US006842846B2

a2 United States Patent
Chen et al.

US 6,842,846 B2
Jan. 11, 2005

(10) Patent No.:
5) Date of Patent:

(54) INSTRUCTION PRE-FETCH AMOUNT
CONTROL WITH READING AMOUNT
REGISTER FLAG SET BASED ON PRE-
DETECTION OF CONDITIONAL BRANCH-

(58) Field of Search 712/206, 207,

712/235, 237, 713/320

56 References Cited
SELECT INSTRUCTION (56)
. U.S. PATENT DOCUMENTS
(75) Inventors: Pao-Lung Chen, Hsinchu (TW),
Chen-Yi Lee, Hsinchu (TW) 5,687,339 A 11/1997 Hwangccccoeeenee. 712/207
5,870,616 A * 2/1999 Loper et al. ..vveniinnn 713/324
(73) Assjgnee; National Chiao 'Ihng University’ 6,631,464 Bl * 10/2003 Mori et al.cccouennee. 712/234
Hsinchu (TW) . .
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner—Kenneth S. Kim
U.S.C. 154(b) by 431 days.
&) ABSTRACT
(21) Appl. No.: 10/024,844 An architecture of method for fetching microprocessor’s
(22) TFiled: Dec. 18. 2001 instructions is provided to pre-fetch and pre-decode a next
’ instruction. If the instruction pre-decoded is found a condi-
(65) Prior Publication Data tional branch instruction, an instruction reading-amount
US 2002/0144087 Al Oct. 3, 2002 ﬁ:glster.ls sc?t for reading two instructions Ilf.:Xt to the Curregt
instruction in the program memory, or one is read instead if
(30) Foreign Application Priority Data the next instruction is found an instruction other than the
conditional branch one so as to waive reading of unneces-
AL 3, 2001 (TW) ooooeeeeeseevveeee s 90218189 U v
sary program memory and thereby reduce power consump-
(51 Inte CL7 s GO6F 9/30 tion.
(52) US.CL T12/207; 712/206; 712/235,
713/320 7 Claims, 6 Drawing Sheets
301 302 D e T i
: The instruction Add 1 to :
t - 1 —~+e{ pre-fetched is program counter [|
Instruction ! | a general (PC+1) :
?:frfl:;treglster || Pre-decode E instruction I (= |
instruction) instruction()} || 303 307 / i | Set the
| - - . | | instruction
i | The instruction A nev value of the i | resding-asount
I | pre-fetched is progran counter PC(A I | register "0" fo
-J'-— an unconditional new address is : reading an u]——_
| | branch contained in the i | instruction frt
I | instruction | instruction) ! the program |
! ~N | pemory
!]] |
X 304 | Push address of "CALL |
| instruction to the 1 M
/ - - "STACK" ;PC= 2 new !
(| The mstruct}on address contained in !
—:— p{e-fe}ched Isa the “CALL" instruction; :
o, CALL "or a pop the original 4
i | “RETURN -~ address at the "STACK’ ' 312 313
| | instruction ™ | and provide it to the 309:
{ 305 PC i
e cmcmemmmmmme—eooooooClT R , J
[e - Set the
!'"| The instruction The value of the ' mStl.'"CElm Choose
i : i | reading-amount one
1 | pre-fetched is program counter Lo register “1" fof—ed; .
"1 a conditional (PC) could be PCtl | reading two instruction
| branch i or PC+2 | |instructions of the
. . alternatives
ll_ instruction 306 310_J from the
““““““““““““““““““““““ program mesory

US 6,842,846 B2

Sheet 1 of 6

Jan. 11, 2005

U.S. Patent

K UOT3ONI)sul
931N09xXy

(LIVv d0onrid) 1 ‘o1

dON 23no9x3

TTYD UO13ONIISUl
ay3 93INdax3

N UO13onIjsut
3y} 93N0AXY

CTIVY)

[+{ Ssatppe W Ssa1ppe 74N SSoIppe [+N Ssa1ppe
18 UOT}ONIISUIL J& UOT}ONIISUT } UOT}ONIISuT 1B UOT)ONIISUT
94} peay Yl pesy oYy} pesy Y} peay

vL €L 21 1L ¥ el 2 W ¥ e 2l 1L ¥ &l &l L

US 6,842,846 B2

Sheet 2 of 6

Jan. 11, 2005

U.S. Patent

(LIV d01dd) 7 'O1d

[+ UOT3oNnIIsul
ayl a3noexy

- —— e m— — — —— — —— — — f—— o —]

E+N Ppue
Z+H suorjyonijsul

sy peay

VL €L ¢l Il

N UOT}ONIISUr

S} 23noaxy JON a3noaxy
24N pue T+N pue
[+l suorjonIjsul N SUOI}ONIISUT
9y} pedy Yl pey
VL €L 2L 1L 7L €L 2L 1L

N uot3onijsut
3} IINIXY

v - — -

2N pue (TIVO) I+N

SUO13onJ3Sul
oy pesy

2"

el 2l 1L

US 6,842,846 B2

Sheet 3 of 6

Jan. 11, 2005

U.S. Patent

Atowsu weidoud

[e i
oy3 woxy | | OLE 90¢ UOI1}ONIISUT
mo>_aacmwwwm SUOTIONIISUL | 21 10 1 :owmum
a ! N
UOT3oNIISul o oa«uwwwmwww ! 143d 2 pino> (3d) o I e
’ 2uo [wchwmwnu:_vmou " J193unoo weidoxd S1 peyo3laj-oaad
t UOT3ONIISUT D
35001 uor3oNIISUT ~| 2y} Jo snjea ayl 11on13sur oy|
, . ayyyegy ~ oo
e
‘ ; 160€ o [29F
_ ay} o3} 31 aplaoid pue ///, uoTIoNIISUL
ELE Zle _ WJOVIS. o,_w e mmﬁmww — NENIR
T TeuidyIo 3y ® J0,TIV)..
“ —q ‘UoTIoNIISUl TR, 943 e ST paydjoj-oid
_ Ut pau1eluod ssarppe UOTIONAISUL ByL
_ MU 8 =0d! ,JOVIS. i .
LLE | Syl 03 uO1IoNIISUL
o " TIVD. Jo Ssappe ysng éﬁ
owou
™ weiSoxd a3 “ (uorjonaisut ~— uo119NIISU
1} UOT}ONJI3ISUL _ |Y3 ut psuteluod youeaq
ue Buipeai “ S1 SS9Jppe mau [BUOT}TPUODUN UB
10} 0, 19181801 _ ¥)2d I23unod wexsoxd st payolej-axd
JUnomE-BuTpRaX | 9y} JO anjeA AUy UOTIONAISUE YL
uoTIONIISUT "
op 338 | | qu\ toe BOE
_ v B Uo13}ONI}SUT
_ (1+2d) [elous3 e
|+~ J93uUnod weidosd ST payolaj-axd
“ 03 1 PPY uor3ONIISUr A
[
e e e

¢ O

9
]
|
!
!
I
|
J
-
!
!
|
|
I
I
I
|
|
]
!
i
|
I
I
|
l
|
(
{
|
| (UO13ONIJSUT
| ﬁwu:o_uo:uwww_ 1%oU)
“ 3poosp-aid Jorst8ax 1a))nq
I UOTJONIISu|
+ Il }
|
[
. 0€ L0E

US 6,842,846 B2

Sheet 4 of 6

Jan. 11, 2005

U.S. Patent

P OId

W G1a-1yaeysiser

0l 7—1} 11un Buissaooad

! |

junowe-3utpead
uo130na3su]

ad
J3)s1dax
60 dllhwt:n UOYJORLISU]

oy

Joxa[d13ne
80— puur 1 03 7 Ste
10
o, | [. y
uorysod vo1310d Joxardiigna ¢
fiowen we.rdoxd Alowon wersoxd wxis | LY
LO— aSed-ppy | 909—L s¥ed_uang 19z],
b
“ p
91 A 91.A r.'l_
<0 12}S1821 19151331 S
—t 103Jmq Iajyng 1
§S9.4ppe PR) 09— SSo.Ippe uaag uoxm_amw_u-”_“ 1LY
Forqeug - Falqeug {0} 70
cH\T NO#/ 91 A U
E09—F y
Joxajduyne Jaxardiy e |
S sy r oy z pucoas | 0} g S S
| 0 { 0 1
4 Y a k Y Joxodiy 1y
AN0J A
(45T 114 HUBd1JTUBIS ISE] . .ws M) Q
310010 (asm 1 !
L0 tejuemesour L weon s uoISIaAUE aseyd
s8]
o—»

Y 4

SOUT| SSaIppy

US 6,842,846 B2

Sheet 5 of 6

Jan. 11, 2005

U.S. Patent

N) I |

suo13}

|

|

o |

|
a5

|

J2)s18a3
Junowe--3uipeal
UOTIOMIISUT JO an(vj

b} syt
mﬁo.ﬁ?%

Y]

T

mwlﬁ_a_

" afed SUO!

ppo ue
d

onuysut
uvnaoufmm
I

12)-apd

aed SuOl
U9A2 UB

! w

apdoap-aid ve efed 9

phe ppOo ue
12)-9pd ¢

umrmwu_m. aded uand s _uﬁwﬁ

bodap-pad
us
| SF] wi_u._n_

uass ue

I

appoap~-31d
ue
ypiaj nm.a 1

ofed m=c_uo=.ﬁw5

a8ed
ppo uB

Arouwats
wexBoid a3 jo adsg

14 30X 00t

(doN) 11

€)
| vswm
4

14 dav 6

V ION 8

3mexy

v LON 101

T4 30X 001

ASL
\ 002 TIVD 21
(o 001 AT T1

LA

01

14 adav 6

Azouow weidoid a3
gy (S)uoljonaysul
yeg-add

101

001 ~

001 {PeOl T1

01

6

VL €L ¢l TIL #L €L 2L 1L ¥l €L 21 1L

L €L 2L 1L

001

34

peo

I+
1+
1+

2

—

gL 2L 1L

91042
J——

UOT3OMUIISu]

anNg 202
13 103
73 40 002

¥ 10N 101
13 ¥0X 001

€4 ¥OX §1
28 %0 ¥l

v ION €1
002 TIVD 21
001 KT 11
v 78 01

14 4GV 6

Vv 10N 8

od

US 6,842,846 B2

A |

Sheet 6 of 6

_ 1035801
0 0 0 0 0 0 wnonssut 10 onten
| ; L I t) \\» . . .
Jorubut o3ed mﬂo:OLamE . eEd o %Nuwnum:_ aged cybryondysur a8ed wcu_AuNuVP uw.:uwwn .MMMM _mme 1sur sSuoHonI $ut o8ed
oboop-pad WA WE Lol oid PPO R doooodaxd PPO VB Sponofaud VMR UE Lposag.asd %c g | ppocof-aad 93%4 oppoap 4ud oo Kxowon
pue 1 pue | pue | s | pue pup US43 UE ue ppo weifoxd ayy Jo aBey
byag-bad ynei-aad yoyag-axd ys3ap-a1d yoye)-a1d yoyaj~aid p3a5-3ad
v LON €1 caony 10z | || vauo 0oz @we [\| vaor \ \| wavs v 10N 8 ainoaxy
N (DN N Ae0090 weaSold oy}
(T4 ¥ I IV ION &1 A R (4 I 4 ¥0 002 i 002 TIvV) 21 My vy z5o01 | 14 GQV 6 | ur (sywononnsuy
\ 001 dNf T P13]-314
/(8| gev__ .
VI gt A &l 108 002~] "lovs. 11 01 6 0d
Yy —Ip }no dog 1] o!_r-lﬁ_"dn_,

Jan. 11, 2005

U.S. Patent

¥l €L gL 1L ¥1L €1 2L 1L ¥#L €L 2L IL #L €L 2l 11 ¥L €1 ¢l 11 ¥l €1 4L 1L ¥l €L gl 11

aNd 202
LR 102
I+ 4 30 007
v 10N 101
14 ¥0X 001
gl :
.Bﬁmx 002 Em__ €4 30y st
ay Jo Ina dog
’ JOVIS. a ¥ b1
sy} ojur ysng ¥ LON E1
002 11D Z1
001 dHr 1t
& ¥ 78 01
"H 14 0QY 6
d Y ION B

US 6,842,846 B2

1

INSTRUCTION PRE-FETCH AMOUNT
CONTROL WITH READING AMOUNT
REGISTER FLAG SET BASED ON PRE-
DETECTION OF CONDITIONAL BRANCH-
SELECT INSTRUCTION

FIELD OF THE INVENTION

This invention relates to an architecture of method for
fetching microprocessor’s instructions, and more particu-
larly to the pre-fetching of program instructions in the event
of a conditional branch for reducing power consumption.

BACKGROUND OF THE INVENTION

The effectiveness of a computer is often evaluated based
on its processing speed of an instruction. A single-cycle
instruction is an instruction that can be executed and com-
pleted within a cycle and in the mean time allows a micro-
processor to pre-fetch the next instruction. However, not all
instructions in a program are single cycle instructions. How
to reduce the processing time of an instruction has been a
great concern to the designers of computer processors.

When executing the general logic instructions of a
program, a microprocessor is supposed to run an instruction
and pre-fetch the next one totally in an instruction cycle by
adding value 1 to a program counter (PC). The next instruc-
tion can thus be executed in the next cycle. Therefore, single
cycle instructions can be executed consecutively. As shown
in FIG. 1, while instruction N is executed instruction N+1 is
also pre-fetched for execution in the next cycle. However, if
an instruction executed is a “CALL” instruction, the pre-
fetched instruction would not be executed in the next cycle
because the “CALL” instruction is supposed to jump to a
different address specified in the “CALL” instruction. To
accomplish this instruction jump, the PC will be added with
a discrete variable “M” specified In the “CALL” instruction
instead of the usual 1 to make the PC value discontinuous.
Before so doing, the program would need a no operation
(NOP) instruction for loading the correct address of the
variable “M” to the PC for fetching and executing the
instruction called by the “CALL” instruction. The insertion
of the no operation requires at least one more instruction
cycle that usually deteriorates the microprocessor’s effec-
tiveness.

SUMMARY OF THE INVENTION

In order to overcome the inefficiency of the additional
instruction cycle required, the procedure of an existing
method for fetching instructions shown in FIG. 2 is to
pre-fetch instructions at address N+1 and N+2 while the
instruction at address N is executed, and at this moment, the
method also decodes the N+1 instruction. In case the N+1
instruction is found not a general logic instruction, such as
a “CALL” instruction for example, the next instruction to be
executed will be replaced by a “NOP” instruction for
loading the correct address of the variable “M” specified in
the “CALL” instruction and pre-fetching the instructions at
address “M” and “M”+1 so that the called instruction at
address “M” will be executed in the next instruction cycle
for eliminating the extra cycle to thereby improve the
processing effectiveness. As shown in FIG. 2, the prior art
always fetches two additional instructions because in the
case of a simple conditional branch instruction, the target of
the conditional branch instruction can be either one of the
following two instructions. The pre-fetching of two instruc-
tions continuously while executing the program increases
the consumption of power.

20

25

30

35

40

45

50

55

60

65

2

Although the efficiency is improved in the above method,
more power is consumed during the process of fetching and
storing those two instructions and there is a need to further
improve the pre-fetching of instructions for reducing power
consumption.

The primary object of this invention is to provide a
method for fetching microprocessor’s instructions. The
method which normally pre-fetches a next instruction would
pre-fetch and pre-decode two next instructions in case it
encounters a conditional branch instruction so as to waive
unnecessary reading of program memory and reduce power
consumption accordingly.

Another object of this invention is to provide an archi-
tecture for practicing the method of fetching microproces-
sor’s instructions. In the process of executing instructions, a
processing unit is employed to decode an instruction next to
the current one for setting the state of an instruction reading-
amount register. If the next instruction is found a conditional
branch instruction, both an odd and an even address buffer
register are enabled simultaneously for fetching two next
instructions, wherein the choice of an immediate one is
determined by the processing unit. If the next instruction is
not a conditional branch instruction, only one of the address
buffer register is enabled for fetching an instruction in order
to waive any unnecessary reading of program memory for
reducing power consumption.

For more detailed information regarding advantages or
features of this invention, at least an example of preferred
embodiment will be fully described below with reference to
the annexed drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The related drawings in connection with the detailed
description of this invention to be made later are described
briefly as follows, in which:

FIG. 1 is a schematic view of timing chart of a conven-
tional method for fetching microprocessor’s instructions;

FIG. 2 is another schematic view of timing chart of a
conventional method for fetching microprocessor’s instruc-
tions;

FIG. 3 is a flowchart of a method of this invention for
reading microprocessor’s instructions;

FIG. 4 is an embodiment of the method of this invention
for fetching microprocessor’s instructions; and

FIGS. 5 and 6 are timing charts of the method of this
invention for fetching microprocessor’s instructions.

DETAILED DESCRIPTION OF THE
INVENTION

In general, a program’s instructions of computer might be
divided into four categories: the general instructions as a
first category for execution of general logic instructions; the
unconditional branch instructions as a second category; the
“CALL” and the “RETURN” instructions as a third cat-
egory; and the conditional branch instructions as a fourth
category.

A next instruction succeeding to the current one might
have several alternatives, including: an only address made
by adding 1 to the present PC (program counter) value of the
first category; a new and only address contained in the
current instruction of the second category; a new and only
address contained in the current instruction or a return
address found in a stack of the third category; or an address
at PC+1 or PC+2 of the fourth category which is to be
determined by a processing unit. Therefore, when a suc-

US 6,842,846 B2

3

ceeding instruction is decoded as a conditional branch
instruction, a method of this invention for fetching micro-
processor’s instructions pre-fetches and pre-decodes two
sequential instructions and chooses to execute one of those
alternatives.

As shown in FIG. 3, in running a program, the method of
this invention shall choose one of four options after execu-
tion of a buffer step 301 and a pre-fetching step 302. If the
next instruction is decoded and found a general logic
instruction 303 for example, the procedure of this method is
to add 1 to the PC value (namely, PC+1) 307 and set an
instruction reading-amount register in a state for fetching a
next instruction only 311. If it is found an unconditional
branch instruction 304, the PC will point to a new address
308 and set the instruction reading-amount register in a state
for fetching an instruction 311. If it is found a “CALL” or
a “RETURN” instruction 305, the PC will point to a new
address 309 and set the instruction reading-amount register
in a state for fetching a specified instruction only 311, or if
it is found a conditional branch instruction 306, the PC will
point to a next (PC+1) and then a further next address 310
(PC+2) and set the instruction reading-amount register in a
state for fetching two instructions 312 for the processing unit
to choose and execute one of the alternatives 313.

FIG. 4 is an architecture embodiment of the method of
this invention for fetching microprocessor’s instructions. In
FIG. 4, by taking advantage of an instruction reading-
amount register 411, which is set to binary “1” for reading
two instructions when a processing unit 410 has pre-fetched
and pre-decoded a conditional branch instruction, namely,
the method will read two instructions instead of one in the
next instruction cycle. On the contrary, the instruction
reading-amount register 411 is set to binary “0” for reading
one instruction when the processing unit 410 has pre-fetched
the next instruction and found it in a form other than the
conditional branch.

The program memory module of this invention is divided
into an odd-page and an even-page program memory portion
407, 406. As soon as an odd or an even address buffer
register 405, 404 is enabled, the odd-page or the even-page
program memory portion 407, 406 will be chosen and read
by an instruction buffer register 409. Regarding detailed
operation, several examples are described below.

As shown i FIG. 4, an incremental circuit 401 incre-
ments the value of the address lines. Both the address lines
and the output of the incremental circuit 401 are connected
to multiplexers 402, 403. The selection switch of multi-
plexer 402 is connected to the least significant bit (LSB) of
the address lines to control the output of the multiplexer 402.
The selection switch of multiplexer 403 is connected to the
least significant bit (LSB) of the output of the incremental
circuit 401 to control the output of the multiplexer 403.

The outputs of the two multiplexers 402, 403 are sent to
the even and odd address buffer registers 404, 405 respec-
tively. Multiplexers 414, 413 control the two address buffer
registers 404, 405 respectively for the fetching of even-page
and odd-page program memory portions 406, 407. A mul-
tiplexer 408 which is controlled by the multiplexer 412
selects either even-page or odd-page program memory 406,
407 output and sends it to the instruction buffer register 409
for execution in the processing unit 410.

In a first example, the instruction reading-amount register
is “0” and the address lines have a value “10”. As a result,
multiplexers 402 and 403 output address values “10” and
“11” respectively based on their respective selection
switches. The even address buffer register 404 is enabled by

20

25

30

35

45

50

55

60

65

4

the multiplexer 414 to fetch the even-page program memory
portion 406 and send the fetched instruction to the instruc-
tion buffer register 409 through the multiplexer 408.

In a second example, the instruction reading-amount
register is “0” and the address lines have a value “117. As a
result, the multiplexer 402 chooses the incremented address
value “12” while the multiplexer 403 chooses the address
value “11”. The odd address buffer register 405 is enabled by
the multiplexer 413 to fetch the odd-page program memory
portion 407 and send the fetched instruction to the instruc-
tion buffer register 409 through the multiplexer 408.

In a third example, the instruction reading-amount regis-
ter is “1” and the address lines have a value “11”. In this
case, the multiplexer 402 chooses the address “12” while the
multiplexer 403 chooses the address “117, and both the odd
and the even address buffer registers 405, 404 are enabled to
make the odd-page and the even-page program memory
readable. The address chosen by the instruction buffer
register 409 is determined by the processing unit 410
because the selection switch “S” of the multiplexer 412 is
controlled by the processing unit 410.

The operation manner of this invention is described below
in connection with a program example shown in FIG. 5.

FIG. 5 shows an example of executing a program accord-
ing to the method of this invention. In processing a condi-
tional branch instruction at PC address 10, the program
pre-fetches an unconditional brunch instruction at PC
address 11, and when processing the unconditional branch
instruction, the program pre-fetches an instruction at a next
address. Referring to the timing chart of FIG. 5, when the
instruction at address 9 is executed and the pre-fetched next
instruction at address 10 is decoded as a conditional branch
instruction for example, the instruction reading-amount reg-
ister is set to “1” so that two following instructions at
address 11 and 12 will be pre-fetched when the instruction
at address 10 is executed. If the instruction at address 11 is
chosen and found by the processing unit as an unconditional
branch instruction to be executed next, the instruction
reading-amount register is set to “0”. In the next instruction
cycle, the instruction at address 11 is substituted by no
operation (NOP). Then the instruction at a new address 100
is fetched and decoded as a general logic instruction and the
instruction reading-amount register is set to “0” for execu-
tion of that instruction corresponding to the address 100 in
the next instruction cycle. Meanwhile, the next instruction at
address 101 of the program memory is pre-fetched and
decoded.

The program example in FIG. 6 is almost the same as that
in FIG. §, except that the conditional branch instruction
chosen in this case is a “CALL” or a “RETURN” instruction
at address 12. In the instruction cycle at the PC address 200,
the instruction at address 12 is substituted by NOP, and the
instruction at a new address 200 is fetched and decoded as
a general logic instruction. Thus, the instruction reading-
amount register is set to “0” and the instruction at the
address 200 will be executed in the next instruction cycle.
The instruction at address 201 is pre-fetched and interpreted
as a return instruction, and in the next instruction cycle, the
instruction at address 201 is substituted by NOP, then the
instruction at the return address 13 is pre-fetched and
decoded.

According to the above description, it is understood that
reading two instructions is necessary only when a pre-
fetched instruction is a conditional branch one, otherwise
(about 80%) only one instruction has to be pre-fetched so as
to avoid reading unnecessary program memory for reducing
power consumption.

US 6,842,846 B2

5

In the above described, at least one preferred embodiment
has been described in detail with reference to the drawings
annexed, and it is apparent that numerous variations or
modifications may be made without departing from the true
spirit and scope thereof, as set forth in the claims below.

What is claimed is:

1. A method for reading microprocessor’s instructions,
comprising the steps of:

executing a current instruction, pre-fetching and pre-
decoding a next instruction following the current
instruction in a current instruction cycle; and

setting an instruction reading-amount register to a first
state if the next instruction pre-decoded is a conditional
branch instruction, and otherwise setting the instruction
reading-amount register to a second state, said condi-
tional branch instruction having a branched target in
one of the two succeeding instructions after said con-
ditional branch instruction;

wherein the two succeeding instructions after the next
instruction are pre-fetched in a next instruction cycle if
the instruction reading-amount register is in a first state,
and otherwise one instruction is pre-fetched in the next
instruction cycle.

2. The method for reading microprocessor’s instructions
as claimed in claim 1, wherein a program counter contains
an address value, and the address value is increased by 1 for
pre-fetching an instruction in the next instruction cycle if the
next instruction is pre-decoded to be a general logic
mstruction, a new address value contained in the next
instruction is loaded to the program counter if the next
instruction is pre-decoded to be an unconditional branch
mstruction, a new address value contained in the next
instruction is loaded to the program counter if the next
instruction is pre-decoded to be a CALL instruction, and a
new address is popped from a stack and loaded to the
program counter if the next instruction is pre-decoded to be
a RETURN instruction.

3. The method for reading microprocessor’s instructions
as claimed in claim 1, wherein a binary value 1 or 0 is set
in the instruction reading-amount register to represent the
first or second state for pre-fetching two instructions or one
instruction in the next instruction cycle.

4. An architecture for reading microprocessor’s
instructions, comprising:

a plurality of address lines having an address value;

an incremental circuit for incrementing said address
value;

a first multiplexer controlled by a least significant bit of
the incremented address value for selecting cither the
address value of the address lines or the incremented
address value to output an odd address;

a second multiplexer controlled by a least significant bit
of the address value of the address lines for selecting
either the address value of the address lines or the
incremented address value to output an even address;

an odd address buffer register for buffering the odd
address from the first multiplexer;

an even address buffer register for buffering the even
address from the second multiplexer;

25

35

40

45

50

55

6

an odd-page memory portion addressed by the odd
address buffered in the odd address buffer register for
outputting an instruction stored in the odd-page
memory portion,

an even-page memory portion addressed by the even
address buffered in the even address buffer register for
outputting an instruction stored in the even-page
memory portion;

a third multiplexer for selecting the instruction from either
the odd-page memory portion or the even-page
memory portion,

an instruction buffer register for buffering the instruction
selected by the third multiplexer;

a fourth multiplexer for enabling the even address buffet

register to access the even-page memory portion based

on an inverted value of the least significant bit of the
address lines;

fifth multiplexer for enabling the odd address buffer

register to access the odd-page memory portion based

on the least significant bit of the address lines;

sixth multiplexer for controlling the third multiplexer

based on the least significant bit of the address lines to

select the instruction from the odd-page memory por-
tion or the even-page memory portion;

an instruction reading-amount register for indicating an

amount of instructions to be pre-fetched; and

a processing unit for executing arithmetic logic

operations, controlling, and pre-fetching one or two
instructions from the instruction buffer register;

wherein the processing unit pre-fetches and pre-decodes a

next instruction following a current instruction in a
current instruction cycle and sets the instruction
reading-amount register to a state for pre-fetching one
or two instructions in a next instruction cycle.

5. The architecture for reading microprocessor’s instruc-
tions as claimed in claim 4, wherein the instruction reading-
amount register is set to a state for pre-fetching two instruc-
tions in the next instruction cycle if the next instruction
pre-decoded is a conditional branch instruction.

6. The architecture for reading microprocessor’s instruc-
tions as claimed in claim 4, wherein the address lines are
controlled by a program counter, and the address value of the
address lines is increased by 1 for pre-fetching an instruction
in the next instruction cycle if the next instruction is pre-
decoded to be a general logic instruction, a new address
value contained in the next instruction is loaded to the
program counter if the next instruction is pre-decoded to be
an unconditional branch instruction, a new address value
contained in the next instruction is loaded to the program
counter if the next instruction is pre-decoded to be a CALL
instruction, and a new address is popped from a stack and
loaded to the program counter if the next instruction is
pre-decoded to be a RETURN instruction.

7. The method for reading microprocessor’s instructions
as claimed in claim 4, wherein a binary value 1 or 0 is set
in the instruction reading-amount register to represent a first
or second state for pre-fetching two instructions or one
instruction in the next instruction cycle.

~

I

