�1

k�i

jk
Yk
m¼1
m 6¼i

xm tð Þh i þ jN
YN
m¼1

m 6¼i;N�1

xm tð Þh i

0
B@

1
CA
,

2; i ¼ 1; 2; 3

Eih i ¼ � "i þ
XN�2

m¼1

xm tð Þh i
 !,

2; i ¼ 4; 5;

ð6Þ

and Ci depends on the heat bath interactions and 〈Ei〉 [35, 42]. It should be noted that, for
heterogeneous structural units, (5) generally predicts multiphase nonexponential kinetics.
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3 Results

3.1 The Denaturant Effect at Equilibrium

First, we shall show that folding–unfolding along the pathway observed in the equilibrium
HX experiments at low denaturant concentrations (Fig. 1) [13, 14] can be duplicated by the
numerical calculations using the Hamiltonian in (2). The effect of a denaturant on the
coupling interactions is usually neglected. In accordance with the experimental results [13,
14, 43], the linear dependence of the foldon–solvent effect on denaturant concentration,
described by mi, is assumed to be

"i ¼ "
0ð Þ
i þ mi den½ �; ð7Þ

where [den] denotes the denaturant concentration and "
0ð Þ
i is ɛi at [den]=0 and room

temperature. Massive numerical calculations at the atomistic level show that at room
temperature, ɛ for an alanine residue in water is close to zero [44]. Alanine side chain
interactions are usually neglected [45]. The addition of a specific side chain of a given
residue usually does not favor native conformations either. This is because of additional
repulsive interactions and additional losses of conformational entropy related to the side
chain ordering. These considerations, along with the well-known marginal stability of
secondary structures, enable us to take "

0ð Þ
i ¼ 0, i=1,.., N as a good approximation for the

aggregate foldon–solvent effect. Using this assumption, the free energy factors ɛi and ji in
the Hamiltonian of (2) were calculated for an oxidized form of horse cyt c using the
experimental dependence of Gi on denaturant concentration at 300 K [13] (see Appendix A
for details). The values of mi and ji factors are summarized in Table 1.

In our simplified description, the “on pathway” conformations, i.e., x={1,1,0,0,0},
are presented by seven states (see Fig. 1), while the “off pathway” conformations, i.e., x=
{0,1,0,1,0}, correspond to another 25 states. Using (2) and (7), one can calculate the
denaturant-dependent probabilities of occupying the “on pathway” P(xon pathway) and “off

Table 1 Parameters of the foldon units

i of the foldon unit 1 2 3 4 5

ji kJ/ mol −11.7 −10.886 −5.86 −17.57 −7.58
mi kJ= mol Mð Þ 6.28 4.18 0.65 2.72 2.09
ΔS 0ð Þ

i J= mol Kð Þ 171 −342 −71 −77.4 −93.7
ΔCp;i kJ= mol Kð Þ 5.44 0 0 0 0
acd222
i 0.82 0.18 0 0 0

afl
i 0.7 0.24 0.06 0 0

acd695
i 0 0 0 1 0

Ci 38 ms 0.65 s 7 s 10 s 7 s

{1,1,1,1,0}

N {1,1,1,1,1} {1,1,1,0,0} {1,1,0,0,0} {1,0,0,0,0} {0,0,0,0,0} U

{1,1,1,0,1}

Fig. 1 The pathways of cyt c folding–unfolding via partially unfolded forms, as detected in HX
experiments: N, The native fold; x={xi}, the conformation of the partially unfolded state; U, the fully
unfolded state
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pathway” P(xoff pathway) states. With the parameters listed in Table 1, we have found that the
inequality X

xon pathway

P xð Þ �
X

xoff pathway

P xð Þ; ð8Þ

is valid at all denaturant concentrations typically used in folding–unfolding experiments (0<
[den]<5M guanidinium chloride (GdmCl)). Inequality (8) implies that the system described by
the Zipper Hamiltonian in (2) folds and unfolds along the pathway depicted in Fig. 1.

We show now that the model can explain the observed difference between the cd222 and
cd695 signals in equilibrium studies of denaturant-induced folding–unfolding of cyt c [24].
Figure 2 presents the calculated populations for the “on pathway” states. The model
calculations show that a deviation from two-state behavior is due mainly to the lower
stability of the fourth and fifth foldon units (red and brown symbols in Fig. 2). The struc-
tural changes of the fourth foldon unit, due to a methionine (Met80)–heme absorbance band
[21, 46], would be reflected by the cd695 signal. The structural changes of the more stable
first and second units can be monitored by cd222 because of the alpha helices in these units.
Earlier unfolding of the fourth unit therefore explains the experimentally observed
difference between cd222 and cd695 signals. To reproduce these behaviors numerically,
the linear expansion of the normalized optical signal

~
f obs over equilibrium averages 〈xi〉, i=

1,.., N was used for the cd222 and cd695 signals (see Appendix B):

~
f obs ¼

X
αi xih i: ð9Þ

It should be noted that, in the general case, (9) is valid provided that inequality (8) is true.
The theoretical estimates of the αi coefficients for the cd222 and cd695 signals (see
Appendix B) are presented in Table 1. The denaturant-dependent equilibrium behavior of
cd222 and cd695 (Fig. 3a, b) from these calculations is in good agreement with the
experimental data [24]. The midpoint (fobs=1/2) of cd695 occurs at [GdmCl]≅2.5 M,
compared with [GdmCl]≅2.75 M for the midpoint of cd222.

3.2 The Temperature Effect at Equilibrium

We report the equilibrium measurements of the cd222 signal as a function of temperature
(Fig. 4). We show that, using the free energy factors from HX experiments [13, 47], the
model successfully predicts the spectroscopic measurements. We assume that the effect of
temperature on coupling interactions can be neglected. The temperature effect on ɛi can be
described as follows:

"i ¼ "
0ð Þ
i � T � T 0ð Þ

� �
Δ S 0ð Þ

i

þ ΔCp;i T � T 0ð Þ
� �

� T ln T
.
T 0ð Þ

� �� �
;

ð10Þ

where Δ S 0ð Þ
i and ΔCp,i are, respectively, the entropy and specific heat change in a folding

transition of the ith unit. The values of Δ S 0ð Þ
i and ΔCp,i were extracted using the HX

experimental results [47] (see Appendix A) and are presented in Table 1. From the positive

value of the entropy change ΔS 0ð Þ
1 and nonzero value of ΔCp,1, it can be assumed that the

hydrophobic effect plays an important role in the folding of the first unit. The temperature
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dependence of cd222 in the native f Nð Þ
cd222 Tð Þ and unfolded f Uð Þ

cd222 Tð Þ states is usually
assumed to be linear [50], which is supported as well by our experimental results (see
Fig. 4). Without normalization, (9) for the observable cd222 signal reads:

fcd222h i ¼ f Nð Þ
cd222 Tð Þ αcd222

1 x1h i þ αcd222
2 x2h i� �þ f Uð Þ

cd222 Tð Þ
1� αcd222

1 x1h i þ αcd222
2 x2h i� �� �

:
ð11Þ

Using the parameters from HX experiments (see Table 1), calculations from the model
showed good agreement with the cd222 experimental behavior (Fig. 4).

3.3 Refolding Kinetics

Just as for the equilibrium case, the observable optical signal
~
f obs tð Þ can be expanded into

linear combinations over 〈xi(t)〉:

~
fobs tð Þ ¼

X
αi xi tð Þh i: ð12Þ

Because acd222
i ¼ 0, i=3,4,5, it follows from (5) and (12) that the cd222 signal is bound to

reveal two kinetic phases characterized by the time scales C1 and C2 of the first and second
foldon units, respectively. The same reasoning predicts the existence of three kinetic phases
for fluorescence (!f li ¼ 0, i=4,5). Moreover, in the case C1<<C2<<C3, the solution of (5) is
close to a simple exponential behavior. For this case, (12) predicts two- and three- exponent
kinetics, respectively, for cd222 and fluorescence, in line with experimental results reported
in [22, 29]. To reproduce the experimental observations of refolding kinetics by numerical
calculations, the magnitudes of the time scales C1, C2, and C3 were adopted from [22]. The
master equation (4) was solved using MC dynamic calculations [39]. The probabilities of
the “on pathway” transitions were calculated using the relationships:

w xi ! 1� xið Þ ¼ w 1� xi ! xið Þ exp � H x1;:;xi;:;xNð Þ�H x1;:;1�xi;:;xNð Þ
kBT

� �
w xi ¼ 0 ! xi ¼ 1ð Þ ¼ Ci

; ð13Þ

while the probabilities of “off pathway” transitions were set to zero. The model calculations
(see Fig. 5) successfully duplicate the refolding experiments in [22]. The values of Ci used
in calculations (see Table 1) are due to fitting the experimental dependences of cd222. The
coefficients !f li ¼ 0, i=1,2,3 were found by fitting the experimental results.

It should be noted that the experimental results reported in [22, 29], in addition to the
aforementioned kinetic phases of the cd222 and fluorescence signals, reveal a very fast (C<
4 ms) burst phase. Since this phase occurs without actual folding–unfolding of the foldon
units and represents the system’s response to a change of denaturant concentration [29], we
did not consider the burst phase in the proposed model. There is a different viewpoint on the
burst phase [51].

4 Discussion

Despite its simplicity, the present model describes many of the essential features of cyt c
folding–unfolding from a standpoint that cyt c consists of five nonadditively interacting
foldon units. The heterogeneous thermodynamic and kinetic properties of the foldon units
were found to be important for describing the folding–unfolding behavior. Under mildly
denaturing conditions, the first three foldon units are stable, whereas the last two are prone
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to unfolding (Fig. 2). Such a deviation from the two-state behavior is an important feature
of cyt c because it reflects the different structural and functional roles of foldons. The fifth
foldon unit is the Ω loop, which plays important roles in cyt c function [52, 53]. One can
conclude that in a mildly changing living environment, the tertiary structure of the cyt c
protein is stable because the first three units form a nucleus, but is also highly reactive
because the fourth and fifth units are unstable. This instability becomes especially evident if
pH changes are used as a denaturant (see Fig. 5c in [54]).

The energy landscape concept generally predicts protein folding to show complex
dynamics with a broad distribution of time scales [55, 56]. However, the kinetics of cyt c
folding appears to be a simple two- or three-exponent process, depending on the type of
spectroscopic measurement. Many models have been proposed to explain this phenomenon
(see for example [20]). In the present work, we show that two- and three-exponent refolding
kinetics is a manifestation of sequential folding of the foldon units, which occurs over
different time scales. The characteristic time C1~50 ms for the refolding of denatured cyt c
(see Table 1) is determined by side chain packing of the amino acid residues of the first
foldon unit [57]. The time scale C2~1 s is determined by the predominant, at higher
denaturant concentrations, heme–histidine misligation [58]. The slowest time, C1~10 s (i=
3, 4, 5) is thought to be due to misisomerization of proline residues [59] namely, Pro 30
(third foldon), Pro 44 and 71 (fourth), and Pro76 (fifth).

The protein-folding theory seeks to understand the dynamic interplay of tertiary and
secondary structures [45, 60, 61]. The folding time scales of cyt c foldon units (50 ms≤τ≤
10 s) are much slower than the related time scales of secondary structural motifs, i.e.,
ta � 100 ns for a 21-residue alpha helix [62] and tb � 10 ms for a 17-residue beta hairpin
[63]. The difference in the magnitude of the secondary and tertiary time scales implies that
establishing native tertiary interactions are rate-limiting events in the folding of cyt c.
Makarov and Plaxco came to the same conclusion when investigating two-state folding of
single-domain proteins using the topomer search model [64]. An exploration of the
relatively small parts of a protein’s conformational space to establish the proper tertiary
contacts is a plausible answer to the question, “How can the cyt c molecule quickly find the
unique folding pathway among all possible random trajectories?” To illustrate this
hypothesis, proposed for the first time in [13], we recall the famous Levinthal estimation
for the time scale of protein folding τfold due to a random walk in conformational space:

tfold � 3M t ð14Þ
where M is the number of amino acid residues of a protein and τ is the characteristic time of
the transition between conformational macrostates of a residue. With M=104 for cyt c and
C≈50 ps [36, 65] for helix–coil transitions, the estimation gives τfold~10

39 s and is known
as Levinthal’s paradox. Dividing the cyt c phase space into N foldons can be taken into
account in (14) as follows:

Cfold � N3M=NC: ð15Þ
Substituting N=5 into (15) gives Cfold~1 s, which is in strikingly good agreement with
experimental observations.

5 Conclusion

Using the Zipper model, the nonadditive many-body interactions of experimentally
observed foldon units were introduced in a phenomenological way to describe the “on
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pathway” classical folding of cyt c. Such nonadditive interactions can play an important
role in describing protein folding on a coarse-grained level.

6 Material and Methods

Horse heart cyt c in an oxidized form was purchased from Sigma (C-7752, MW=12,384 g/
mole) and used without further purification. Aqueous solutions of 40 μM cyt c were
prepared in 7 mM potassium phosphate buffer at pH 7, where the ionic strength was
adjusted by adding 7–21 mM KCl. The pH value of the protein was performed by using a
pH meter (Beckman ϕ390).

For the temperature dependence of the circular dichroism (CD) spectra, the spectrometer
(Jasco J715) was operated at a bandwidth of 2 nm, response time 0.5 s, scanning speed
100 nm/min, and ten spectra average. During the measurements, cyt c was prepared in a 1-
mm light path quartz cell (Hellma, 165-QS), whose temperature was adjusted by a water
cooler system (Neslab RTE-111). The temperature signal was monitored and fed back to the
controller via two thermal couple sensors. In the studies described above, the temperature
dependence of alpha helix folding–unfolding of cyt c was obtained from the various
intensities of the 222 nm peak in the CD spectra.
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Appendix A

By subtracting the Hamiltonian function in (2) from the sequential conformations as
depicted in Fig. 1, one finds that

"i þ ji ¼ Gi � Gi�1 i ¼ 1; ::;N ; ð16Þ
where Gi ¼ H x1 ¼ 1; ::; xi ¼ 1; xiþ1 ¼ 0; ::; xN ¼ 0ð Þ. At low concentrations of GdmCl and
a temperature of 30 C, the experimental measurements of Gi [13] show a linear dependence
on the denaturant concentration

Gi ¼ G 0ð Þ
i þ mGi den½ � ð17Þ

Taking into account (7) and approximating "
0ð Þ
i ¼ 0 (Section 3), one can rewrite (16) as:

ji ¼ G 0ð Þ
i � G 0ð Þ

i�1; mi ¼ mGi � mGi�1 i ¼ 1; ::;N : ð18Þ
Using (18) and the experimental values Gi, i=1,..,3 from [13], one can find mi and ji

values unequivocally for the first three units. For the fourth and fifth foldon units, only the
sum G4þ5 ¼ G4 þ G5 was found in the experiments. Summation of (18) for the fourth and
fifth foldon units gives:

j5 þ j4 ¼ G 0ð Þ
4þ5 � G 0ð Þ

3 ; m5 þ m4 ¼ mG4þ5 � mG3 ð19Þ
Based on the results in [43], we have assumed that values of m4 and m5 are proportional

to the numbers of residues in the related foldon units. This assumption is roughly confirmed
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by the values of mi i=1,2,3 and allows us to find m4, m5 using (19) and the experimental
value of mG4þ5 . The free energy factors j4 and j5 were found by numerical fitting of the
equilibrium cd222 signal [24] using (9) and (2). Using the HX experimental results [47], the
values of Δ S 0ð Þ

i in (10) were found in a similar way as we have done for mi. Values of
ΔCp,i are taken from [46]; the values are zero except when i=1.

Appendix B

The average of a physical value f is given by:

fh i ¼
X
x

f xð ÞP xð Þ; ð20Þ

where P(x) is the probability to occupy the state x. Spectroscopic measurements like
absorption spectra, fluorescence spectra, and CD measure the sum of the local contributions
to the signal:

f xð Þ ¼
XN
i¼1

fi xð Þ; ð21Þ

where fi (x) denotes the specific contribution of the ith unit.
Taking into account the “on pathway” character of cyt c folding–unfolding, one can

approximate (20) by the sum over “on pathway” states:

fh i ffi
X

xon pathway

f xð ÞP xð Þ: ð22Þ

First, let us consider the cd222 signal. This signal is due to the contributions of the alpha
helices of the first and the second foldon units, i.e., fcd222=fcd222 (x1, x2). For “on pathway”
states, one can decompose fcd222 into a linear combination over x1, x2:

fcd222 x1; x2ð Þ ¼ fcd222 0; 0ð Þ þ fcd222 1; 0ð Þ � fcd222 0; 0ð Þ½ �x1
þ fcd222 1; 1ð Þ � fcd222 1; 0ð Þ½ �x2: ð23Þ

The specific contribution of the ith unit to the overall cd222 signal of cyt c depends only
on the local conformation of this unit. Accordingly, for cd222, (21) reads:

fcd222 x1; x2ð Þ ¼ fcd222 x1ð Þ þ fcd222 x2ð Þ: ð24Þ
Substituting (23) in (22) gives:

fcd222h i ¼ fcd222 0; 0ð Þ þ fcd222 1; 0ð Þ � fcd222 0; 0ð Þ½ � x1h i þ fcd222 1; 1ð Þ � fcd222 1; 0ð Þ½ � x2h i:
ð25Þ

From this, the relation for the normalized signal can be written as:

~
f cd222
� 	 � fcd222h i�f Uð Þ

cd222

f Nð Þ
cd222�f Uð Þ

cd222

¼ αcd222
1 x1h i þ αcd222

2 x2h i

αcd222
1 ¼ fcd222 1;0ð Þ�fcd222 0;0ð Þ

f Nð Þ
cd222�f Uð Þ

cd222

αcd222
2 ¼ fcd222 1;1ð Þ�fcd222 1;0ð Þ

f Nð Þ
cd222�f Uð Þ

cd222

;
ð26Þ
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where f Nð Þ
cd222, f

Uð Þ
cd222 designate, respectively, the cd222 signal of the folded and unfolded cyt c

molecule. The number of helical residues contributing to the cd222 signal should
approximately equal the number of peptide carbonyls buried in the alpha helix [48]. In
the single helix, this number equals the number of the helix backbone hydrogen bonds.
Under the two-state description of the foldon units, and taking into account (24), the acd222

i
coefficients can be calculated as the ratio of the number of alpha helix backbone hydrogen
bonds in the ith unit to the total number of the alpha helix backbone hydrogen bonds:

αcd222
i ¼ n hð Þ

i

. X
n hð Þ
i

� �
; n hð Þ

i ¼ n αð Þ
i � 2; i ¼ 1; 2; ð27Þ

where n að Þ
i is the number of the helical residues in the ith foldon unit namely, n að Þ

1 ¼ 25 and
n að Þ
2 ¼ 7 [49]. The calculated αi coefficients of cd222 signal are presented in Table 1.
Another useful representation of (24) is

fcd222h i ¼ f Nð Þ
cd222 acd222

1 x1h i þ acd222
2 x2h i� �þ f Uð Þ

cd222 1� acd222
1 x1h i þ acd222

2 x2h i� �� �
: ð28Þ

The cd695 signal depends on the local conformation of the fourth foldon unit and is
contributed solely by this unit:

fcd695 2xð Þ ¼ fcd695 x4ð Þ: ð29Þ
Similar to cd222 and using (29), one can obtain the expression for the normalized signal:

~
f cd695

� 	 � fcd695h i � f Uð Þ
cd695

f Nð Þ
cd695 � f Uð Þ

cd695

¼ x4h i: ð30Þ

The fluorescence signal of cyt c is due to Förster energy transfer between the tryptophan
residue of the third unit (Trp 59) and the heme group of the first unit [20]. The distance
between tryptophan and the heme depends on the conformations of all the residues in
between. In the frame of the proposed model, it can be expressed as

ffl xð Þ ¼ ffl x1; x2; x3ð Þ: ð31Þ
Similar to cd222, one can obtain from (31) the relation for the normalized fluorescence

signal

~
f fl
� 	 ¼ αf l

1 x1h i þ αf l
2 x2h i þ αf l

3 x3h i ð32Þ
where α f l

i has a structure similar to acd222
i in (26). The theoretical calculation of the α f l

i

coefficients is beyond the limits of the proposed model.
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